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Abstract

This paper reports and investigates paradoxical simulation results of the bouncing ball system. Chaos-like
motion of the bouncing ball system with intermittent chattering (Zeno behaviour) is observed in simulations if
the relative acceleration of the table exceeds a critical value. However, one can show that this is theoretically
impossible. A detailed analysis is given by looking at the backward and forward dynamics of grazing
solutions. It is shown in detail that a self-similar structure appears if the relative acceleration of the table
exceeds the critical value.
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1. Introduction

The one-dimensional harmonically excited bouncing ball system (see Fig. 1) has an appealing simplicity
allowing for closed form analysis and has an extremely rich dynamic behavior despite this simplicity. This
paper focuses on the chattering dynamics of this system, being the process of the ball coming to rest on the
(moving) table in finite time over an infinite number of accumulating impact events with ever decreasing
impact velocities (sometimes called Zeno-behavior). In particular, we address the evolution of trajectories
after chattering. The aim of the paper is to report and investigate paradoxical simulation results of the
bouncing ball system and to give an explanation for this phenomenon based on a self-similar structure in
the discrete state-space.

In previous work of the authors [1], in which the stability properties of the bouncing ball problem were
studied, a strange curiosity was encountered. The bouncing ball system was simulated using a standard
integration scheme for non-smooth systems (Moreau’s timestepping scheme [2]). An erratic oscillatory
motion was obtained, which to all appearances looks as a chaotic attractor, Fig. 2. The motion irregularly
visits an accumulation point (chattering) after which the ball is in contact with the table for a while and
then lifts off again. Two such accumulation points can be seen in Fig. 2. However, such trajectories cannot
actually exist. Namely, if the ball comes to rest on the oscillating table after a chattering phase, then it
remains in contact with the table up to the next time instant allowing for detachment. The time instant of
detachment (or its phase with respect to the excitation period), however, is uniquely defined: it is exactly
that time instant for which the table accelerates downward with an acceleration equal to gravity causing the
contact force between ball and table to vanish. Hence, at the time instant of detachment the position and
velocity of the ball, being those of the table, are known and also the phase of excitation is known, which
implies that there is a unique solution after lift-off. The motion evolving from any phase of persistent contact
must therefore be identical, irrespectively of how the ball came to rest on the table. As a consequence, if the
trajectory after an accumulation point encounters a new accumulation point, this procedure must repeat
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endlessly, implying that the resulting motion is periodic. This work, which is based on the MSc. thesis [3],
gives an explanation for the contradiction between theory and simulation of the bouncing ball system.

The surprisingly rich range of dynamical behavior exerted by the bouncing ball has given rise to a rather
fragmented literature. In the following, we order publications by topic, that is, we first introduce a specific
aspect of the bouncing ball system, and subsequently give a selection of papers addressing the latter.

A selection of publications addressing the description, stability properties and period-doubling bifurca-
tions of periodic solutions is given by [4, 1, 5–8]. Chaotic motion under a high-bounce approximation has
been studied in [9]. Besides period doubling, also grazing bifurcation plays a significant role for the bouncing
ball. Grazing bifurcation is typical for nonsmooth systems and consists in the sudden interruption of an
existing periodic orbit by an additional impact event [10–12]. Examples of grazing bifurcation in impact
oscillators are given in [13] and [14]. To avoid the analytical difficulties encountered in the bouncing ball
system when assuming the table’s motion to be a harmonic oscillation, in [15] and [16] Okniński et al. ap-
proximate its motion by patched quadratic functions of time. An explicit consideration of the bouncing ball
problem in the context of control theory can be found in [17]. An experimental setup of the bouncing ball
system which makes use of optical flow analysis is presented in [18].

One additional type of behavior the bouncing ball system can exert, provided the table oscillation is not
too strong, consists in the ball simply lying on the table. The stability properties of this equilibrium are by
no means obvious and have been extensively studied by in [1].

Accumulation points and chattering dynamics of the bouncing ball system have been considered to
some extent [19–22]. In the more general context of impact oscillators, accumulation points and chattering
dynamics are addressed by [23–26].

Of much importance for the analysis given in the current paper is the work of Budd and Dux [24], in
which a systematic study is made of chattering behavior for a periodically forced, single-degree-of-freedom
impact oscillator, being a different although very similar system to the bouncing ball system. Sets of initial
data are identified which always lead to chatter. It is shown how these sets determine the intricate form of
the domains of attraction for various types of asymptotic periodic motion. In particular, the existence of
periodic motion which includes repeated chattering behavior is deduced (as also noted in our motivation of
the present paper given above). It is shown in [24] how this motion is related to certain types of chaotic
behavior with interrupted chatter for which an accumulation of impact events is not reached.

