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In this paper, we introduce a nonsmooth generalized-alpha method for the simulation of mechanical systems with frictional
contact. In many engineering applications, such systems are composed of rigid and flexible bodies, which are interconnected
by joints and can come into contact with each other or their surroundings. Prominent examples are automotive, wind turbine,
and robotic systems. It is known form structural mechanics applications, that generalized-alpha schemes perform well for
flexible multibody systems without contacts. This motivated the development of nonsmooth generalized-alpha methods for
the simulation of mechanical systems with frictional contacts [2,3,5]. Typically, the Gear-Gupta-Leimkuhler approach is used
to stabilize the unilateral constraint, such that numerical penetration of the contact bodies can be avoided - a big issue of the
most popular time-stepping schemes such as Moreau’s scheme. The nonsmooth generalized-alpha method presented in this
paper is derived in [2] and in contrast to [3,5] accounts for set-valued Coulomb-type friction on both velocity and acceleration
level. Finally, we validate the method using a guided flexible hopper as a benchmark mechanical systems.
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Consider an n-dimensional mechanical system with frictional contact and let the coordinates q(t) ∈ Rn describe the
system’s configuration as a function of time t. Moreover, we introduce the velocities u and accelerations a respectively
satisfying u = q̇ and a = u̇ for almost all t. Using the generalized-α method, these relations are discretized as

ui+1 = ui + ∆t
(
(1− γ)āi + γāi+1

)
+ Ui+1

qi+1 = qi + ∆tui +
∆t2

2

(
(1− 2β)āi + 2βāi+1

)
+ Qi+1

αmāi + (1− αm)āi+1 = αfai + (1− αf )ai+1 ,

(1)

where ∆t is the time step of the scheme and β, γ, αf and αm are numerical parameters. Moreover, the auxiliary accelerations
āi and āi+1, as well as the discrete quantities Ui+1 and Qi+1, which account for the effects of velocity jumps, have been
introduced. We assume that the mechanical system is subjected to ng ideal bilateral constraints formulated at position level as
g(t,q) = 0 ∈ Rng . The Gear–Gupta–Leimkuhler approach is used to prevent numerical constraint drift, i.e., the constraints
are numerically imposed at all kinematic levels as

g(ti+1,qi+1) = 0, ġ(ti+1,qi+1,ui+1) = 0 and g̈(ti+1,qi+1,ui+1,ai+1) = 0 . (2)

To model the contacts occurring in the mechanical system, we assume that they can be described by nN ideal unilateral
constraints at position level gN (t,q) ≥ 0, where the inequality holds component-wise and gN (t,q) ∈ RnN are the gap
functions describing the distance between the tangent planes of the pairs of contact points on either contacting bodies, see
[7]. Similar to the bilateral constraints, these unilateral constraints are imposed on all kinematic levels by the normal cone
inclusions

gkN,i+1 ∈ NR−
0

(−κ̂kN,i+1) ,
k ∈ Ai+1 : ξkN,i+1 ∈ NR−

0
(−P kN,i+1)

k ∈ Āi+1 : P kN,i+1 = 0 ,
,
k ∈ Bi+1 : g̈kN,i+1 ∈ NR−

0
(−λkN,i+1)

k ∈ B̄i+1 : λkN,i+1 = 0
. (3)

Herein, the subscript i + 1 indicates that the corresponding quantity is evaluated at ti+1, e.g., gkN,i+1 = gkN (ti+1,qi+1).
Moreover, similar to (1), the update formulae

PN,i+1 = ΛN,i+1 + ∆t
(
(1− γ)λ̄N,i + γλ̄N,i+1

)
κ̂N,i+1 = κN,i+1 +

∆t2

2

(
(1− 2β)λ̄N,i + 2βλ̄N,i+1

)
αmλ̄N,i + (1− αm)λ̄N,i+1 = αfλN,i + (1− αf )λN,i+1

(4)

are used for the force quantities and the kinematic quantity ξkN = ġk+
N +ekN ġ

k−
N with restitution coefficient ekN in (3) is used to

model a generalized Newton-type impact for the k-th contact pair. Finally, the index sets Ai+1 =
{
k = 1, . . . , nN

