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Abstract

The virtual action as a variational equation is considered to hold as an axiom
in mechanics. In this thesis time finite element methods are developed by dis-
cretizing the principle of virtual action and related variational principles. Using
the Legendre–Fenchel transform, multi-field formulations are induced from the
principle of virtual action. For mechanical systems described in minimal co-
ordinates, the infinite dimensional variational formulations are discretized by
introducing temporal shape functions. Such a discretization reduces a varia-
tional equation to a set of nonlinear equations approximating the dynamical
behavior of a mechanical system. For a single-field formulation these nonlin-
ear equations are equivalent to a time stepping algorithm. The various finite
element methods are compared with respect to convergence behavior for three
different mechanical systems.
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Chapter 1

Introduction

This thesis is concerned with the variational formulation of dynamics and its
application to time finite element formulations, which are derived by discretiz-
ing the principle of virtual action using temporal shape functions.

This capter starts with a motivation for the thesis in Section 1.1. After a
literature survey on time finite element methods and variational integrators in
Section 1.2, the aim and scope of the thesis is presented in Section 1.3. Lastly
an outline of this thesis is given in Section 1.4.

1.1 Motivation

Since the introduction of finite element procedures in the early 1960s and
thanks to ongoing research in this field together with the increase of compu-
tational power over the years, these methods became indispensable for engi-
neering development. The finite element procedures are employed extensively
in the analysis of solids and structures, of heat transfer, and partially even in
fluid mechanics. The algorithms used for the nonlinear finite element analysis
of solids and structures are known to be very performing in terms of accuracy
and robustness. These properties follow inter alia from the fact that the finite
element description is derived from a weak variational formulation in the space
dimension, e.g. the weak variational form of the principle of virtual work. In
this thesis, we state the principle of virtual action as an axiom and use it to
derive finite element formulations for dynamical multi body systems. As the
principle of virtual action is a weak variational formulation for both, the space
and the time dimension, the resulting time finite elements can be expected to
have the same qualities as the spatial finite elements. The principle of virtual
action can be motivated using the analogy between the static description of
a linear elastic one dimensional bar and the motion of a point mass in one
dimension. Figure 1.1 (a) shows the static equilibrium condition (seq) and the
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2 Chapter 1. Introduction

Figure 1.1: Comparison between the boundary value problem describing the one dimen-
sional static bar (a) and initial value problem describing the motion of a pointmass in one
dimension (b).

boundary conditions (bc) for the displacement field u(x) of a statically loaded
one-dimensional linear elastic bar of length L. The sole spatial coordinate is
x, E is Young’s modulus and A is the cross section of the bar. The bar is
assumed to be loaded by body forces b(x) and two point forces acting at the
boundaries. The latter are denoted with F0 and FL. Figure 1.1 (b) illustrates
the equation of motion (eqm) and the initial conditions (ic) for the motion y(t)
during the time interval [0, T ] of a point mass m in one dimension. The point
mass is exposed to time dependent forces f(t). By similarity, two point forces,
denoted with P0 and PT , are introduced to act at the boundaries. As point
forces they are impulsive forces, since they act at a single instant of time. The
static bar and the motion of the point mass are described both by a second
order differential equation with two auxiliary conditions. The big difference
between the two descriptions lies in the auxiliary conditions. As the bar has
to respect boundary conditions, the dynamics of the point mass has to satisfy
the initial conditions. The boundary value problem of Figure 1.1 (a) can be
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derived form the the principle of virtual work of a linear elasic bar, which is

δW = −
∫ L

0

{δu′EAu′ − δu b}dx− δu(0)F0 + δu(L)FL = 0 ∀δu . (1.1)

The principle of virtual action of the form

δA = −
∫ T

0

{δẏ mẏ + δy f}dt− δy(0)P0 + δy(T )PT = 0 ∀δy (1.2)

can therefore be motivated in analogy as a starting point for the derivation of
the motion of the point mass. Obviously, the principle of virtual action also
induces a boundary value problem. Thus, the conversion of a boundary value
problem into an initial value problem must be addressed.

1.2 Literature Survey

The variational view of mechanics, which goes back to Euler, Lagrange and
Hamilton, forms the basic of the time finite element methods (TFEM) and
the theory of discrete mechanics, from which arises the concept of variational
integrators. Although discrete mechanics and TFEM are strongly related,
the discretization of time used in both approaches is conceptually different.
As TFEM are derived by the discretization of a continuous time variable,
discrete mechanics postulates a discrete time. Consequently, the literature
survey of this section is therefore devided into the two parts TFEM and discrete
mechanics.

Time Finite Element Methods

The idea of discretizing a variational principle using temporal shape functions
was introduced by Fried (1969), and Argyris and Scharpf (1969), who dis-
cretized the principle of Hamiltion using Hermitian polynomials. Both use a
Ritz’ method to obtain a set of algebraic equations, describing the dynamic
behavior of their system. The set of equations can be considered as a single set
of nonlinear equations in several variables. Consequently, we call this approach
to be monolithic. The ideas used for time finite element methods are the same
as the ideas used for spatial finite element methods. Nevertheless, there is a
crucial difference. All the methods used to derive spatial finite element de-
scriptions are developed to solve boundary value problems. In dynamics the
solution of an initial value problem is sought and the question of how to impose
initial conditions in temporal finite element descriptions becomes important.
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The treatment of the initial conditions needs a variational principle with suit-
able boundary terms. Some effort on adding boundary terms to Hamilton’s
principle, such that the new variational principle describes an initial value
problem was done. An approach with rather little mechanical motivation has
been proposed by Wu (1977), and Wu and Simkins (1980). The principle of vir-
tual action and Hamilton’s law of varying action, which are more general than
Hamilton’s principle, have mechanically motivated boundary terms and allow
better treatment of the initial conditions. This was recognized by Bailey, who
discretized them using global power series as shape functions together with the
Galerkin and the Ritz method, cf. Bailey (1975, 1976b, 1980). Many more pos-
sibilities for imposing the initial conditions have been discussed. In Simkins
(1978) and Agrawal and Saigal (1987) a Lagrangian multiplier approach is
used. Baruch and Riff (1982) discuss the modification of the boundary terms
of the principle of virtual action in six different ways. Borri (1986) and Izad-
panah (1986) point out the importance of using unknown external impulsive
forces in the boundary terms. This allows for a natural convergence of the
discrete initial velocity to the one of the continuous motion. Early applica-
tions of TFEM to simple rigid multi body systems are found in Argyris and
Scharpf (1969), Bailey (1976b), and Bailey (1981). More complex applications
are found in Hitzl (1980), and Hitzl and Levinson (1980), who compute the
planetary motion modeled as a three body problem, and Borri (1986), who
analyzes the motion of helicopter rotors using TFEM. The main disadvantage
of monolithic TFEM, which are used in all the before mentioned publications,
is the computational effort needed to solve one big system of nonlinear alge-
braic equations. Additionally, stepping schemes, which allow to calculate the
state of the system for a subsequent time instants out of the sate of previ-
ous time instants, are often preferred. If local shape functions are used in
Galerkin or weighted residual methods, the monolithic approach induces an
equivalent stepping scheme, which makes the computation of the motion more
efficient. This approach is used by Kujawski and Desai (1984) and Adéläıde
et al. (2002, 2003), who additionally used some mesh adaption techniques in
their TFEM. An alternative approach to arrive at stepping equations is the
application of the principle of virtual action on subsequent short time inter-
vals. Imposing the final state of the previous time interval as initial condition
of the new one, the dynamics of an interval is obtained. This approach can
be found in Borri et al. (1985, 1991, 1992), Aharoni and Bar-Yoseph (1992)
and Betsch and Steinmann (2000a,b). Note however that this approach might
not be equivalent to a monolithic formulation. The possibility to derive step-
ping equations from a time finite element formulation rises the possibility to
reinterpret known stepping alghorithms. Gillilan and Wilson (1992) derive
the central difference method, also known as the Verlet algorithm, discretiz-
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ing the principle of Hamilton with linear temporal shape functions. Bottasso
(1997) links the Runge–Kutta methods to TFEM. Marsden and West (2001)
show that a class of variational integrators derived in the context of discrete
mechanics can be derived from Galerkin type TFEM.

Time finite element methods are also used in continuum dynamics, in which
both space and time are discretized. First applications can be found in Bailey
(1976a), in which the transient behaviour of beams has been analized. Cella
et al. (1980) compute a shock wave propagations. Bajer (1986) develops a
triangular space-time element for beams. Gellin and Pitarresi (1988), Hughes
and Hulbert (1988), Pitarresi and Manolis (1991) and Atilgan et al. (1996)
are some further publications that use TFEM in the context of elastodynam-
ics. Finding the motion of a beam, which is loaded with a moving mass can
efficiently be solved with TFEM as Bajer and Dyniewicz (2008) showed. A
very complete treatment on space-time finite element methods for elastody-
namics can be found in Bajer and Dyniewicz (2012). Space-time finite element
methods are also applied in fluid dynamics, see Hughes and Hulbert (1988),
Hughes et al. (1989) and Shakib and Hughes (1991), to name a few. Note that
in general TFEM derived from the the principle of virtual action by applying
Galerkin’s methods often have higher continuity requirements than TFEM de-
rived by weighted residual methods. This makes the former more popular in
rigid multi body dynamics, while in elastodynamics and fluid dynamics time-
discontinuous weighted residual approaches are preferred, cf. Bottasso (1997).

