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ABSTRACT — In this work, a periodic solution solver for mechanical systems with local nonlinearities
is presented. Compared to existing methods, it is especially suitable for nonlinearities which are de-
scribed by set-valued force laws e.g. set-valued contact laws such as the Signorini condition or impact
laws. Such kind of systems are described as differential inclusions or measure differential inclusions
and have to be solved using dedicated time integration techniques. The proposed periodic solution
solver uses a harmonic ansatz to reduce the dimension of the differential inclusion to enhance the nu-
merical efficiency. Furthermore, for finite element systems a redistributed mass approach is proposed,
which generates a massless boundary without changing the global system behavior. The nonlinear
problem reduces to a quasi-static equation with inequality complementarity condition and, therefore,
can be solved without using time integration techniques. Moreover the Jacobian matrix can be obtained
semi-analytically.

1 Introduction

The use of nonlinear Frequency Response Diagrams to avoid nonlinear resonances is becoming ever more impor-
tant in the design process of machines and mechanical devices. Hereto, periodic solutions of driven mechanical
systems with many degrees of freedom need to be calculated in a most efficient way. Mechanical models stemming
from industrial applications often consist of very large linear structures (e.g. obtained through a finite element dis-
cretization) together with local nonlinearities due to frictional contact. Describing the constraints by set-valued
force laws leads to measure differential inclusions which can be simulated within the Nonsmooth Contact Dynam-
ics approach using timestepping methods [1–3].

The most preferred methods to find the periodic steady-state response of nonlinear differential equations are the
Harmonic Balance Method (HBM) [4] and the shooting method [5]. The standard HBM approximates the periodic
solution in frequency domain and is very popular as it is well suited for large systems with many states. In contrast,
the shooting method operates in time domain and relies on numerical time-simulation, making it very versatile as it
can also handle nonsmooth dynamical systems. We propose a method which combines the best of both approaches
and describes the periodic solution in a mixed frequency time domain, i.e. the Mixed Shooting Harmonic Balance
Method (MS-HBM) [6]. It allows to solve the problem on the basis of a differential inclusion with a reduced
number of DOF. Hence, the numerically expensive timestepping method needs only to be executed for a system
of differential inclusions of reduced dimension. But a disadvantage, compared e.g. to the classical HBM with
Alternating Frequency Time Method (AFT) [7], is that the Jacobian matrix must be obtained numerically through
finite differences. It makes the method cumbersome for systems with many unilateral constraints such as finite
element systems with fine meshes in the contact area. It is known, however, that for such highly discretized
systems there is no real need for an impact law as the impact process is sufficiently described by the internal waves
within the system. We propose in this paper a modification of the MS-HBM for unilaterally constrained elastic
bodies without friction. The mass matrix of the finite element model is redistributed to obtain a massless boundary
without changing the global characteristic of the system. Instead of using a differential inclusion, the contact is



Figure 1: Division into nonlinear and linear subsystems

mathematically described as a quasi-static equation with inequality complementarity condition. The advantage of
this approach is that no time integration is necessary and the Jacobian matrix can be obtained semi-analytically.

The paper is organized as follows. Section 2 describes the general MS-HBM. The modification of the MS-
HBM using a redistributed mass matrix for finite element models is described in Section 3 for frictionless contact.
The approach to obtain the semi-analytical Jacobian matrix is discussed in Section 3.2. The paper closes with a
numerical example of a unilaterally constrained bar under harmonic excitation.

2 MS-HBM

The mixed shooting-HBM approach exploits the local character of the nonlinearities to find periodic solutions of
mechanical systems efficiently. We consider a Lagrangian system of the form

Mq̈(t)+Cq̇(t)+Kq(t) = fex(t)+fnl(t), (1)

with the set-valued force law
fnl ∈Fnl(q, q̇) (2)

where fnl contains the nonlinear forces which are in the force reservoir Fnl(q, q̇) and fex(t) = fex(t + T ) is
the periodic forcing. System (1) with set-valued force law (2) constitutes a differential inclusion [1] and, more
generally, a measure differential inclusion if (1) is expressed in measures. We assume that the nonlinear forces
only act on a subsystem with the generalized coordinates qN and only depend on qN . The other part of the system,
qL, is not directly affected by the nonlinear forces. Therefore, system (1) has the following structure(