∣∣ gkN,i+1 ≤
0
}

as well as Bi+1 =
{
k ∈ Ai+1

∣∣ ξkN,i+1 ≤ 0
}

together with their respective complements Āi+1 and B̄i+1 have been
introduced.
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In order to model Coulomb friction in each contact, the set of admissible (negative) friction forces CF (λkF ) =
{
λkF ∈ R2

∣∣
||λkF || ≤ µkλkN

}
is defined, see [7]. With that, the discretized friction laws read as

k ∈ Ai+1 : ξkF,i+1 ∈ NCF (Pk
N,i+1)(−Pk

F,i+1)

k ∈ Āi+1 : Pk
F,i+1 = 0 ,

and

k ∈ Dst
i+1 : γ̇kF,i+1 ∈ NCF (λk

N,i+1)(−λkF,i+1)

k ∈ Dsl
i+1 : λkF,i+1 = −µkλkN,i+1

γk
F,i+1

||γk
F,i+1||

k ∈ Āi+1 : λkF,i+1 = 0 ,

(5)

where γkF denotes the relative velocity of the contact pair in tangent direction to the contact planes and the discrete friction
forces λkF,i+1 and Pk

F,i+1 are related analogously to (4). Moreover, the index sets of sticking and slipping contacts have
respectively been introduced as Dst

i+1 =
{
k ∈ Ai+1

∣∣ ξkF,i+1 = 0
}

and Dsl
i+1 = Ai+1 \ Dst

i+1, and frictional contact is
accounted for by defining the kinematic quantity ξkF = γ̇k+

F + ekF γ̇
k−
F with restitution coefficient ekF . The description of the

mechanical system is completed by stating the discretized equations of motion, which read as

Mi+1 ai+1 = hi+1 + Wg,i+1 λg,i+1 + WN,i+1 λN,i+1 + WF,i+1 λF,i+1

Mi+1Ui+1 = Wg,i+1 Λg,i+1 + WN,i+1 ΛN,i+1 + WF,i+1 ΛF,i+1

Mi+1Qi+1 = Wg,i+1κg,i+1 + WN,i+1κN,i+1 + ∆t
2 WF,i+1ΛF,i+1 ,

(6)

where M denotes the mass matrix and h collects all forces which are not constraint or contact forces. Furthermore, the
Jacobians WT

g = ∂g
∂q , WT

N = ∂gN

∂q and WT
F = ∂γF

∂u have been introduced. A time step of the presented generalized-α
scheme is described by the normal cone inclusion problem (1)–(6), which can be solved either by a semi-smooth Newton
method or by fixed-point iterations after a reformulation using the proximal point function, see [1, 2].

The suitability of the presented nonsmooth generalized-α scheme for the simulation of flexible multibody systems is
demonstrated by simulating a guided hopper. It consists of a vertically guided main body, which is addressed by the co-
ordinate y. At the hip H a rigid homogeneous rod is attached to the main body. The orientation of the rod is prescribed by the
angle α(t) = π

3 −
π
30

(
1− cos(4π t)

)
. A straight planar Euler–Bernoulli beam [4] with undeformed length L is connected to

the knee K of the rod by an actuated rotational joint with prescribed actuation angle β(t) = π− 2α(t), which is modeled as a
bilateral constraint. We follow [6] and discretize the centerline of the beam with B-Spline shape functions. The percussions,

Fig. 1: Left to right: 1. Sketch of the guided hopper. 2. Simulated time evolution of the percussions (black: PF , gray: ±µPN ). 3. Visual-
ization of contact phase.

plotted in Figure 1, show that the generalized-α scheme can cope with the complex contact dynamics arising in multibody
systems containing flexible parts and time dependent bilateral constraints. This makes the presented scheme well suited for
engineering applications.
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