Discrete Mechanics and Variational Integrators

The foundations for the development of discrete mechanics were laid in the
context of optimal control, where a discrete calculus of variations was intro-
duced. The formulation of a discrete variational problem with discrete Euler
equations as necessary and sufficient condition for stationarity is treated in
Cadzow (1970). In discrete mechanics, time is modeled as a discrete variable.
The possibility of introducing a discrete time in classical mechanics and other
branches of physics is discussed in Lee (1983, 1987). Veselov (1988) has devel-
oped the theory of discrete mechanics, whose fundamental axiom is the dis-
crete principle of stationary action and the discrete Euler–Lagrange equations,
which are the corresponding stationarity conditions. A canonical formulation
of the principle of stationary action is first derived in Shibberu (1993). A more
recent formulation has been given by Leok and Zhang (2011), which is closer
to the view of discrete mechanics. See Marsden et al. (1998) for a detailed
discussion of discrete mechanics. As time is treated as a discrete variable, the
discrete Euler–Lagrange equations define a stepping scheme, which are called
variational integrators (VI). Wendlandt and Marsden (1997), and Marsden and
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Wendlandt (1997) derived some VI for conservative mechanical systems and
analyze the conservation properties. Some of the well known numerical integra-
tion schemes, such as some Newmark β and Runge–Kutta methods, happen to
be variational integrators, as is shown by Marsden and West (2001). The con-
cepts of discrete mechanics discussed in Wendlandt and Marsden (1997) have
been further developed to arrive at VI with variable time steps, cf. Kane et al.
(1999) and to include holonomic and non-holonomic constraints, cf. Cortés and
Mart́ınez (2001), Cortés (2002), and Leyendecker et al. (2008). To simulate
problems arising in elastodynamics, such as wave propagation, asynchronous
VI were developed, which have different time steps for every spatial node, cf.
Lew et al. (2003) and Lew (2003). An extension of discrete mechanics to non-
smooth phenomena can be found in Fetecau et al. (2003a,b). De León and
de Diego (2002) derive VI for non-autonomous conservative systems. As the
variational integrators became popular in computer animation, faster update
methods for constrained mechanical systems are analyzed in Kharevych et al.
(2006), where the update is reformulated as the solution of a minimzation
problem. Johnson and Murphey (2009) used tree representations to faster up-
date the states. Lacoursière (2007) developed a VI, which can treat holonomic
and non-holonomic bilateral constraints and discusses unilateral constraints
with frictional impacts. To simulate flexible multi body systems VI were used
by Betsch et al. (2010). An extension of the theory of asynchronous VI to
simulate collisions between deformable structures is given by Wolff (2011).
For a more detailed review on discrete mechanics and variational integrators
we refer to Lew et al. (2004) or West (2004).

1.3 Aim and Scope

As pointed out in Section 1.1, finite elment methods, especially the spatial
discretization using finite elements, are very popular in many fields of engi-
neering. The scope of the present thesis is the temporal discretization with
finite elements adapting the well established ideas from spatial finite elments.
The aims of this thesis are:

- to derive the most important principles of analytical dynamics for rigid
multi body systems in minimal coordinates starting from the principle
of virtual action as an axiom.

- to show how the boundary conditions of the equation of motion can be
transformed into initial conditions by means of a constitutive force law
on the impulsive boundary forces.
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- to use the Legendre–Fenchel transform on the kinetic energy to derive
multi field formulations of the abovementioned principles of analytical
dynamics.

- to discretize the variational principles of analytical dynamics to derive
algebraic equations that describe the motion of the multi body system.
Both a monolithic and a stepping approach are considered.

- to compare the different approaches using a few examples.

1.4 Outline

In Chapter 2 the thesis begins by stating the principle of virtual action as an
axiom to derive the principle of virtual work. By restricting the mechanical
system to rigid multi body systems, the equations of motion for this type of
systems are derived from the principle of virutal action. Moreover Hamilton’s
law of varying action and the principle of Hamilton are derived for conserva-
tive systems. In Chapter 3 the Legendre–Fenchel transform is introduced and
applied to the kinetic energy to derive multi-field formulations of the princi-
ple of virtual action and subsequently of Hamiltion’s law of varying action and
Hamilton’s principle. Chapter 4 discusses the derivation of algebraic equations
that describe the motion of a rigid multi body system in minimal coordinates
by means of a temporal finite element discretization. The discretization is de-
rived for the single- and multi-field formulations of Chapter 2 and Chapter 3.
This is done in two different ways, i.e. the monolithic approach and the step-
ping approach, which give a set of algebraic equation or a stepping scheme.
The two approaches are shown to be equivalent under certain conditions. In
Chapter 5 the performance of the different approaches is tested. Computations
of the harmonic oscillator, the simple pendulum and the two body problem
are performed. Finally, in Chapter 6 a conclusion of the thesis is drawn and
an outlook on further topics is given.





Chapter 2

Principles in Analytical
Dynamics

Starting from the principle of virtual action as an axiom, we, in this chapter,
derive some important principles of analytical dynamics. In the first Section 2.1
we introduce the concept of forces in the sense of Eugster (2014) and state the
principle of virtual action as an axiom of dynamics. The inertial forces behave
according to a linear constitutive law and the principle of virtual work for this
case is derived. In Section 2.2 we develop the principle of virtual action for
systems with finite degrees of freedom. For this type of systems Hamilton’s law
of varying action and Hamilton’s principle follow from the principle of virtual
action, cf. Section 2.3. Finally, the Euler–Lagrange equations of motion are
shown to follow from these principles.

2.1 Principle of Virtual Action

Consider a mechanical system S consisting of material points, e.g. a continuous
body or a multi-body system composed of rigid and flexible bodies. It is
convenient to chose S to be the reference configuration of the system, whose
material points occupy a subset of the euclidean three-space E3. The position
vectors X ∈ E3 address the material points of S ⊂ E3. The motion of the
system during the time interval I = [0, T ]

ξ : S × I → E3, (X, t) 7→ x = ξ(X, t) (2.1)

is a parametrization of configurations ξ(·, t) : S → E3, which is as smooth
as required with respect to time t ∈ R. A dot (•̇) denotes the derivative
with respect to time t. The motion induces the velocity field ξ̇(X, t) and the
acceleration field ξ̈(X, t), whenever they exist. A variational family of motions

9



10 Chapter 2. Principles in Analytical Dynamics

is a differentiable parametrization of motions ξ̂(X, t, ε) with respect to a single
parameter ε ∈ R. The actual motion is embedded in the family ξ̂ and is
obtained for ε = ε0, i.e. ξ̂(X, t, ε0) = ξ(X, t). The variation of the motion

δξ(X, t) =
∂ξ̂

∂ε
(X, t, ε0) (2.2)

defines the virtual displacement for each material point X ∈ S at each instant

of time t ∈ I. The variational family of velocity fields ∂ξ̂
∂t

(X, t, ε) is induced

by ξ̂ and contains the actual velocity field in the form ∂ξ̂
∂t

(X, t, ε0) = ξ̇(X, t).
Therefore the variation of the velocity field is

δξ̇(X, t) =
∂

∂ε

∂ξ̂

∂t
(X, t, ε0) =

∂

∂t

∂ξ̂

∂ε
(X, t, ε0)

(2.2)
=

∂(δξ)

∂t
(X, t) , (2.3)

where we applied Schwarz’ theorem. Due to the isomorphism between tangent
spaces TXE3 and the base space E3, we identify the virtual displacements with
elements of the euclidean three-space, i.e. δξ ∈ E3. Eugster (2015) introduced
the space of forces to be the dual space of the space of virtual displacements.
In other words the space of forces is the set of linear, real-valued functionals
on the space of virtual displacements. According to this we define the forces
acting on the mechanical system S during the time interval I to be of the form∫

I
df : E3 → R, δξ 7→ δA =

∫
I

df(δξ) , (2.4)

where the real number δA is called the virtual action of the mechanical system
S. As a fundamental principle of mechanics we postulate the principle of
virtual action as an axiom.

Axiom 1 (Principle of Virtual Action). The virtual action of all forces acting
on a mechanical system S vanishes for all virtual displacements, i.e.