MLL MLN

MNL MNN

)(
q̈L

q̈N

)
+

(
CLL CLN

CNL CNN

)(
q̇L

q̇N

)
+

(
KLL KLN

KNL KNN

)(
qL

qN

)
=

(
fex,L
fex,N

)
+

(
0
fN

)
. (3)

As an example of such a system, a multi-DOF oscillator with friction, divided into its subsystems, is depicted in
Figure 1. The main idea of the MS-HBM is to describe the periodic solution by a combination of frequency and
time domain. The dynamics of the linear subsystem is described with its Fourier coefficients q̂L, i.e.

qL(t) = q̂0
L +

nH

∑
k=1
q̂c,k

L coskωt + q̂s,k
L sinkωt = V+(t)q̂L, (4)

with
V+(t) =

(
I cos(ωt)I sin(ωt)I . . . cos(nHωt)I sin(nHωt)I

)
. (5)

The motion qL(t) of the linear subsystem is therefore constrained to a harmonic oscillation with frequencies ω up
to nHω . The nonlinear subsystem is described in time domain and is not constrained to be harmonic. The nonlinear
subsystem can be viewed as a non-harmonic forcing on the linear subsystem. The harmonic constraint on the linear
subsystem enforces the linear subsystem to oscillate purely harmonically and is therefore a perfect reaction force
which balances the higher harmonic components of qN . Consequently, all higher frequencies contained in qN are
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absorbed by the constraint and have no influence on qL. If qN is known, then q̂L can be obtained by formulating
the first line of Equation 3 in frequency domain which leads to the linear equation

q̂L =H−1
LL (fex,L−HLN q̂N), (6)

whereHi j are the dynamic stiffness matrices

Hi j = diag(Ji j,0,Ji j,1, . . .Ji j,nH ) (7)

with

Ji j,k =

(
−Mi j(kω)2 +Ki j Ci jkω

−Ci jkω −Mi j(kω)2 +Ki j

)
. (8)

The Fourier coefficients of the nonlinear subsystem q̂N are obtained from qN(t) through

q̂N =
2
T

∫ T

0
V−(t)qN(t)dt, V−(t) =



1
2I

cos(ωt)I
sin(ωt)I

...
cos(nHωt)I
sin(nHωt)I


, (9)

with ω = 2π

T and nH denoting the number of considered harmonics. The identity matrix I has here the dimension
dim(qN).

The second line of Equation (3) represents the dynamics of the nonlinear subsystem and therefore remains in
time domain. For known q̂L one can calculate its time domain representation qL(t) and its derivatives using (4) and
solve the differential equation for qN(t)

MNN q̈N(t)+CNN q̇N(t)+KNNqN(t) =−(MNLV̈+(t)q̂L

+CNLV̇+(t)q̂L +KNLV+(t)q̂L)+fex,N(t)+fN(t)
(10)

using numerical time integration techniques. If the nonlinear force fN is governed by a set-valued force law, then
dedicated numerical schemes such as Moreau’s timestepping scheme need to be used [1, 2]. A periodic solution
can be completely represented by the trajectory qN(t) on the interval 0≤ t ≤ T and by the Fourier coefficients q̂N

as the Fourier coefficients q̂L directly follow from q̂N through (6). The initial condition qN(0) and q̇N(0) together
with qL(t) = V+(t)q̂L allow to construct q(t) over one period using (10). The vector of unknowns

x=

 q̂N

qN(0)
q̇N(0)

 (11)

therefore fully represents a periodic solution of the system. Similar to a shooting method, we require for the
nonlinear subsystem the periodicity conditions qN(T )− qN(0) = 0 and q̇N(T )− q̇N(0) = 0, where the state at
t = T is obtained through numerical time-integration of (10). The Fourier coefficients q̂N represent the dynamical
behavior of the linear subsystem through (6). To ensure that both subsystems oscillate consistently with each other,
the equality q̂N−FFT(qN(t)) = 0 must hold. In the following, we refer to this equation as connectivity condition.
Hence, x represents a periodic solution of the system if it is a zero of the residuum function

fR(x) =

q̂N−FFT(qN(t))
qN(T )−qN(0)
q̇N(T )− q̇N(0)

 . (12)

The problem fR(x) = 0 can be solved iteratively using a Newton-type method

xi+1 = xi−
(

∂fR

∂x

)−1

fR(x
i), (13)
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(a) MS-HBM (b) HBM with AFT

Figure 2: Schematic block diagrams

where the Jacobian is obtained through finite differences.
The block diagram of MS-HBM is depicted in Figure 2 and compared to the classical HBM with AFT. The

HBM with AFT has a static nonlinearity in the feedback loop and is therefore limited to single-valued force
laws, i.e. fN is a single-valued function of qN(t). In contrast, the MS-HBM has in the feedback loop a nonlinear
dynamical system. This gives the possibility to treat problems with set-valued force laws for which the nonlinear
dynamical system in the feedback loop is a (measure) differential inclusion.