The aim of the current paper is to give an explanation of the reported paradoxical simulation results of the
bouncing ball system, showing chaos-like motion with full, uninterrupted chattering, being in contradiction
to theory. Hereto, the tools provided by the work of Budd and Dux [24], which have been developed for a
different but similar system, will be used and altered to analyze the bouncing ball system.

In Section 2 we will derive the impact maps which describe the bouncing ball system as a discrete-time
system and give numerical results in sections 3 and 4. We will perform the analysis of chattering motion
of Budd and Dux for the special case of the bouncing ball system in Section 5. Finally, we will give an
explanation of the chaos-like behaviour in Section 6 and come to conclusions in Section 7.

2. The impact maps of the bouncing ball system

We consider the one-dimensional bouncing ball system (see Fig. 1) consisting of a rigid ball of mass m
bouncing on a vertically moving flat table under the influence of a constant gravitational field g. We denote
by q(t) the absolute height of the ball, and by e(t) the absolute vertical position of the kinematic excitation
of the table, which is assumed to be harmonic

e(t) = −A sin(Ωt). (1)

The acceleration ratio between the maximum absolute table acceleration and the gravitational acceleration
is abbreviated with the dimensionless parameter

κ :=
AΩ2

g
≥ 0. (2)
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Figure 1: The Bouncing Ball System.

The distance between ball and table will be addressed by x(t) and is non-negative due to the unilateral
constraint, i.e.

x(t) = q(t)− e(t) ≥ 0. (3)

Accordingly, between impact events, the relative velocity of the ball with respect to the table is v(t) =
ẋ(t) = q̇(t)− ė(t).

The impact process itself is modelled by a strictly dissipative Newton-type impact law with restitution
coefficient r,

x(tn) = 0 : v+(tn) = −r v−(tn), (4)

where tn is an impact time instant and v+(tn) = limt↓tn v(t) and v−(tn) = limt↑tn v(t) are the post- and
pre-impact velocity, respectively. We consider values of the restitution coefficient 0 < r < 1. In the following,
we will show that the system is completely described by the two parameters κ and r.

We will need to distinguish between four sets of time instants describing different phases of the excitation
period, namely

lift-off: Lt :=
{
t ∈ R | ë(t) < −g

}
, (5)

sticking: St :=
{
t ∈ R | ë(t) > −g

}
, (6)

detachment: Dt :=
{
t ∈ R | ë(t) = −g ∧ ...

e (t) < 0
}
, (7)

attachment: At :=
{
t ∈ R | ë(t) = −g ∧ ...

e (t) ≥ 0
}
. (8)

In absence of any contact force, the ball will move under the sole influence of gravity, mq̈(t) = −mg.
The equations of motion for contact-free time intervals TCF can therefore be expressed in the states x and
v as

ẋ(t) = v(t)
v̇(t) = −g −AΩ2 sin(Ωt)

}
∀ t ∈ TCF . (9)

In presence of persistent contact (contact during a time lapse), a finite contact force λ(t) ≥ 0 is added
to the equation of motion mq̈(t) = −mg + λ(t). Throughout the persistent contact, the contact force λ(t)
takes precisely the value required to maintain contact between ball and table, λ(t) = mg +mAΩ2 sin(Ωt).

Let vn := v+(tn) denote the post-impact velocity at the n-th impact time instant tn. Integration of the
equations of motion (9) together with x(tn+1) = x(tn) = 0 yields

0 = −1

2
g(tn+1 − tn)2 + (vn −AΩ cos(Ωtn))(tn+1 − tn) +A(sin(Ωtn+1)− sin(Ωtn)), (10)
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Figure 2: Excerpt of a simulation using the timestepping scheme.

vn+1 = rg(tn+1 − tn)− rAΩ(cos(Ωtn+1)− cos(Ωtn))− rvn. (11)

Given the pair (tn, vn), these are two nonlinear implicit equations for the unknowns (tn+1, vn+1).
If vn = 0, then a phase of persistent contact starts, which ends if the contact force λ vanishes. The

time tD, denoting the end of persistent contact, is therefore the first time instant tD > tn such that
λ(tD) = mg +mAΩ2 sin(ΩtD) = 0.

In order to improve numerical stability and allow for a dimensionless analysis of the bouncing ball
dynamics, we will introduce a new dimensionless impact time instant τn given by

τn :=
Ω

2π
tn, (12)

such that the resulting dimensionless excitation period equals unity. Furthermore, we introduce a dimen-
sionless post-impact velocity wn, and a new dimensionless relative distance ξ:

wn :=
Ω

πg
vn, ξ(t) :=

1

2

Ω2

π2g
x(t). (13)

The four sets of time instants describing the different phases of the excitation period can also be translated
into their dimensionless counterparts Lτ , Sτ , Dτ and Aτ .