δA =

∫
I

df(δξ) = 0 ∀δξ . (2.5)

The forces acting on a mechanical system are so far a very general construct.
In order to get a proper description of the dynamical behavior of a mechanical
system we require further specifications of the forces with appropriate force
laws. We assume that the virtual action is composed by two parts, the virtual
action of dynamical forces δAdyn and the virtual action of spatial forces δAspa,
which we express as

δA = δAdyn + δAspa . (2.6)
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The dynamical forces model the interaction between different time points. In
order to respect causality of time, only interactions between neighboring time
instants are possible and the virtual action of the dynamical forces is defined
as

δAdyn =

∫
I

∫
S
δξ̇TdPdt . (2.7)

The dynamical forces (2.7) can be interpreted as internal forces in time direc-
tion of the extended mechanical system S × I. The spatial forces model the
internal and external forces of the system S, where internal forces describe the
interaction between different spatial points of the system S and external forces
model the interaction of S with other systems that have no common material
point with S. The virtual action of the spatial forces

δAspa = δAint + δAext = −
∫
I

∫
S
δξTdFdt−

∑
i

∫
S
δξ(ti)

TdΛi (2.8)

contribute negatively to the total virtual action, where dF accounts for forces
that act over a certain time interval and dΛi account for impulsive forces acting
at the time instants ti. As we restrict us in the following to rigid multi-body
systems, the virtual action of stress fields is omitted here. With the virtual
action contributions (2.7) and (2.8), the principle of virtual action (2.5) reads
as

δA(δξ) =

∫
I

∫
S

{
δξ̇TdP− δξTdF

}
dt−

∑
i

∫
S
δξ(ti)

TdΛi = 0 ∀δξ . (2.9)

In the following the dynamical forces are related to the velocity by the consti-
tutive law

dP = −ξ̇dm , (2.10)

where dm is the mass distribution of the system S. The constitutive law models
the inertia of the system. The corresponding potential to the constitutive law
is the kinetic energy

T (ξ̇) =
1

2

∫
S
ξ̇Tξ̇dm , (2.11)

which allows us to write∫
S
δξ̇TdP

(2.10)
= −

∫
S
δξ̇Tξ̇dm = −δT (ξ̇) . (2.12)

For the sake of brevity we restrict the external impulsive forces dΛi to act
only at the boundaries of the time interval I1. Consequently, the principle of

1The influence of an impulsive force in the interior of the time interval I is shown in
Section A.3 by means of an example.
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virtual action (2.9), together with (2.10), takes the form

δA = −
∫
I

∫
S

{
δξ̇Tξ̇dm+ δξTdF

}
dt+

∫
S
δξTdΛ

∣∣∣∣
∂I

= 0 ∀δξ , (2.13)

with the notation∫
S
δξTdΛ

∣∣∣∣
∂I

=

∫
S
δξ(T )TdΛT −

∫
S
δξ(0)TdΛ0 . (2.14)

A special choice of virtual displacements allows to deduce the principle of
virtual work at each instant of time from the principle of virtual action (2.13).
By a telescopic expansion in the virtual action of (2.13) and by applying the
fundamental theorem of calculus we obtain

δA = −
∫
I

{∫
S
δξ̇Tξ̇dm− d

dt

∫
S
δξTξ̇dm+

∫
S
δξTdF

}
dt

−
∫
I

{
d

dt

∫
S
δξTξ̇dm

}
dt+

∫
S
δξTdΛ

∣∣∣∣
∂I

= −
∫
I

∫
S

{
δξ̇Tξ̇dm− d

dt

∫
S
δξTξ̇dm+

∫
S
δξTdF

}
dt

+

∫
S
δξT(dΛ− ξ̇dm)

∣∣∣∣
∂I

.

(2.15)

By the product rule for differentiation (2.15) reads as

δA =

∫
I

∫
S
δξT(ξ̈dm− dF)dt+

∫
S
δξT(dΛ− ξ̇dm)

∣∣∣∣
∂I

, (2.16)

which is nothing else but the virtual action of the system after integration by
parts. Let δξ(X, t) be an arbitrary virtual displacement field and let δζ(X, t) =
δ(t−t̄)δξ(X, t̄) be a special choice of virtual displacement field, where t̄ ∈ int(I)
is an arbitrary time instant in the interior of the interval I and δ(t− t̄) is the
shifted Dirac distribution. Since the principle of virtual action (2.13) demands
(2.16) to vanish for all virtual displacements, it does so also for the special
choice δζ(X, t). As δ(t − t̄) vanishes on the boundaries of I for all choices of
t̄ ∈ int(I), the principle of virtual action (2.13) in the form (2.16) induces

δA =

∫
I

∫
S
δ(t− t̄)δξ(X, t̄)T(ξ̈dm− dF)dt = 0 ∀δξ(X, t̄), ∀t̄ . (2.17)

Integrating over the time interval I and labeling t̄ by t leads directly to the
principle of virtual work.
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Principle 1 (Principle of Virtual Work). The virtual work δW of all forces
acting on a mechanical system S vanishes for all virtuall discplacements δξ
and at every instant of time t, i.e.

δW =

∫
S
δξT(ξ̈dm− dF) = 0 ∀δξ, ∀t . (2.18)

The virtual work, as defined in (2.18), is the temporal density of the virtual
action, as can be seen from (2.16). Furthermore, by comparing the integrand
of the time integration in (2.16) to the equivalent integrand in (2.15), the
principle of virtual work can be written in the form

δW = −
∫
S
δξ̇Tξ̇dm+

d

dt

∫
S
δξTξ̇dm−

∫
S
δξTdF = 0 ∀δξ, ∀t , (2.19)

which, according to Hamel (1967), Heun called Lagrange’s central equation.

2.2 Dynamics in Generalized Coordinates

For a finite degree of freedom system the state of the mechanical system at
each instant of time t can be completely described by a set of generalized
coordinates q(t) ∈ Rn. Therefore, we assume the existence of a function ϕ,
such that

ξ(X, t) = ϕ(X,q(t), t) . (2.20)

Consider the variational family q̂(t, ε), which contains the actual motion of the
generalized coordinates in the sense that q̂(t, ε0) = q(t). The variational family
is assumed to be differentiable with respect to ε. This allows the definition of
the variation of q as

δq(t) =
∂q̂

∂ε
(t, ε0) . (2.21)

As ∂q̂
∂t

(t, ε0) = q̇(t) holds, ∂q̂
∂t

(t, ε) is a variational family that contains the
generalized velocities q̇. Thus, the variation of the generalized velocities is

δq̇(t) =
∂

∂ε

∂q̂

∂t
(t, ε0) =

∂

∂t

∂q̂

∂ε
(t, ε0)

(2.21)
=

∂(δq)

∂t
(t) , (2.22)

where we have used Schwarz’ theorem. By means of (2.20), the variational
family q̂(t, ε) induces a variational family of motions

ξ̂(X, t, ε) = ϕ(X, q̂(t, ε), t) , (2.23)

which by the definition (2.2) induces the virtual displacements for each material
point X

δξ(X, t) =
∂ϕ

∂q
(X,q(t), t)

∂q̂

∂ε
(t, ε0)

(2.21)
=

∂ϕ

∂q
(X,q(t), t) δq(t) . (2.24)
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Introducing the Jacobians

JX(X,q(t), t) =
∂ϕ

∂q
(X,q(t), t) and Jt(X,q(t), t) =

∂ϕ

∂t
(X,q(t), t) (2.25)

we can write the virtual displacements and the velocity field as δξ = JXδq
and ξ̇ = JXq̇ + Jt respectively. The kinetic energy (2.11) therefore yields

T (q, q̇, t) =
1

2

∫
S
(q̇TJT

X + JT
t )(JXq̇ + Jt)dm . (2.26)

For the expression of the kinetic energy (2.11) in terms of generalized coordi-
nates, it is convenient to introduce the integral expressions

M(q, t) =

∫
S
(JX)TJXdm ,

b(q, t)T =

∫
S
(Jt)

TJXdm ,

η(q, t) =

∫
S

1

2
(Jt)

TJtdm ,

(2.27)

where M(q, t) is the mass matrix. Hence the kinetic energy (2.26) can be
expressed as

T (q, q̇, t) =
1

2
q̇TM(q, t)q̇ + bT(q, t)q̇ + η(q, t) . (2.28)

Since the mass matrix M is symmetric and positive definite, the kinetic energy
T is convex with respect to the generalized velocities q̇. Note, that the kinetic
energy (2.11) for a finite degree of freedom system, with (2.20), actually is
T (dϕ

dt
(X,q(t), t)), which according to (2.26) can be seen as a function of q, q̇

and t. Hence we write T (q, q̇, t), which introduces an ambiguity in the notion
of T . From the context it is always clear what is meant. Using the variation
of the kinetic energy (2.12), the induced virtual displacements (2.24) and the
principle of virtual action (2.13), the principle of virtual action expressed in
generalized coordinates reads as