The MS-HBM uses time integration techniques and therefore can handle a diversity of problems formulated
as differential equations or (measure) differential inclusions [6]. The use of time integration gives the method
great generality, but requires a numerical Jacobian calculation. Therefore, the general MS-HBM is numerically
not well suited for systems with a large number of DOF of the nonlinear subsystem. Finite element models require
in general a fine discretization of the contact zones which directly leads to a large nonlinear subsystem. Therefore,
the MS-HBM has its suitability for multi-body systems, but becomes numerically inefficient for elastic bodies.
We propose in the following section a modification of the MS-HBM for finite element systems to overcome these
problems.

3 MS-HBM for finite element systems

We utilize the example system, depicted in Figure 3 to illustrate the benefit of the contact model which is suggested
for the modified MS-HBM. The undeformed elastic bar has no internal damping and is accelerated from the rest
position under the influence of gravity. The support is considered as rigid. Since no damping is considered, the
bar performs a periodic oscillation and the problem can be solved in closed form [8]. The analytical solution is
depicted in Figure 4. It shows that after the impact, the bar remains in contact with the support during the time
which the shock wave needs to travel up and down the bar. When the bar detaches, it has a uniform velocity and
is additionally compressed. Hence, during the flight phase the parabolic motion and the vibration of the bar are
superposed. After the second impact and detachment the bar is undeformed again and has a uniform velocity. This
sequence is repeated periodically. In the following, we briefly discuss various modeling approaches to describe
this system. As first attempt, the problem is modeled as

mq̈ = f (q, q̇)+λN , (14)

with a single rigid body using the Signorini condition

0≤ gN ⊥ λN ≥ 0, gN =−q+gN,0 (15)

as contact law. The impact law

0≤ γ
+
N + eNγ

−
N ⊥ ΛN ≥ 0 with 0≤ eN ≤ 1 and γN = ġN a.e., (16)

provides a relation between the pre-impact relative velocity γ
−
N and the post-impact relative velocity γ

+
N . Energy

conservation is fulfilled for eN = 1 but the contact is never established for a time interval of non-zero size. Contact
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Figure 3: Bar under influence of gravity. Figure 4: Analytical solution of bar under influence of gravity.

is established for 0≤ eN < 1, possibly after an accumulation point, but energy is not conserved. Obviously, using
a rigid body approach one can only describe the global system behavior, but for accurate description of the contact
a discretization of the elastic body must be considered. We consider now a Lagrange finite element discretized
structure with unilateral constraints

Mq̈(t)+Kq(t) = fex(t)+WNλN, (17)

and using again the Signorini condition

0≤ gN ⊥ λN ≥ 0, gN =W T
N q+gN,0 (18)

as contact law. The hard unilateral constraint demands the implementation of an impact law. Here we use the
generalized Newton impact law

0≤ γ+
N + eNγ

−
N ⊥ΛN ≥ 0 with 0≤ eN ≤ 1 and γN = ġN a.e., (19)

together with the impact equation
M(q̇+− q̇−) =WNΛN (20)

which now provides a relation between the pre- and post-impact relative velocities of the contact node. In the
case of a rigid body, the restitution coefficient could be seen as replacement of the internal elastic dynamics. But
now, since the bar is modeled as a discretized finite element system, the question of the right restitution coefficient
arises. Choosing eN = 1 leads to energy consistency, but the contact is still never established for a time interval
of non zero size. Hence, due to the inertia of the other nodes the contact node oscillates during the whole contact
period. On the other hand, if eN = 0 the contact is closed for the whole contact time but at each collision of the
node, the system loses energy.