The forward impact map P is the operation that maps a pair of dimensionless impact states (τn, wn) to
the next pair of dimensionless impact states (τn+1, wn+1),

P (τn, wn) := (τn+1, wn+1), P : R× R+
0 → R× R+

0 . (14)

The k-th iterated forward impact map P k is defined as

P k(τn, wn) := P ◦ P ◦ . . . ◦ P (τn, wn)︸ ︷︷ ︸
P iterated k times

= (τn+k, wn+k). (15)

Forward impact map: Given any arbitrary pair of dimensionless impact states (τn, wn) ∈ R × R+
0 ,

P (τn, wn) := (τn+1, wn+1) can be computed as follows:

� Flight: If wn > 0, or if wn = 0 ∧ τn ∈ Lτ ∪ Dτ .
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1. Find the smallest value τn+1 > τn that fulfils the implicit equation

0 = −(τn+1 − τn)2 + (wn −
κ

π
cos(2πτn))(τn+1 − τn)

+
κ

2π2
(sin(2πτn+1)− sin(2πτn)).

(16)

2. Given τn, wn and τn+1, evaluate the expression

wn+1 =2r(τn+1 − τn)

− r κ
π

(cos(2πτn+1)− cos(2πτn))− rwn.
(17)

� Stick: If wn = 0 ∧ τn ∈ Sτ ∪ Aτ .

1. Find the smallest element τD ∈ Dτ such that τn < τD.

2. Then P (τn, wn) = P (τD, 0).

The backward impact map P−1 is the operation that maps a pair of dimensionless impact states (τn, wn)
to the previous pair of dimensionless impact states (τn−1, wn−1),

P−1(τn, wn) := (τn−1, wn−1). (18)

The k-th iterated backward impact map P−k is defined as

P−k(τn, wn) := P−1 ◦ P−1 ◦ . . . ◦ P−1(τn, wn)︸ ︷︷ ︸
P−1 iterated k times

= (τn−k, wn−k). (19)

Backward impact map: Given any arbitrary pair of dimensionless impact states (τn, wn) ∈ R × R+
0 ,

P−1(τn, wn) := (τn−1, wn−1) can be computed as follows:

� Flight: If wn > 0, or if wn = 0 ∧ τn ∈ Lτ ∪ Aτ .

1. Find the largest value τn−1 < τn that fulfills the implicit equation

0 = (τn − τn−1)2 − (
1

r
wn +

κ

π
cos(2πτn))(τn − τn−1)

+
κ

2π2
(sin(2πτn)− sin(2πτn−1)).

(20)

2. Given τn, wn and τn−1, evaluate the expression

wn−1 =2 (τn − τn−1)

− κ

π
(cos(2πτn)− cos(2πτn−1))− 1

r
wn.

(21)

� Stick: If wn = 0 ∧ τn ∈ Sτ ∪ Dτ .

Due to non-uniqueness of trajectories in backward time, it is not possible to find a meaningful back-
ward impact map for this case. For completeness, we arbitrarily define: P−1(τn, wn) = (τn, wn).

The forward impact map P : (τn, wn) 7→ (τn+1, wn+1) is discontinuous at grazing points, i.e. at (τn, wn)
that are mapped to (τn+1, 0). With B1 := {(τn, wn) = P−1(τn+1, 0), τn+1 ∈ R} we denote the set of
discontinuity points of P . Similarly, with F 1 := {(τn, wn) = P (τn−1, 0), τn−1 ∈ R} we denote the set of
discontinuity points of the backward impact map P−1. Furthermore, the N -th iterated forward impact map
PN is discontinuous at Bk := {(τn, wn) = P−k(τn+k, 0), τn+k ∈ R} for all k ≤ N . Similarly, the N -th
iterated backward impact map P−N is discontinuous at F k := {(τn, wn) = P k(τn−k, 0), τn−k ∈ R} for all
k ≤ N .

5



Figure 3: Illustration of an accumulation point.

3. Accumulation barrier

Time intervals of persistent contact between ball and table play a very special role in the dynamics of
the bouncing ball system. On the one hand, they are responsible for the loss of uniqueness of trajectories in
backward time. On the other hand, in forward time, these phases of persistent contact have the very special
effect of gathering infinitely many trajectories prior to releasing all of them at exactly the same detachment
time instant τD given by 1 + κ sin(τD) = 0.