δA = −
∫
I

{
δT (q, q̇, t) + δqTf

}
dt+ δqTP

∣∣
∂I = 0 ∀δq , (2.29)

where we have introduced the generalized forces f and the generalized impulsive
forces P as

f =

∫
S
(JX)TdF and P =

∫
S
(JX)TdΛ . (2.30)
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Borri (1986) and Izadpanah (1986) point out the importance of modeling the
boundary contributions of the virtual action as external forces P, which play
a crucial role in the treatment of the initial conditions.2 The virtual action
(2.29) can be split into to the sum of

δAdyn = −
∫
I
δT (q, q̇, t)dt and δAspa = −

∫
I
δqTfdt+ δqTP

∣∣
∂I , (2.31)

where the contribution of the dynamical and spatial forces correspond to (2.7)
and (2.8). In order to derive a strong variational form of the principle of virtual
action, we evaluate the variation

δT (q, q̇, t) =
∂T

∂q̇
δq̇ +

∂T

∂q
δq (2.32)

of the kinetic energy in (2.29) and by applying integration by parts we obtain
the strong variational form of the principle of virtual action∫

I
δqT

(
d

dt

(
∂T

∂q̇

)T
−
(
∂T

∂q

)T
− f

)
dt+ δqT

(
P−

(
∂T

∂q̇

)T)∣∣∣∣
∂I

= 0 (2.33)

for all δq. The complete boundary value problem (BVP) with the equations
of motion in the interior of I

d

dt

(
∂T

∂q̇

)T
−
(
∂T

∂q

)T
− f = 0 (2.34)

and the boundary conditions on ∂I

P0 =

(
∂T

∂q̇

)T
(q(0), q̇(0), 0) ,

PT =

(
∂T

∂q̇

)T
(q(T ), q̇(T ), T ) ,

(2.35)

follow by the application of the fundamental lemma of calculus of variations
to (2.33). In the description and prediction of the motion of the mechanical
system S one often is confronted with an initial value problem (IVP). An IVP
consists in finding the motion q(t) with known initial configuration q(0) = q0

and known initial velocity q̇(0) = u0. In order to get an IVP from (2.33)
we have to model the impulsive forces P0 and PT according to the following
set-valued constitutive laws

P0 ∈ Rn s.t. q(0) = q0 ,

PT ∈ Rn s.t. q̇(0) = u0 .
(2.36)

2Often the external forces P are eliminated from (2.29) by (2.35). Further comments on
this elimination process can be found in Secion 2.3.
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Restricting the strong variational form of the principle of virtual action (2.33)
to motions that fullfill the initial conditions this yields∫

I
δqT

(
d

dt

(
∂T

∂q̇

)T
−
(
∂T

∂q

)T
− f

)
dt+ δqT

(
P−

(
∂T

∂q̇

)T)∣∣∣∣
T

= 0 (2.37)

for all δq, where δq(0) = 0, δq̇(0) = 0 and q(t) fulfills the initial conditions
q(0) = q0 and u̇(0) = u0. The fact that the force P0 has no contribution
to the virtual action of the constrained system shows that P0 is a perfect
bilateral constraint force by means of the principle of d’Alembert–Lagrange.
Using the fundamental lemma of the calculus of variations in (2.37) gives the
equation of motion (2.34) with q(t) fulfilling the initial conditions q(0) = q0

and q̇(0) = u0, which determines the motion q(t) completely. Additionally we
get the boundary condition

PT −
(
∂T

∂q̇

)T
(q(T ), q̇(T ), T ) = 0 , (2.38)

which determines the value of the force PT necessary to impose the initial
condition.

2.3 Hamilton’s Law of Varying Action

Consider a finite degree of freedom system S and assume that all forces can
be deduced from a potential V (q, t), i.e.

f = −
(
∂V

∂q

)T
⇒ δqTf = −δqT

(
∂V

∂q

)T
= −δV (q, t) . (2.39)

The difference between the kinetic energy T and the potential V of a mechan-
ical system is called Lagrangian

L(q, q̇, t) = T (q, q̇, t)− V (q, t) . (2.40)

Using (2.39) and (2.40) the principle of virtual action (2.29) takes the form of
Hamilton’s Law of varying action.

Principle 2 (Hamilton’s Law of Varying Action). A finite degree of freedom
system described by the generalized coordinates q(t), which is influenced by
potential forces only, has vanishing virtual action for all variations of q(t), i.e

δA = −
∫
I
δL(q, q̇, t)dt+ δqTP

∣∣
∂I = 0 ∀δq . (2.41)
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Hamilton (1834) arrived at the formulation

δA = −
∫
I
δL(q, q̇, t)dt+ δqT

(
∂T

∂q̇

)T∣∣∣∣
∂I

= 0 ∀δq , (2.42)

which he called the law of varying action. Hamilton’s formulation can be de-
rived from (2.41) by inserting in the boundary conditions (2.35). This step,
namely inserting strong boundary conditions into a weak formulation, is wor-
risome, as Papes (2011) showed in an example for a linear elastic bar. Addi-
tionally, (2.42) does not represent the whole BVP anymore.

If the positions at the boundaries of the time interval q(0) and q(T ) are
known, then the boundary terms in (2.41) vanish, and (2.41) becomes a sta-
tionarity condition, which leads to the principle of Hamilton (1835).

Principle 3 (Principle of Hamilton). Consider a finite degree of freedom sys-
tem described by the generalized coordinates q(t), where the initial and final
position are fixed to q(0) = q0 and q(T ) = qT . If all forces acting on the
system are potential forces, then the action integral

A =

∫
I
L(q, q̇, t)dt (2.43)

is stationary, where L = T − V , cf. (2.40).

A necessary and sufficient condition for the stationarity of the action inte-
gral is that its variation vanishes.

δA =

∫
I

(
δq̇T

(
∂L

∂q̇

)T
+ δqT

(
∂L

∂q

)T)
dt

i.p.
=

∫
I
δqT

(
− d

dt

(
∂L

∂q̇

)T
+

(
∂L

∂q

)T)
dt

= 0 ∀δq s.t. δq(0) = δq(T ) = 0 .

(2.44)

The fundamental lemma of calculus of variations leads directly to the Euler–
Lagrange equations

− d

dt

(
∂L

∂q̇

)T
+

(
∂L

∂q

)T
= 0 , (2.45)

with the boundary conditions q(0) = q0 and q(T ) = qT . The Euler-Lagrange
equations are therefore a necessary and sufficient condition for the stationarity
of the action integral (2.43). The Euler–Lagrange equations represent the
equations of motion (2.34) for systems with potential forces only, and therefore
follow also from Hamilton’s law of varying action with the same boundary
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conditions (2.35) as for systems with non-potential forces. The procedure of
transforming the boundary value problem into an initial value problem by
means of the constitutive law (2.36) still holds for Hamilton’s law of varying
action (2.41).



Chapter 3

Multi-field Formulations of
Dynamics

In the theory of linear elasticity there are multi-field variational principles,
which have become very popular as a starting point for finite element formu-
lations, as phenomena such as locking can be eliminated by this approach,
cf. Belytschko et al. (2013). The Hellinger–Reissner principle, proposed by
Reissner (1953), is a two-field formulation, whose independent variables are
the displacement and stress fields. Hu (1955) and Washizu (1955) introduced
independently a three-field formulation with displacement, strain and stress
fields as independent quantities. In this chapter we introduce the Legendre–
Fenchel transform, which is subsequently used to derive the (q,p)-formulation,
the dynamical analogon to the Hellinger–Reissner principle, and the (q,u,p)-
formulation, which is the dynamical analogon to the Hu–Washizu principle.
Moreover the Legendre–Fenchel transform is used to derive a generalization
of the (q,u,p)-formulation, which is shown to contain the other formula-
tions. The (q,p)-formulation, which has the generalized positions q(t) and
generalized momenta p(t) as independent quantities, is called the canonical
formulation, cf. Lanczos (1970), and was introduced by Hamilton (1835). In
section 3.2 we derive the canonical form of Hamilton’s law of varying action
and Hamilton’s principle, which are often starting point for space-time finite
element formulations, cf. e.g. Simkins (1981), Betsch and Steinmann (2000b),
and Borri and Bottasso (1993).