Figure 5 shows the gap width and the normalized total energy of the system for each time step. For comparison,
the black line represents the analytical solution. It can be seen that, as mentioned before, both choices of the
restitution coefficient do not provide the expected result. Therefore, Khenous proposes in [9] to redistribute the
mass matrix in order to obtain the desired contact behavior. The massless boundary provides a well-posed problem
without the need of an impact law. The mred curve of Figure 5 shows that this method provides accurate results in
time domain calculations, at least for the analyzed example. The increasing deviation with time is mainly due to
the finite element discretization (100 elements) which can only approximately model the wave propagation along
the bar. In combination with the MS-HBM this redistribution of the mass can provide an accurate and numerically
robust approach in frequency domain to calculate periodic solutions which we will show in the following sections.
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Figure 5: Comparison of different contact descriptions in time domain

To obtain the redistributed mass matrix, we follow the approach proposed in [9]. The idea is to obtain a contact
boundary which is massless without changing the global system behavior. The massless contact boundary leads, if
we arrange the boundary DOF at the end of the displacement vector, to the new mass matrix

MR =

(
M̄ 0
0 0

)
. (21)

In [9] MR is determined through a global minimization problem. The redistributed mass matrix MR should be as
similar to the original mass matrixM as possible which defines the objective function as

∆M =
1
2
‖M −MR‖2

F, (22)

where ‖A‖F =
√

trace(ATA) is the Frobenius norm.
Since a Lagrange finite element method is used, the masses are distributed to the nodes in such a way that the
zeroth-, first-, and second-order of moments are captured right:

• total mass ∑p mp =
∫

Ω
ρ dΩ:

• center of gravity ∑p xi,pmp =
∫

Ω
ρxi dΩ:

• moment of inertia ∑p xi,px j,pmp =
∫

Ω
ρxix j dΩ:

Requiring to conserve these conditions during the optimization problem gives the constraint equations. The opti-
mization does neither effect the sparsity nor the symmetry of the mass matrix.
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A different approach to obtain a system with massless boundary is proposed in [10]. The creation of the mass
matrix with a massless boundary is here directly achieved using new element integration techniques. In this way,
the optimization problem of the global mass matrix can be avoided.

3.1 MS-HBM with a redistributed mass matrix

The main idea of combining the mass redistribution approach with the MS-HBM is that the nonlinear subsystem
then simplifies to a quasi-static system and a time integration becomes obsolete. In the previous section it was
shown that the contact for finite element models is still modeled accurately or even better without using an impact
law. Moreover, the use of a quasi-static nonlinear subsystem enhances the efficiency of the MS-HBM dramatically.
Combining both methods, a general finite element model with local unilateral constraints can then be written as(

M̄LL 0
0 0

)
︸ ︷︷ ︸

MR

(
q̈L

q̈N

)
+

(
KLL KLN

KNL KNN

)(
qL

qN

)
=

(
fex,L
fex,N

)
+

(
0

W̄NλN

)
(23)

with
0≤ gN ⊥ λN ≥ 0, gN = W̄ T

N q+gN,0. (24)

We now benefit from the subdivision of the MS-HBM to solve the redistributed problem and obtain a linear equa-
tion in frequency domain

q̂L =H−1
LL (f̂ex,L−HLN q̂N), (25)

and a nonlinear static equation in time domain

KNNqN =−KLNqL +W̄NλN +fex,N (26)

with
0≤ gN ⊥ λN ≥ 0, gN = W̄ T

N q+gN,0. (27)

For a given q̂N , Equation (25) directly provides the Fourier coefficients of the linear subsystem q̂L. Hence, the time
domain representations of the displacement of the linear part is calculated using the inverse Fourier transformation
qL = V+(t)q̂L. The dynamics of the nonlinear subsystem (26) with its inequality complementarity condition (27)
is reduced to a simple static LCP for each time step instead of a differential inclusion in the case of the general
MS-HBM. For each time step k this problem is written using the proximal point equation, which replaces the
inequality complementarity condition with an implicit equation for the contact force [2]:

qk
N =K−1

NN(−KNLq
k
L +W̄Nλ

k
N +f k

ex,N) (28)

λk
N = proxR+

0
(λk

N− r(W̄ T
N q

k
N +gN,0)) (29)

The properties of such quasi-static systems are discussed e.g. in [11]. From the static equation follows directly that
qN(t) describes a periodic but not necessarily a harmonic oscillation. The periodicity condition of Equation (12)
becomes therefore unnecessary and thereby the initial condition within the vector of unknowns (11). Thus, we
only have to ensure the connectivity condition of both subsystems which defines the residuum function

fR(x) = q̂N−FFT(qN(t)). (30)