Besides the obvious case in which a trajectory starts within a persistent contact phase due to correspond-
ing initial conditions, it is also possible for trajectories to dynamically fall into such phases of persistent
contact by means of accumulation points, that is, the occurrence of an infinite number of impacts with ever
decreasing post-impact velocities happening within a finite time interval before the ball eventually lies on
the table, see Fig. 3.

If the forward impact map approaches an accumulation point, it will not be able to go beyond, because,
mapping a given pair of impact states to the next pair and so forth, it will not be able to overcome the
infinite number of impact events leading to that accumulation point.

4. Brute force diagrams

A brute force diagram of the bouncing ball system with κ as bifurcation parameter is shown in Fig. 4
for r = 0.8. At each value of κ, the system is iterated n1=1000 times with the forward impact map to
allow for transient motion to decay. Subsequently the following N = 10 iterations are plotted in the brute
force diagram. This is repeated for different initial conditions to find coexisting attractors. The brute force
diagram has been constructed again in Fig. 5 using n2 =10’000 transitive iterations of P .

Besides the dominant dark area in the lower right-hand corner of Fig. 4, the most prominent structures
that can be identified in both figures are the five horizontal stripes at the height of integer dimensionless
flight times with the cascade of bifurcations at their right ends. These structures belong to periodic solution
with no intermediate impacts, that is, the period time of such trajectories corresponds exactly to the flight
time of the ball between consecutive impacts. Fig. 6 illustrates an example of a trajectory converging to such
a periodic solution. In contrast, periodic solutions with intermediate impacts give rise to groups of curved
horizontal stripes, where each stripe is at the height of different, not necessarily integer dimensionless flight
times. The period time of such periodic solutions corresponds to the sum of flight times between all impact
events belonging to the respective periodic solution, see Fig. 7.

The striking difference between Fig. 4 and Fig. 5 is the almost disappearing dark region in the bottom
right corner of Fig. 4, suggesting the existence of a big chaotic attractor in the system. According to Fig. 4, it
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Figure 4: Brute force diagram for n1 = 1000 transitive iterations.

Figure 5: Brute force diagram for n2 =10’000 transitive iterations.

looks as if chaotic motion is suddenly created as soon as the value of κ exceeds a precise threshold κ̂ ≈ 1.225.
However, this suggestion cannot be confirmed by Fig. 5, where only very little of the dark region is left. A
similar observation has been made in [1]. A possible interpretation is that the big dark region of Fig. 4 is
actually only a transient, which disappears accordingly if the transient phase of the simulation is chosen long
enough. The aim of the present paper is to determine whether anything particular occurs at the moment
when κ reaches κ̂, and based on those findings to give an alternative explanation for this particularity.

A horizontal line at (almost) zero flight time appears both in Fig. 4 and Fig. 5. There are two types of
dynamical behavior that can give rise to such an object: either the equilibrium where ball and table already
start and then remain in persistent contact for all future times (only possible for κ ≤ 1), or an accumulation
point, which the forward impact map cannot overcome, giving rise to chattering (possible for all κ). Almost
all points on this line belong to the second category.
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Figure 6: A periodic solution without intermediate impacts.

Figure 7: A periodic solution with one intermediate impact.

5. Analysis of chattering motion

From now on it will be convenient to consider the phase of the impact events with respect to the excitation
period rather than the absolute time at which they occur. Accordingly, we denote the (unique) detachment
phase by τD = τn mod 1 for any τn ∈ Dτ and the (unique) attachment phase by τA = τn mod 1 for any
τn ∈ Aτ . Our analysis of the chattering motion of the bouncing ball system follows closely the procedure
adopted by Budd & Dux in [24] for the analysis of chattering phenomena in impact oscillators. Consider
λi ∈ R+, where λi <

2
3 . Then, for any parabola parameterized by λi with minimum in (τD, 0)

Pλi
:=
{

(τn, wn) ∈ R× R+
0 |

wn = −2πκ cos(2πτD)λi (τD − τn)2, τn < τD
}
,

(22)

assuming τD − τn � 1 and 0 < wn � 1 to be sufficiently small, it holds that

P (Pλi
) = Pλi+1

, (23)
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Figure 8: Invariant manifold for r = 0.8 and κ = 1.1 < κ̂.

Figure 9: Invariant ‘manifold’ for r = 0.8 and κ = 1.4 > κ̂.

where the λi+1 is a function f : (0, 23 )→ R+ of λi:

λi+1 = f(λi) = −r
(

1− 1− λi
(1−Θ(λi))2

)
, (24)

Θ(λi) :=
3

2
−

√(
3

2

)2

− 3λi. (25)

For small values of τD − τn and wn, the points of a given parabola Pλi are mapped onto another parabola
Pλi+1

such that λi+1 = f(λi). Thus, close to (τD, 0) the effect of the forward impact map P can be analyzed
by means of the one-dimensional map f(λ), which has a unique fixed point λ∞ = f(λ∞) within the interval
(0, 23 ). The fixed point λ∞ corresponds to an invariant parabola P∞, which is indeed invariant in the
neighbourhood of (τD, 0).