19
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3.1 Legendre–Fenchel Transform

Consider a convex function f : Rn → R, then the convex function f ∗ : Rn → R
defined by

f ∗(z) = sup
x∈Rn

{zTx− f(x)} (3.1)

is said to be conjugate to f . The mapping f 7→ f ∗ is called Legendre–Fenchel
transform and we say that x and z are dual to each other. We assume f to be
differentiable, which has the consequence that the biconjugate f ∗∗ = (f ∗)∗ is
equal to f , i.e. f ∗∗ = f . This allows to represent the function f as

f(x) = sup
z∈Rn

{xTz− f ∗(z)} . (3.2)

Moreover Fenchel’s equation

xTz = f(x) + f ∗(z) ⇔ xT =
∂f ∗(z)

∂z
⇔ zT =

∂f(x)

∂x
(3.3)

holds. For a proof of Fenchel’s equation and the property of the biconjugate
we refere to Rockafellar and Wets (2009), Chap. 11. Assume that x depends
on a parameter t ∈ R then∫

f(x)dt
(3.2)
=

∫
sup
z∈Rn

{xTz− f ∗(z)}dt (3.4)

can be expressed as∫
f(x)dt =

∫
{xTz− f ∗(z)}dt iff δ

∫
{xTz− f ∗(z)}dt = 0 ∀δz , (3.5)

since the condition δ
∫
{xTz − f ∗(z)}dt = 0 ∀δz in (3.5) corresponds to the

stationarity condition of the supremum in (3.4). Alternatively one can look at
(3.5) as a consequence of Fenchel’s equation (3.3). For the variation of f with
respect to x, (3.5) leads to

δ

∫
f(x)dt = δ

∫
{xTz− f ∗(z)}dt iff δ

∫
{xTz− f ∗(z)}dt = 0 ∀δz , (3.6)

since x and z are independent variables.
Let a : Rn → R be the function

a(x) =
1

2
xTAx + bTx + c , (3.7)

where A ∈ Rn×n is symmetric and positive definite, b ∈ Rn and c ∈ R.
According to (3.1) the conjugate a∗ : Rn → R of a is

a∗(z) = sup
x∈Rn

{zTx− 1

2
xTAx− bTx− c} . (3.8)
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Necessary and sufficient condition for the supremum is

z−Ax− b = 0 ⇔ x = A−1(z− b) , (3.9)

which can be inserted into (3.8) and yields

a∗(z) =
1

2
zTA−1z− bTA−1z +

1

2
bTA−1b− c , (3.10)

i.e. the Legendre–Fenchel transform of a.

3.2 (q,p)-Formulation

The kinetic energy T (q, q̇, t) is differentiable and convex with respect to the
generalized velocities q̇, as can be deduced from (2.28). This allows a pointwise
Legendre–Fenchel transform of the kinetic energy and defines the conjugate
kinetic energy

T ∗(q,p, t) = (T (q, ·, t))∗(p) (3.11)

together with the generalized momentum p, which is the dual variable of the
generalized velocities q̇. As seen in (2.28), the kinetic energy has the form
of the function a in (3.7), which leads together with (3.10) to the conjugate
kinetic energy

T ∗(q,p, t) =
1

2
pTM−1p− bTM−1p +

1

2
bTM−1b− η(q, t) , (3.12)

where the dependency of M and b on (q, t) has been neglected for the sake of
brevity. By the use of (3.2), the kinetic energy T can be rewritten as

T (q, q̇, t) = sup
p∈Rn

{q̇Tp− T ∗(q,p, t)} . (3.13)

Using (3.6), the virtual action contribution of the dynamical forces (2.31) can
be expressed as

δAdyn = −
∫
I
δ
{
q̇Tp− T ∗(q,p, t)

}
dt with δAdyn = 0 ∀δp . (3.14)

Since merely the virtual action of the inertial forces δAdyn depends on the
generalized momentum p, the stationarity condition in (3.14) can also be stated
for the total virtual action of the system, i.e. δA = 0 ∀δp. Using (3.14), the
principle of virtual action (2.29) expressed in the two independent variables q
and p is

δA =−
∫
I

{
δ
(
q̇Tp− T ∗(q,p, t)

)
+ δqTf

}
dt+ δqTP

∣∣
∂I = 0 ∀δq,∀δp. (3.15)
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Carrying out the variation of the conjugate kinetic energy and using integration
by parts the strong variational form of the principle of virtual action

δA =

∫
I

{
δqT

(
ṗ− f +

(
∂T ∗

∂q

)T)
− δpT

(
q̇−

(
∂T ∗

∂p

)T)}
dt

+ δqT(P− p)
∣∣
∂I

= 0 ∀δq, ∀δp
(3.16)

is attained. By the fundamental lemma of calculus of variations, the terms in
the round brackets have to vanish pointwise, which leads to the equations of
motion

ṗ +

(
∂T ∗

∂q

)T
= f and q̇ =

(
∂T ∗

∂p

)T
, (3.17)

together with the boundary conditions p(0) = P0 and p(T ) = PT . Sometimes
it is useful to use Fenchel’s equation (3.3) to transform the equations of motion
(3.17) to

ṗ +

(
∂T ∗

∂q

)T
= f and p =

(
∂T

∂q̇

)T
. (3.18)

The two-field formulation of dynamics in terms of generalized coordinates q(t)
and generalized momenta p(t) for mechanical systems with potential forces
only, has been introduced by Hamilton (1835), where he used a function H,
which we hence call Hamiltonian of the system. Often the (q,p)-formulation
is called the canonical formulation or canonical formalism, cf. Lanczos (1970).
The Hamiltonian of the system

H(q,p, t) = (L(q, ·, t))∗(p)
(2.40)
= T ∗(q,p, t) + V (q, t) (3.19)

is the conjugate of the Lagrangian with respect to its dependency on the gen-
eralized velocities, where V (q, t) denotes the potential of the forces. Rewriting
the virtual action of the non-impulsive forces of (3.15) for a conservative system
as

δA = −
∫
I

{
δ(q̇Tp− T ∗(q,p, t)) + δV (q, t)

}
dt

= −
∫
I

{
δ(q̇Tp)− δ(T ∗(q,p, t) + V (q, t))

}
dt

(3.19)
= −

∫
I

{
δ(q̇Tp)− δH(q,p, t)

}
dt

= −δ
∫
I

{
q̇Tp−H(q,p, t)

}
dt

(3.20)

leads to the canonical formulation of Hamilton’s law of varying action (2.41)

δA = −δ
∫
I

{
q̇Tp−H(q,p, t)

}
dt+ δqTP

∣∣
∂I = 0 ∀δq, ∀δp . (3.21)
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Hamilton’s law of varying action in canonical coordinates is the dynamic anal-
ogon to the principle of Hellinger–Reissner, cf. Reissner (1953), which cor-
responds to a two-field formulation in linear elasticity, i.e. a formulation in
displacement and stress field. If the generalized positions are known on the
boundaries of the time interval, i.e. q(0) = q0 and q(T ) = qT for known val-
ues q0 and qT , then Hamilton’s law of varying action reduces to Hamilton’s
principle (2.43) in canonical coordinates, which demands the canonical action
integral

A =

∫
I

{
q̇Tp−H(q,p, t)

}
dt (3.22)

to be stationary. By means of the fundamental lemma of calculus of variation
both Hamilton’s law of varying action and Hamilton’s principle lead to the
canonical equations of motion

ṗ = −
(
∂H

∂q

)T
and q̇ =

(
∂H

∂p

)T
, (3.23)

with the boundary conditions p(0) = P0 and p(T ) = PT for the law of varying
action, and q(0) = q0 and q(T ) = qT for Hamilton’s principle.

3.3 (q,u,p)-Formulation

The generalized velocity u is introduced as an independent variable in a similar
way as we have introduced the generalized momentum p before. By definition
(3.1) the conjugate kinetic energy defined in (3.11) is

T ∗(q,p, t) = sup
u∈Rn

{uTp− T (q,u, t)} . (3.24)

We therefore can write the virtual action contribution of the dynamical forces
(3.14) as

δAdyn = −
∫
I
δ
{
q̇Tp−

(
uTp− T (q,u, t)

)}
dt

s.t. δAdyn = 0 ∀δp, ∀δu ,

(3.25)

where we made use of (3.6). Considering this representation of the virtual
action contribution of the dynamical forces, the principle of virtual action
(3.15) can be written as

δA = −
∫
I

{
δ
(
T (q,u, t) + pT(q̇− u)

)
+ δqTf

}
dt+ δqTP

∣∣
∂I = 0 (3.26)
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for all variations δq, δu and δp. Using integration by parts in (3.26) the strong
variational form

δA =

∫
I

{
δqT

(
ṗ− f +

(
∂T

∂q

)T)
+ δpT (q̇− u) + δuT

((
∂T

∂u

)T
− p

)}
dt

+ δqT(P− p)
∣∣
∂I = 0 ∀δq, ∀δp, ∀δu (3.27)

follows directly. Except the boundary terms Borri et al. (1992) use a variational
three-field formulation, which corresponds to the strong variational form of the
principle of virtual action (3.27). As the dynamic analogon of the Hu–Washizu
principle, cf. Hu (1955) and Washizu (1955), Borri et al. (1992) call (3.27) the
Hu–Washizu form. The Hu–Washizu principle is a three-field formulation in
linear elasticity with the displacements, strains and stresses as independent
fields. For systems, in which all forces are potential forces with potential
V (q, t) the principle of virtual action (3.26) translates to

δA = −
∫
I
δ
{
L(q,u, t) + pT(q̇− u)

}
dt+δqTP

∣∣
∂I=0 ∀δq,∀δp,∀δu , (3.28)

which is the three field formulation of Hamilton’s law of varying action (2.41).
If furthermore the initial and final positions are known, i.e. q(0) = q0 and
q(T ) = qT , then the three field form of the principle of Hamilton (2.43) follows,
as the action integral

A = −
∫
I

{
L(q,u, t) + pT(q̇− u)

}
dt (3.29)

is stationary due to (3.28) with vanishing boundary terms. Using the funda-
mental lemma of calculus of variation for the strong variational form (3.27),
the equations of motion

ṗ +

(
∂T

∂q

)T
= f , p =

(
∂T

∂u

)T
and u = q̇ (3.30)

with boundary conditions p(0) = P0 and p(T ) = PT are attained, as the
terms in the round brackets in (3.27) have to vanish pointwise.