Correspondingly, the vector of unknowns reduces to

x= q̂N , (31)

since the initial conditions are directly given, because qN(t) is always periodic. This nonlinear equation must
again be solved using Newton type methods. But here, the numerically very expensive finite difference method to
calculate the Jacobian matrix can be replaced using semi-analytical approaches.
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3.2 Semi-analytical Jacobian matrix

To gain robustness of the Newton method and to enhance the numerical efficiency a semi-analytical calculation
of the Jacobian matrix is proposed. Salles describes in [12] a semi-analytical approach. We derive based on this
method a semi-analytical Jacobian calculation for the MS-HBM with redistributed mass matrix. Note, that this is
not possible for the general MS-HBM, since the differential inclusion is not differentiable.
With the residuum function (30) and the vector of unknowns (31) the Jacobian matrix is

J =
∂ (q̂N−FFT(qN(t)))

∂ q̂N
= I− ∂ FFT(qN(t))

∂ q̂N
, (32)

where the derivative of the Fourier transformation must be obtained. The Fourier coefficients are defined as the
integrals

q̃0
N =

2
T ∑

kend

k=1

∫ tk+1

tk
qN(t)dt (33)

q̃
(m,c)
N =

2
T ∑

kend

k=1

∫ tk+1

tk
qN(t)cos(mωt)dt (34)

q̃
(m,s)
N =

2
T ∑

kend

k=1

∫ tk+1

tk
qN(t)sin(mωt)dt, (35)

where k stands for the different contact states, separation or contact. Using the Leipnitz rule and utilizing that qN is
a continuous and periodic function the derivative of the boundaries tk and tk+1 have no influence on the derivatives
of the Fourier transformation. Therefore, ∂ FFT(qN)

∂ q̂N
can be rewritten as

∂ q̃0
N

∂ q̂N
=

2
T ∑

kend

k=1

∫ tk+1

tk

∂qN(t)
∂ q̂N

dt (36)

∂ q̃
(m,c)
N

∂ q̂N
=

2
T ∑

kend

k=1

∫ tk+1

tk

∂qN(t)
∂ q̂N

cos(mωt)dt (37)

∂ q̃
(m,s)
N

∂ q̂N
=

2
T ∑

kend

k=1

∫ tk+1

tk

∂qN(t)
∂ q̂N

sin(mωt)dt. (38)

So, the derivative of the FFT boils down to find ∂qN(t)
∂ q̂N

which can be separated into three steps

∂qN(t)
∂ q̂N

=
∂qN(t)
∂qL(t)

∂qL(t)
∂ q̂L︸ ︷︷ ︸
V+(t)

∂ q̂L

∂ q̂N︸︷︷︸
−H−1

LL HLN

(39)

using the chain rule. The result of the second and third term arise directly from (4) and (25), respectively. To obtain
the first term the derivative of the implicit equations (28) and (29) is necessary. The proximal point function can
be derived with respect to its argument z.

dproxR+
0
(z)

dz
=


1 z > 0 (contact)
0 z < 0 (separation)
/0 z = 0

(40)

This proximal point equation and its derivative are illustrated in Figure 6. For multiple contact nodes the state of
each contact node can be obtained separately. Hence, the derivation of each proximal point function is written as
the diagonal matrix

∂ prox(z)
∂z

= diagi=1...nnodes

(
∂ prox(zi)

∂ zi

)
. (41)
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Figure 6: Derivative of proximal point equation on R+
0

From Equation (28) one obtains the partial derivative

∂qN(t)
∂qL(t)

=K−1
NN

(
−KNL +WN

∂λN(t)
∂qL(t)

)
(42)

and with (29)

∂λN(t)
∂qL(t)

=

(
I− ∂ prox(z)

∂z

(
I− rW T

NK
−1
NNWN

))−1
∂ prox(z)

∂z
rW T

NK
−1
NNKNL. (43)

Finally, the required derivative ∂qN(t)
∂ q̂N

arises from equation (39). The complete Jacobian entries

J =
∂ (FFT(qN(t))− q̂N)

∂ q̂N
=



2
T

∫ T
0

∂qN(t)
∂ q̂N,0

dt 2
T

∫ T
0

∂qN(t)
∂ q̂N,1

dt . . .
2
T

∫ T
0

∂qN(t)
∂ q̂N,0

cos(ωt)dt 2
T

∫ T
0

∂qN(t)
∂ q̂N,1

cos(ωt)dt . . .