The invariant parabola P∞ forms the beginning of an invariant manifold starting at (τD, 0). Using the
tracking algorithm described in [27], one can track this invariant manifold by means of the backward impact
map. Fig. 8 depicts the tracking result for r = 0.8 and κ = 1.1 < κ̂. Fig. 9 illustrates the result for the case
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Figure 10: Invariant chattering region for r = 0.8, κ = 1.4 > κ̂.

Figure 11: First two backward iterates of the invariant chattering region for r = 0.8, κ = 1.4 > κ̂.

r = 0.8 and κ = 1.4 > κ̂, which has been obtained with a slightly extended algorithm tracking discontinuities.
The tracking algorithm was stopped on purpose once the generated image provided reasonable evidence of
the invariant manifold’s structure. Two conclusions can be drawn from these figures:

1. For κ < κ̂, the invariant manifold is a continuous open curve. For κ ≥ κ̂, the invariant ‘manifold’ is a
non-continuous, piecewise closed curve, which clearly divides the impact space into separate regions.

2. For increasing values of κ, the transition between these two topologies is characterized by the piece-wise
closure and disconnection of the manifold. Accordingly, in the opposite direction the same transition
is characterized by the aperture and mutual connection of the ‘manifold’s pieces’.

For κ ≥ κ̂, the invariant ‘manifold’ divides the impact space into well-defined separate regions, and from
this fact we can take further advantage. Consider only κ ≥ κ̂. Then, the invariant chattering region (ICR)
is defined as the set of all impact states (τn, wn) enclosed by the zero velocity line and that part of the
invariant ‘manifold’ situated between (τD, 0) and its first intersection (τC , 0) with the zero velocity line,
see Fig. 10. Any trajectory evolving from the ICR directly experiences chattering in its immediate future,
i.e. within the same period of excitation. This immediately follows from the fact that 0 < f(λ) < λ for
0 < λ < λ∞, which implies that f(λ)k → 0 for k →∞.
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Figure 12: Return number R for κ ∈ [1.25, 2].

Besides trajectories evolving directly from impact states within the ICR, also trajectories evolving from
impact states within any pre-iterate of the ICR will experience chattering at some point. An illustration of
the ICR and its first two backward iterates for the case r = 0.8 and κ = 1.4 is given in Fig. 11. Notice in
particular that the pre-iterates of the ICR correspond exactly to the impact states enclosed by the various
pieces of the previously computed invariant ‘manifold’ in Fig. 9. Accordingly, the invariant ‘manifold’ itself
consists precisely of the several pre-iterates of the invariant chattering region border, a fact which facilitates
their computation.

An important advantage of the invariant chattering region consists in its applicability to determine the
motion evolving after an accumulation point. The behaviour of trajectories evolving from an accumulation
point is completely described by the dynamics of the detachment point (τD, 0). If the trajectory of the
detachment point is attracted towards a periodic or chaotic attractor, then all chattering trajectories will be
attracted as well. Conversely, if the trajectory of the detachment point eventually falls into an accumulation
point, so will all chattering trajectories, which implies the existence of a periodic solution with accumulation
points. Now, to determine whether the trajectory of the detachment point experiences chattering, we can
make use of the previously defined invariant chattering region. If κ ≥ κ̂ and P (τD, 0) is in the ICR or
some pre-iterate of the ICR, then all trajectories that experience chattering once will, from then onwards,
experience chattering on a periodic basis. The period time of this resulting periodic solution corresponds
exactly to the number of excitation periods the trajectory evolving from (τD, 0) requires to re-enter the
ICR. We define the return number R as the number of impacts experienced by the trajectory evolving from
(τD, 0) prior to entering the ICR. Fig. 12 illustrates the return number for r = 0.8 under variation of κ ≥ κ̂
up to a maximal return number of 10’000. As can be seen, although there are major fluctuations, a vast
majority of κ-values yields finite return numbers R. This indicates that for most values of κ the trajectory
evolving from an accumulation point returns to the invariant chattering region after R impacts. In other
words, for most values of the acceleration ratio κ, accumulation points give rise to periodic solutions with
repeated chattering.