3.4 Generalized (q,u,p)-Formulation

By introducing two parameters α ∈ [0, 1] and β ∈ [0, 1] a generalization of
the (q,u,p)-formulation of the principle of virtual action can be derived. For
any value of α ∈ [0, 1] the dynamical part of the virtual action (2.31) can be
written as the convex combination

δAdyn = (1− α)δAdyn + α δAdyn . (3.31)
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Representing the second term as in (3.14) and using (2.31), (3.31) reads

δAdyn = −
∫
I

{
(1− α)δT (q, q̇, t) + α δ

(
q̇Tp− T ∗(q,p, t)

)}
dt , (3.32)

where δAdyn = 0 ∀δp. Using the definition of the conjugate kinetic energy
(3.24) write the conjugate energy as the convex combination

T ∗(q,p, t) = (1− β)T ∗(q,p, t) + βT ∗(q,p, t)
(3.24)
= (1− β)T ∗(q,p, t) + β sup

u∈Rn

{uTp− T (q,u, t)} (3.33)

for any value of β ∈ [0, 1]. Inserting (3.33) into (3.32) and using (3.6) the
virtual action contribution of the dynamical forces is

δAdyn = −
∫
I

{
(1− α)δT (q̇) + αδ(q̇Tp− (1− β)T ∗(p)− β(uTp− T (u)))

}
dt,

(3.34)
where δAdyn = 0 ∀δp, ∀δu and the dependences on q and t have been sup-
pressed for the sake of brevity. By (3.34) the principle of virtual action takes
the form

δA = −
∫
I

{
δqT

(
(1− α)

(
∂T

∂q

)T
− α(1− β)

(
∂T ∗

∂q

)T
+ αβ

(
∂T

∂q

)T
+ f

)
+ δq̇T

(
(1− α)

(
∂T

∂q̇

)T
+ αp

)
+ α δpT

(
q̇− (1− β)

(
∂T ∗

∂p

)T
− βu

)
+ αβ δuT

((
∂T

∂u

)T
− p

)}
dt+ δqTP

∣∣T
0

= 0 ∀δq,∀δp,∀δu , (3.35)

as the condition δAdyn = 0 ∀δp, ∀δu is equivalent to δA = 0 ∀δp, ∀δu. As
the Fenchel equation (3.3) holds for the kinetic energy, we have

T (q, q̇, t) = pTq̇− T ∗(q,p, t) ⇒ ∂T

∂q
= −∂T

∗

∂q
, (3.36)

which allows to rewrite the integrand in the first row in (3.35) as

δqT

(
(1− α)

(
∂T

∂q

)T
− α(1− β)

(
∂T ∗

∂q

)T
+ αβ

(
∂T

∂q

)T)
= δqT

(
∂T

∂q

)T
. (3.37)
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Using (3.37) in the principle of virtual action (3.35) and applying integration
by parts, the equations of motion

0 = (1− α)
d

dt

(
∂T

∂q̇

)T

+ αṗ−
(
∂T

∂q

)T

− f ,

0 = αq̇− α
(

(1− β)

(
∂T ∗

∂p

)T

+ βu

)
,

0 = αβ

((
∂T

∂u

)T

− p

)
,

(3.38)

with the boundary condtitions

(1− α)

(
∂T

∂q̇

)T
(q(t), q̇(t), t) + αp(t) = Pt for t ∈ {0, T} (3.39)

follow by means of the fundamental lemma of calculus of variations. Note that
the generalized (q,u,p)-formulation of the principle of virtual action (3.35)
contains the formulations encountered so far. The choice α = β = 0 leads to
the formulation in (2.29), where the only unknown is the generalized position
q. By choosing α = 1 and β = 0 we get the (q,p)-formulation in (3.15) and
for α = β = 1 the (q,u,p)-formulation in (3.26). We introduce the notion
of pure multi-field formulations for the (q,p), and (q,u,p)-formulation and
mixed multi-field formulations all other formulations, which arise from other
values of α and β.



Chapter 4

Time Finite Elements

In this chapter we discretize the principle of virtual action with respect to
time, in order to obtain a finite element formulation, which results in a system
of algebraic equations describing the motion of the mechanical system S. In
Section 4.1 we derive a set of nonlinear algebraic equations by subdividing the
time interval into a sequence of time intervals, i.e. elements, and by restricting
the continuous motion within an element to a motion that can be described
by finite degrees of freedom only. This procedure is similar to the procedure
in a spatial finite element discretization, cf. Belytschko et al. (2013). As the
solution of such a set of nonlinear algebraic equations fully describes the motion
of the system, we call this method the monolithic approach for the single-field
approach it is shown in Section 4.2, that the solution of the nonlinear algebraic
equations of the monolithic approach can be solved by sequentially solve a
smaller set of equations, which is given by the motion within a single time
element. As we solve element by element, stepping forward in time, we call
this procedure the stepping approach. Within this section, we derive three
different formulations of equivalent stepping approaches and show that these
are the same as the variational integrators that can be derived using concepts
of discrete mechanics, cf. Marsden and Wendlandt (1997), Kane (1999), and
West (2004).

4.1 Monolithic Approach

In this section we first derive the temporal finite element discretization of
the principle of virtual action (2.29) in Section 4.1.1 and then the temporal
finite element discretization of the multi-field formulations of Chapter 3 in
Section 4.1.2.

27



28 Chapter 4. Time Finite Elements

4.1.1 Discretization of the Single-field Formulation

Let (t1, . . . , tnN
) be the nN temporal nodes, which subdivide the time interval

I = [0, T ] into nel elements Ωe = [te, te+1] indexed by (•)e, where e = 1, . . . , nel.
The time interval ∆te = te+1−te denotes the temporal length of the element e.
With the indicator function χΩe(t), which is 1 for t ∈ Ωe and zero elsewhere,
we can define the motion within an element to be qe(t) = χΩe(t)q(t). This
allows us to write the virtual action (2.29) of the system as the sum of the
virtual actions of each element, i.e.

δA = −
nel∑
e=1

∫
Ωe

{
δT (qe, q̇e, t) + δqeTf

}
dt+ δqTP

∣∣T
0

= 0 ∀δq . (4.1)

For every element e let φe be the shape function of the element, which con-
strains the motion of the element to

qe(t) = φe(se(t), ze) with se(t) =
t− te
∆te

, (4.2)

where we have introduced the element coordinate se ∈ [0, 1] for t ∈ Ωe and the
Ne element coordinates ze = (ze1, . . . , z

e
Ne

)T, which are the degrees of freedom
of the element e. Assume that the actual element coordinates ze are embedded
into a variational family ẑe(ε) with ẑe(ε0) = ze for some ε0. The variation of
the element coordinate

δze =
∂ẑe

∂ε
(ε0) (4.3)

induces a variation of the motion

δqe(t) =
∂φe

∂ze
(se(t), ze)δze = Ne(se(t), ze)δze , (4.4)

where we have introduced the function Ne(se(t), ze) = ∂φe

∂ze
(se(t), ze). The

variation (4.4) is by construction admissible with respect to the constraints
(4.2). The notation Ṅe(se(t), ze) = d

dt
Ne(se(t), ze) = ∂Ne

∂se
(se(t), ze)ṡe allows to

write the variation of the velocity field as

δq̇e(t) = Ṅe(se(t), ze)δze . (4.5)

We constrain the motion in (4.1) to the special form (4.2) by means of ideal
constraint forces, which by the principle of d’Alembert–Lagrange have no con-
tribution to the virtual action in unconstrained direction. Therefore, the prin-
ciple of virtual action (4.1) for admissible virtual displacements (4.4) is

−
nel∑
e=1

∫
Ωe

{
δT (φe(se(t), ze), φ̇e(se(t), ze), t) + δzeTNe(se(t), ze)Tf

}
dt

+ δznelTNnel(snel(T ), znel)TPT − δz1T
N1(s1(0), z1)TP0 = 0 ∀δze .