2
T

∫ T
0

∂qN(t)
∂ q̂N,0

sin(ωt)dt
. . .

...
2
T

∫ T
0

∂qN(t)
∂ q̂N,0

cos(2ωt)dt . . .
... . . .


(44)

are calculated using the Fourier transformation of the derivative for all considered harmonic oscillations. Note that
to obtain the Jacobian matrix semi-analytically the inverse matrix (W T

NK
−1
NNWN)

−1 must exist. This matrix can
be seen as the equivalent to the well known Delassus-matrix of nonsmooth systems. Therefore, the regularity of
W T

NK
−1
NNWN can be proved in the same way, i.e.WN needs to have full rank andKNN needs to be invertible.

3.3 Numerical examples

As numerical example we use a one-sided clamped bar with a unilateral constraint at the end. It is excited with a
harmonic force at the middle of the bar and is discretized with 100 bar elements which have the mass and stiffness
matrix

Me =
ρAl

6

(
2 1
1 2

)
, Ke =

EA
l

(
1 −1
−1 1

)
. (45)

Table 1: Selected parameters of the bar.

parameter ρ E A ` ne F̂
value 9e−9 21e4 1 20 100 4000

The initial gap size is defined as gN,0 and the displacement of the contact node is given as qN , see Figure 7.
For simplicity a one-dimensional problem is chosen, but the method can easily be used for general finite element
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Figure 7: Clamped bar with harmonic excitation.
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Figure 8: Relative error of eigenfrequencies.

models. The first eigenfrequency of the bar is located at 60335Hz. To analyze the influence of the mass redistribu-
tion on the Frequency Response Diagram the relative error of the first 30 eigenfrequencies are plotted in Figure 8.
However, the shift of the eigenfrequencies is negligible.

We first analyze the convergence properties of the MS-HBM with redistributed mass under increasing the
number of considered harmonic oscillations. As reference, the steady state solution obtained using time integration
technique with the original mass matrix and a restitution coefficient eN = 0 is taken. Figure 9 shows the Frequency
Response Diagram of the contact node for the system with an initial gap size of gN,0 = 0.2. For frequencies far away
from the resonance the amplitude of qN is too small to reach the support, resulting in a linear response of the system.
Therefore, the MS-HBM is exact for this frequency range. At frequencies near the first eigenfrequency the bar hits
the ground and higher harmonic oscillations have an increasing contribution to the periodic solution. However,
with just a few harmonics the MS-HBM provides a very accurate approximation of the FRF. The displacement
over time of the periodic solution at 0.06MHz is depicted in Figure 10. Even for the weakest approximation
with just one harmonic oscillation the nonpenetration condition is fulfilled exactly. The HBM with AFT can only
approximately satisfy these contact conditions.

The MS-HBM with redistributed mass has some more advantages compared to the HBM with AFT. It does
not need to have a penalty factor which influences the numerical results. In Figure 11 the FRF of the system with
the initial gap size gN,0 = 0 using MS-HBM is compared to the HBM with AFT with different penalty factors kp.
Although, with increasing kp it converges to the MS-HBM and to the solution obtained using time integration, the
numerical convergence properties of the Newton method become more and more cumbersome.

4 Conclusions and outlook

We present in this paper a MS-HBM which exploits the local character of the nonlinearities of the structure. It
calculates the periodic solutions efficiently using a mixed frequency time domain approach. The general MS-
HBM is suitable for rigid body systems with many states, since measure differential inclusions can be solved with
a reduced number of states. For elastic problems which require often a fine contact discretization at the contact
area, this method is limited due to the numerical expensive time integration and the numerically obtained Jacobian
matrix. Therefore, the MS-HBM is extended by a redistribution of the mass matrix. It provides the possibility
to calculate periodic solutions of finite element systems with frictionless contact very efficiently. We have shown
that the method provides accurate results with just a few considered harmonic oscillations. In comparison to HBM
with AFT it has no design parameter which has an influence on the result. Further research will focus on stability
analysis and add the possibility of frictional contact into the existing MS-HBM with redistributed mass matrix.
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Figure 9: Frequency Response Diagram of clamped bar with an initial gap size gN,0 = 0.2.
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