6. Explanation of sudden chaos-like behavior

As observed in the previous sections, when κ exceeds the threshold κ̂ the behavior of the bouncing
ball system changes suddenly. Considering the trajectories evolving from several initial conditions after a
transient phase of 1000 impact events, it appears as if the system behaves in a chaotic manner (see Fig. 4).
Considering the same trajectories after a longer transient phase of 10’000 impact events, however, shows
that most of this chaos-like behavior has disappeared (see Fig. 5). In this section, give an explanation

11



Figure 13: Discontinuities of impact maps in the subcritical regime (Fk and Bk for k = 1, 2, . . . , 10 at κ = 1.2 < κ̂ and r = 0.8).

for this conspicuous phenomenon by looking at the global behavior of the discontinuity sets Bk and F k.
Unfortunately, we will increasingly need to rely on numerical results and be careful when drawing conclusions
from them.

For κ = 1.2 < κ̂ and r = 0.8, Fig. 13 illustrates the numerically computed discontinuity sets F k (grey,
emanating from (τA,0)) and Bk (grey, emanating from (τD,0)) for k = 1, 2, . . . , 10 together with an excerpt of
the corresponding invariant manifold (black) computed by means of the aforementioned tracking algorithm.
We observe that the two families of sets do not intersect. This behavior can also be confirmed for increasing
values of k > 10, and the overall topology remains unaltered under variation of the parameter κ in the range
1 < κ < κ̂. The k-times forward mapped detachment point P k(τD, 0) corresponds for each k to the right end
of the set F k. Notice, moreover, that Fig. 13 illustrates how the detachment point trajectory experiences
chattering immediately after lift-off.

As the value of κ approaches the threshold κ̂, the right ends of the sets F k approach the invariant
manifold, which represents the accumulation border of the sets Bk. Precisely at the threshold κ = κ̂, the
right ends of F k come to lie on the invariant manifold. And once κ > κ̂, the sets F k intersect the invariant
manifold, and hence infinitely many sets Bk. An illustration of the latter situation for κ = 1.25 > κ̂ and
r = 0.8 is depicted in Fig. 14.

The intersections of F k with Bk lead to important implications for the detachment point trajectory.
As long as κ < κ̂, the trajectory evolving from the detachment point falls directly into an accumulation
point within the same period of excitation during which it lifted off. Precisely at κ = κ̂ this is still the case,
however, the accumulation point is such that there is actually no phase of persistent contact between ball and
table any more. Because the forward iterates P k(τD, 0) of the detachment point lie precisely on the invariant
manifold emanating from the latter, the time instant at which the infinite series of impact events terminates
corresponds exactly to the detachment time instant itself. As a consequence, the motion starts over again
without ball and table having actually been in persistent contact during a non-zero time lapse. Once κ > κ̂,
the detachment point trajectory becomes more complicated. As can be seen from Fig. 14, if the value of κ
exceeds κ̂, the series of forward iterates P k(τD, 0) escapes the previously experienced accumulation, opening
the possibility for a completely different type of motion. In other words, the chattering dynamics of the
system is interrupted before the ball can come to rest on the table. We know from the analysis of the
return number R that for most values of κ > κ̂ the detachment point trajectory will eventually experience
chattering again. Alternatively, it could however also be attracted towards a periodic solution or a chaotic
attractor without chattering and therefore having no finite return number R.

These insights confirm the previous observations. However, they are insufficient for a sound explanation of
the sudden chaos-like behavior observed in Fig. 4 for κ > κ̂. A better explanation for the sudden apparently
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Figure 14: Discontinuities of impact maps in the supercritical regime (Fk and Bk for k = 1, 2, . . . , 10 at κ = 1.25 > κ̂ and
r = 0.8).

chaotic behavior of the bouncing ball system can be found by an in-depth analysis of the topology resulting
from the infinitely many intersections between the discontinuity sets F k and Bk in the supercritical case
κ > κ̂ (Fig. 14). We will argue that these intersections give rise to an infinitely fine self-similar structure,
which can potentially explain extreme sensitivity on initial conditions in certain regions of the state space.

To start with, consider Fig. 15 illustrating the implication an intersection point H1 between F 1 and B1

has for the topological structure of B2. The set B1 is the set of all impact states that will be mapped to the
zero velocity line by one application of the forward impact map P . The trajectories evolving from impact
states in B1 are hence about to experience a grazing impact. The set F 1 is the once forward mapped zero
velocity line, that is, the set of impact states directly succeeding grazing impacts. Moreover, besides the
discontinuity induced by non-uniqueness of solutions in backward time, F 1 is the only discontinuity set of
the backward impact map P−1.

The existence of an intersection point H1 between F 1 and B1 implies two facts about the topology of
B2 = P−1(B1):

1. The set B2 must contain a point X0 = P−1(H1) on the zero velocity line.

2. The set B2 consists of two disconnected parts:

(a) One part connecting the detachment point D := (τD, 0) to the zero velocity line point X0.
(b) The other part beginning immediately above X1 := P−1(X0) ∈ B1 and ending at A2 :=

P−1(A1) ∈ B2, where A1 := P−1(A0) ∈ B1 and A0 := (τA, 0).