(4.6)
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The virtual action contribution of the dynamic forces of an element e is

δAdyn,e = −δzeT

∫
Ωe

{
NeT

(
∂T

∂q

)T
+ ṄeT

(
∂T

∂q̇

)T}
dt , (4.7)

where we have used (2.32) for the variation of the kinetic energy and for the
sake of brevity the functional dependecies are suppressed. For a more compact
formulation, we define the discrete dynamic forces of the element e

f̃dyn,e(ze) =

∫
Ωe

{
NeT

(
∂T

∂q

)T
(φe, φ̇e, t) + ṄeT

(
∂T

∂q̇

)T
(φe, φ̇e, t)

}
dt , (4.8)

the discrete spatial forces acting on the element e as

f̃ spa,e(ze) =

∫
Ωe

Ne(se(t), ze)Tf
(
φe(se(t), ze), φ̇e(se(t), ze), t

)
dt , (4.9)

and the discrete impulsive forces as

P̃1
0 = N1(s1(0), z1)TP0 and P̃nel

T = Nnel(snel(T ), znel)TPT . (4.10)

Using the definitions (4.8), (4.9) and (4.10) the principle of virtual action (4.6)
can be written as

δA = −
nel∑
e=1

δzeT
(
f̃dyn,e(ze) + f̃ spa,e(ze)

)
+ δznel TP̃nel

T − δz1 TP̃1
0 = 0 (4.11)

for all δze. For a discrete global formulation, we define z = (z1T, . . . , znelT)T to
be the vector of global coordinates and Ce to be the connectivity matrix of the
element, which extracts the element coordinates out of the global coordinates,
i.e. ze = Cez. Since the connectivity matrix is constant, the variation δze =
Ceδz of the element coordinates are induced by the the variation of the global
coordinates δz. This allows to rewrite (4.11) in the global form

δzT

{
nel∑
e=1

−CeT
(
f̃dyn,e(Cez) + f̃ spa,e(Cez)

)
+ CnelTP̃nel

T −C1T
P̃1

0

}
=0 (4.12)

for all δz. By the fundamental lemma of calculus of variations the term in the
curly brackets in (4.12) has to vanish, which leads to the system of equations

− f̃dyn(z)− f̃ spa(z) + P̃T − P̃0 = 0 , (4.13)

where we have introduced the global vector of dynamical and spatial forces

f̃dyn(z) =

nel∑
e=1

CeTf̃dyn,e(Cez) , f̃ spa(z) =

nel∑
e=1

CeTf̃ spa,e(Cez) , (4.14)
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and the global impulsive forces

P̃0 = C1T
P̃1

0 , P̃T = CnelTP̃nel
T . (4.15)

Equation (4.13) is a system of ndof = nelNe non-linear algebraic equations,
which follows from the principle of virtual action through discretization and
describes the motion of the mechanical system. For given external impulsive
forces P the solution z ∈ Rndof of the nonlinear equation (4.13) can for ex-
ample be found by using the Newton–Raphson method. The global discrete
coordinates z can be used to construct the discretized motion of the system

q(t) =

nel∑
e=1

χΩe(t)φe(se(t),Cez) . (4.16)

As introduced in (2.36), the impulsive forces P0 and PT are chosen such that
the initial conditions q(0) = q0 and q̇(0) = u0 are satisfied. By (4.2), the
initial conditions can be expressed as a function of the discrete coordinates,
i.e.

φ1(s1(0), z1) = φ1(0,C1z) = q0 ,

φ̇1(s1(0), z1) = φ̇1(0,C1z) = u0 .
(4.17)

Thus, the impulsive forces in (4.13) can be treated as unknown variables and
the initial conditions can be added to the system of equation (4.13), such that
the resulting system of equations−f̃dyn(z)− f̃ spa(z) + P̃T − P̃0

φ1(0,C1z)− q0

φ̇1(0,C1z)− q̇0

 =

0
0
0

 (4.18)

fully describes the initial value problem, where the motion of the system is
restricted to the form (4.16) with initial conditions (4.17). For the numerical
treatment of (4.18) it might be convenient to approximate the time integrations
used to calculate the spatial and dynamical forces in (4.8) and (4.9) by some
quadrature rule. Imposing the initial velocity in the form φ̇1(0, z1) = u0

introduced in (4.17) is often a bad choice, albeit this condition forces the
initial velocity of the first element to be the same as the initial velocity of the
analytical solution, it also influences the shape of the first element all over the
time interval Ω1, which is due to the finite degree of freedom of the element.
This can lead to a first element, which fulfills the initial condition exactly, but
due to the abovementioned effect approximates the analytical solution badly1.
To eliminate the distance effects of the initial condition for the velocity, the

1This effect is shown in Section A.1 by means of an example
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initial conditions q(0) = q0 and q̇(0) = u0 are used to determine the impulsive
force P0 by means of the boundary condition (2.35). Replacing the initial
condition for the velocity in (4.17) with the boundary condition for P0 in
(4.18) leads to the system of equations(

−f̃dyn(z)− f̃ spa(z) + P̃T −C1TN1(0,C1z)T
(

∂T
∂q̇

)T
(q0, q̇0, 0)

φ1(0,C1z)− q0

)
=

(
0
0

)
,

(4.19)
which fully describes the motion of the system restricted to the form (4.16).
This procedure is also used in Borri (1986) and Izadpanah (1986), who point
out that it should be preferred to other treatments of the boundary conditions,
as this procedure leads to a natural convergence of the discrete motion towards
the analytical one.

Box 1 gives a summary of the monolithic single-field approach in form of a
flowchart.

Box 1 Monolithic Single-field Approach Flowchart

1. Devide time interval I into disjoint elements Ωe such that
I =

⋃nel

e=1 Ωe.

2. Choose shape functions φe(se, ze).

3. Calculate f̃dyn,e(z), f̃ spa,e(z), Pnel
T and P1

0 from (4.8–4.10), where the
time integration might be approximated using a quadrature rule.

4. Assemble the global forces f̃dyn(z), f̃ spa(z), PT and P0 using (4.14)
and (4.15).

5. Choose how to treat the initial conditions and solve (4.18) or (4.19)
for the discrete global solution z. E.g. use the Newton–Raphson
method.

6. Construct discretized solution by means of (4.16).

4.1.2 Discretization of the Multi-field Formulations

Let (t1, . . . , tnN
) be the nN temporal nodes, which subdivide the time inter-

val I = [0, T ] into nel elements Ωe = [te, te+1]. With the indicator func-
tion χΩe(t), we define the fields within an element to be qe(t) = χΩe(t)q(t),
ue(t) = χΩe(t)u(t) and pe(t) = χΩe(t)p(t), respectively. This allows us to
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write the virtual action (3.35) of the system as the sum of the virtual actions
of the elements, i.e.

δA =−
nel∑
e=1

∫
Ωe

{
δqeT

(
(1− α)

(
∂T

∂q

)T
− α(1− β)

(
∂T ∗

∂q

)T
+ αβ

(
∂T

∂q

)T
+ f

)
+ δq̇eT

(
(1− α)

(
∂T

∂q̇

)T
+ αpe

)
+ α δpeT

(
q̇e− (1− β)

(
∂T ∗

∂p

)T
− βue

)
+ αβ δueT

((
∂T

∂u

)T
− pe

)}
dt+ δqTP

∣∣T
0

= 0 ∀δq,∀δp,∀δu , (4.20)

where the kinetic energy terms are evaluated at (qe, q̇e, t), (qe,ue, t) and
(qe,pe, t), respectively. For every element e let the field be given by a re-
spective shape function, which constrains the motion of the element to

qe(t) = φe
q(se(t), ze

q) ,

ue(t) = φe
u(se(t), ze

u) ,

pe(t) = φe
p(se(t), ze

p) .