The first assertion stems from the fact that P−1(F 1) corresponds to the zero velocity line according to the
definition of the set F 1. Hence, if a point of B1 is also a point of F 1, then B2 = P−1(B1) must contain a
point X0 = P−1(H1) on the zero velocity line.

The second assertion is more complicated to see. From F 1 being the discontinuity set of the backward
impact map P−1, it is clear that if F 1 intersects B1, then B2 = P−1(B1) must be disconnected at some
point, and hence composed of two continuous pieces. One of these pieces stems from the part of B1 between
D up to and including H1. The other one results from the part of B1 between A1 up to but excluding H1.
Considering the facts that P−1(D) = D, P−1(H1) = X0 and P−1(A1) = A2, it is clear that one of the two
disconnected pieces of B2 must connect D and X0, while the other one connects A2 with the backward map
of the point on B1 immediately above H1.

The only aspect that remains to be explained is why the backward map of this point on B1 immediately
above H1 lies exactly above X1 = P−1(X0). Recall that F 1 is the set of all impact states that have just
experienced a grazing impact. The impact states immediately above F 1, and in particular the point on B1
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Figure 15: Topology of B1 and B2 for X1 above H1.

10

Figure 16: Topology of B1, B2, B3 and B4 for X1 above H1.
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Figure 17: Numerically obtained topology of B1, B2, B3 and B4 for κ = 2 and r = 0.8. Colors have the same meaning as in
Fig. 15 and 16.

immediately above H1, correspond hence to trajectories that have just flown by because at the previous
impact event they had slightly too much post-impact velocity to still experience grazing. The backward map
of these points must therefore be the set of impact states that are about to fly by because of too high post-
impact velocity. Recalling the fact that B1 represents the set of all impact states giving rise to trajectories
that are about to graze, it is clear that the latter set must be situated immediately above B1. The fact that,
among all possible impact states immediately above B1, this second component of B2 begins precisely above
X1 = P−1(X0) results from the continuity of B1 = P (B2) = P (first part ofB2) ∪ P (second part ofB2).
Having the second part of B2 beginning immediately above X1 = P−1(X0) is precisely the condition
required to guarantee this continuous connection.

Fig. 16 depicts the topology of B3 and B4 in addition to the topology shown in Fig. 15. Similarly
to our consideration of the different components of B1 when deriving the topological structure of B2, we
now need to consider the different components of B2 to infer the topological structure of B3 = P−1(B2).
From a backward impact map point of view, B2 consists of three continuously mapped components. A first
component from the detachment point D up to and including the first intersection point H2 between B2 and
F 1. A second one beginning at, but excluding, the intersection point H2 continuing up to and including the
point X0. And a third component beginning at, but excluding, the point X1 continuing up to and including
the point A2. Each of these components of B2 gives rise to a different continuous component of B3. In the
same way, backward mapping the four components of B3 results in the four components of B4. Iterating this
backward impact mapping mechanism thus gives rise to a self-similar leaves-like structure, which becomes
increasingly fine with every additional set Bk as k →∞.

Although the self-similar topology was derived by means of an example in which B1 and F 1 intersect,
the underlying reasoning remains valid for any supercritical value of κ. As illustrated at the beginning of
this section, as soon as κ > κ̂, the right ends of the sets F k cross the invariant manifold, which is the
accumulation curve of the sets Bk, and infinitely many intersections are created between these two set
families. As a consequence, if κ > κ̂, there will always exist a finite N ∈ N such that BN and FN intersect.
The assertions made about the topology of the discontinuity sets B1, B2, B3 and B4 apply then directly to
the sets BN , BN+1, BN+2 and BN+3 respectively, and the self-similar topology for the supercritical case is
valid without loss of generality.

Another aspect that has not been mentioned yet, but which is important for the further argument,
is the fact that the backward iterates of the invariant chattering region (Fig. 11) constitute the center of
the discontinuity ‘leaves’. Notice for example that in Fig. 16, the upper end A1 of B1 is enclosed by an
outer ‘B3-leaf’ (green) connecting Y1 with X1, and an inner ‘B4-leaf’ (red) connecting Z1 with Y1. If we
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continued to backward iterate the discontinuity sets, the upper end A1 of B1, but also the upper end Ak of
any other Bk, would become surrounded by an increasing number of such ‘leaves’. As in the proximity of the
detachment point (τD, 0), it turns out that these ‘leaves’, which are actually parts of some discontinuity set
Bk, accumulate towards the invariant manifold. Recall that in the supercritical case the invariant manifold is
composed of many piece-wise continuous closed portions enclosing the pre-iterates of the invariant chattering
region. Since A0 belongs to the invariant chattering region, it follows that the piece-wise closed portions of
the invariant manifold must enclose a finite region of the impact space around the points Ak, and that these
finite regions are hence pre-iterates of the invariant chattering region. In summary, every ‘leaf’ consists of
infinitely many discontinuity sets Bk surrounding the respective Ak and accumulating towards a respective
portion of the invariant manifold enclosing a finite region of the impact space, which hence constitutes the
centre of the ‘leaf’. These finite regions of the impact space are moreover precisely the backward iterates of
the invariant chattering region. It is clear that these assertions have no mathematical rigor. However, they
capture what can be observed from all numerical computations we conducted.

Having clarified the general validity of the self-similar leaves-like structure and the fact that at the
center of each leaf there is a finite region of the impact space corresponding to a pre-iterate of the invariant
chattering region, it is clear that as soon as κ exceeds κ̂, the topological structure of the impact space
becomes infinitely fine and interweaved. The for κ ≤ κ̂ well separated discontinuity sets Bk form now an
infinitely intricated self-similar structure, which is in addition extremely stretched along the impact space.
As can be seen from B1, B2, B3 and B4 computed for κ = 2 and r = 0.8 in Fig. 17, this gives rise to
regions of the impact space where very small perturbations can result in substantially different trajectory
evolutions.

Now, how can this insight be used to explain the occurrence of apparently chaotic trajectories with
repeated accumulation points? Imagine that some parts of the trajectory corresponding to a periodic
solution with repeated accumulation points lie within one of the regions of the impact space that are highly
sensitive to perturbations. When passing through these sensitive regions, due to numerical integration errors,
it is possible that the actually periodic trajectory changes its course unexpectedly. For instance, it might
follow an adjacent chaotic orbit and return to the periodic one some time later due to a new passage through
the same or another region of high sensitivity. If this hypothesis proves correct, it would be a reasonable
explanation for apparently chaotic trajectories with repeated accumulation points.

The same reasoning can also explain the sudden chaos-like behavior in Fig. 4 and its almost complete
disappearance in Fig. 5. As soon as κ exceeds κ̂, due to the infinitely fine structure of the state space,
trajectories do not necessarily converge to their actual limit sets in a direct manner, but rather change
back and forth between the regions of attraction of different limit sets, which can give the impression of
chaotic behavior. Moreover, the longer one waits, the more likely it becomes that an arbitrary trajectory
incidentally enters the invariant chattering region or one of its very thin and stretched pre-iterates. If this
happens, the corresponding trajectory will experience chattering and the forward impact map will not be
able to overcome the resulting accumulation point. As a consequence, the originally erratic trajectory will
appear near the zero velocity line in the brute force diagram, which is a reasonable explanation for the
almost complete disappearance of the chaos-like behavior in Fig. 5.

7. Conclusion

We have given an explanation both for the sudden chaos-like behavior observed in brute force diagrams
and for a series of numerical simulation results indicating the existence of irregular trajectories with re-
peated chattering for κ > κ̂. The latter is a theoretically impossible occurrence as for any given κ > 1 the
ball always lifts off at precisely the same position and with precisely the same velocity, implying that any
trajectory with repeated chattering should be periodic due to repeating identical initial conditions. The
backbone of our argument is an in-depth analysis of the discontinuities induced by grazing impacts in both
the forward and backward impact maps of the bouncing ball system. In particular, we were able to see that
these discontinuities intersect infinitely many times and create a self-similar, very interweaved and extremely
stretched topological structure as soon as the value of κ exceeds the threshold κ̂. To explain the two above
stated observations, one can imagine that small (finite) disturbances may deviate the respective trajectory
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from its theoretical evolution and make it dynamically switch between different regions of attraction, re-
sulting in chaos-like behavior or, for instance, irregular motion with repeated chattering. It remains to be
investigated if these self-similar structures have a fractal dimension, which would imply fractal boundaries
between the regions of attraction of different limit sets.

The practical relevance of these findings consists in the fact that perturbations, caused by numerical
errors in simulations, are equally present in the real physical system in form of model inaccuracies and
actual unavoidable disturbances. Finally, the results of this paper are strong indications pointing towards
a fractalization-like dynamical mechanism interfering with the stability properties of several motions of the
bouncing ball system.
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[15] A. Okniński, B. Radziszewski, Simple model of bouncing ball dynamics: displacement of the table assumed as quadratic

function of time, Nonlinear Dynamics 67 (2) (2012) 1115–1122.
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