(4.21)

Assume that the actual element coordinates ze
• are embedded into a variational

family ẑe
•(ε) with ẑe

•(ε0) = ze
• for some ε0, where we have introduced the

notation (•) as a placeholder for q, u and p. The variation of the element
coordinate

δze
• =

∂ẑe
•

∂ε
(ε0) (4.22)

induces the variation of the corresponding fields

δqe(t) = Ne
qδz

e
q ,

δue(t) = Ne
uδz

e
u ,

δpe(t) = Ne
pδz

e
p ,

(4.23)

where we have introduced the function Ne
•(s

e(t), ze
•) = ∂φe

•
∂ze•

(se(t), ze
•). Intro-

ducing Ṅe
q(se(t), ze

q) = d
dt

Ne
q(se(t), ze

q) =
∂Ne

q

∂se
(se(t), ze

q)ṡe the variation of the
velocity field is

δq̇e(t) = Ṅe
q(se(t), ze

q)δze
q . (4.24)

Using (4.21) and (4.23) together with the connectivity matrices, which extract
the element coordinates out of the global coordinates in the form ze

• = Ce
•z•,
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the principle of virtual action (4.20) for with (4.21) admissible variations is

δzq
T

{
nel∑
e=1

(Ce
q)T

∫
Ωe

[
−(Ne

q)T

(
(1− α)

(
∂T

∂q

)T
− α(1− β)

(
∂T ∗

∂q

)T
+ αβ

(
∂T

∂q

)T
+ f

)
− (Ṅe

q)T

(
(1− α)

(
∂T

∂q̇

)T
+ αφe

p

)]
dt+ (Ce

q)TP
∣∣T
0

}
+ δzp

T

{
nel∑
e=1

(Ce
p)T

∫
Ωe

[
−(Ne

p)T

(
αφ̇e

q − α(1− β)

(
∂T ∗

∂p

)T
− αβφe

u

)]
dt

}

+ δzu
T

{
nel∑
e=1

(Ce
u)T

∫
Ωe

[
−(Ne

u)T

(
αβ

(
∂T

∂u

)T
− αβφe

p

)]
dt

}
= 0 (4.25)

for all variations δzq, δzu and δzp. As the terms in curly brackets of (4.25)
have to vanish by the fundamental lemma of calculus of variations, together
with the treatment of the initial condition as in (4.18) or (4.19) leads to the
set of nonlinear algebraic equations

0 =

nel∑
e=1

(Ce
q)T

∫
Ωe

[
−(Ne

q)T

(
(1− α)

(
∂T

∂q

)T
− α(1− β)

(
∂T ∗

∂q

)T
+ αβ

(
∂T

∂q

)T
+ f

)
− (Ṅe

q)T

(
(1− α)

(
∂T

∂q̇

)T
+ αφe

p

)]
dt+ (Ce

q)TP
∣∣T
0

0 =

nel∑
e=1

(Ce
p)T

∫
Ωe

[
−(Ne

p)T

(
αφ̇e

q − α(1− β)

(
∂T ∗

∂p

)T
− αβφe

u

)]
dt

0 =

nel∑
e=1

(Ce
u)T

∫
Ωe

[
−(Ne

u)T

(
αβ

(
∂T

∂u

)T
− αβφe

p

)]
dt

0 = φ1
q(0,C1

qzq)− q0 , (4.26)

where the initial condition for the velocity can be one of the following

φ̇1
q(0,C1

qzq) = q̇0 ,

φ1
u(0,C1

uzu) = q̇0 ,

φ1
p(0,C1

pzp) =

(
∂T

∂q̇

)T
(q0, q̇0, 0) .

(4.27)

The set of equations (4.26) together with an initial condition from (4.27) can be
solved for zq, zu, zp, P0 and PT . These discrete solutions define the continuous
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motion of the mechanical system by means of

q(t) =

nel∑
e=1

χΩe(t)φe
q(se(t),Cezq) ,

u(t) =

nel∑
e=1

χΩe(t)φe
u(se(t),Cezu) ,

p(t) =

nel∑
e=1

χΩe(t)φe
p(se(t),Cezp) .

(4.28)

Equation (4.26) represent the finite element discretization of the generalized
(q,u,p)-formulation of Section 3.4. As mentioned, the corresponding choice of
the parameters α and β allows to derive the (q,u,p)-formulation, the (q,p)-
formulation and even the q-formulation. Therefore, by choosing α = β = 0 the
finite element discretization of the q-formulation (4.18) or (4.19) are attained.
The finite element discretization of the (q,p)-formulation is given by the choice
α = 1 and β = 0, and α = β = 1 leads to the discretization of the (q,u,p)-
formulation. Box 2 gives a flowchart for the monolithic multi-field approach.

Box 2 Monolithic Multi-field Approach Flowchart

1. Devide time interval I into disjoint elements Ωe such that
I =

⋃nel

e=1 Ωe.

2. Choose shape functions φe
q, φe

u and φe
p.

3. Assemble the system of equations (4.26) with an initial condition
from (4.27), where the time integration might be approximated by
some quadrature rule.

4. Solve the system of equations from 3. using for example the Newton–
Raphson method.

5. Construct continuous solution by means of (4.28).

4.2 Stepping Approach

Let the nN temporal nodes (t1, . . . , tnN
) subdivide the time interval I = [0, T ]

into the nel elements Ωe = [te, te+1]. The virtual action of the mechanical
system can be written as the sum of the virtual actions of the elements as in
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(4.1). For an arbitrary element k the virtual action of (4.1) can be rearranged
to

δA = −
∫

Ωk

{
δT (q, q̇, t) + δqTf

}
dt−

nel∑
e=1
e6=k

∫
Ωe

{
δT (q, q̇, t) + δqTf

}
dt+ δqTP

∣∣
∂I

= −
∫

Ωk

{
δT (q, q̇, t) + δqTf

}
dt−

∫
I\Ωk

{
δT (q, q̇, t) + δqTf

}
dt+ δqTP

∣∣
∂I .

(4.29)
Using integration by parts for the complement I\Ωk leads to

δA = −
∫

Ωk

{
δT (q, q̇, t) + δqTf

}
dt+

∫
I\Ωk

δqT

(
d

dt

(
∂T

∂q̇

)T
−
(
∂T

∂q

)T
− f

)
dt

+ δqTP
∣∣
∂I − δqT

(
∂T

∂q̇

)T∣∣∣∣
∂(I\Ωk)

. (4.30)

The principle of virtual action (4.1) demands δA = 0 fpr all δq. Hence, the
virtual action has to vanish also for the special choice δq(t) = δqk(t), where
δqk(t) is arbitrary for t ∈ Ωk and δq(t) = 0 on I\Ωk. Using qk(t) = χΩk(t)q(t)
together with (4.30), the principle of virtual action for the kth element is

δAk = −
∫

Ωk

{
δT (qk, q̇k, t) + δqkT

f
}

dt− δq(tk)TPk + δq(tk+1)TPk+1 , (4.31)

where the external impulsive forces with respect to the element are

Pk =


P0 for k = 1(

∂T
∂q̇

)T∣∣∣∣
t=tk

for k = 2, . . . , nel

PT for k = nel + 1

. (4.32)

As for the monolithic approach, the shape function φk(sk(t), zk) with zk ∈ RNk

constrains the motion as in (4.2). Assume that the shape function fulfills

φk(0, zk) = zk
1 and φk(1, zk) = zk

Nk
, (4.33)

then

q(tk) = zk
1 and q(tk+1) = zk

Nk
(4.34)

holds. Condition (4.33) is fulfilled by most of the common choices of shape
functions, such as Lagrange polynomials, Bézier curves, B-splines and NURBS,



36 Chapter 4. Time Finite Elements

cf. Hartmann and Katz (2013) and Hughes et al. (2005). Restricting the prin-
ciple of virtual action of the kth element (4.31) to admissible virtual displace-

ments δqk = Nkδzk with Nk = ∂φk

∂zk
gives

δAk = −
∫

Ωk

{
δT (φk, φ̇k, t) + δzkT

NkT
f
}

dt− δzkT
e1Pk + δzkT

eNkPk+1 = 0

(4.35)
for all variations δzk, where by (4.33) NkT

for the boundary terms is given
by the e1 and eN , which are the first and N th canonical basis vector of RN .
Carrying out the variation of the kinetic energy and by the fundamental lemma
of calculus of variations we obtain the nonlinear system of equations

−
∫

Ωk

{
ṄkT

(
∂T

∂q̇

)T
+ NkT

(
∂T

∂q

)T
+ NkT

f

}
dt−e1Pk +eNkPk+1 = 0 . (4.36)

For given initial conditions zk
1 = q(tk) and Pk of the kth element, (4.36) can be

solved for zk and Pk+1, which fully determines the motion within the element
by means of qk(t) = φk(sk(t), zk). By (4.34) we have

q(tk+1) = zk
Nk

= zk+1
1 for k /∈ {1, nel} . (4.37)

Knowing the motion of the kth element in terms of zk and Pk+1, (4.37) implies
the initial conditions zk+1

1 = q(tk+1) = zk
Nk

and the impulsive force Pk+1 for
the element k + 1. This allows to find the global motion, i.e. the motion
of the system during the time interval I, by sequentially finding the motion
within the elements. The initial conditions for the first element are the same
as for the global motion, i.e. z1

1 = q(0) = q0 for the initial position, and

φ̇1(0, z1) = q̇0 or P1 =
(

∂T
∂q̇

)T
(q0, q̇0, 0) for the initial velocity. Imposing the

initial impulsive force P1 is the more natural choice, as the initial condition for
all other elements than the first is given by an initial impulsive force. For the
numerical treatment of (4.36), the time integration might be approximated by
a quadrature rule and solutions are found by means of the Newton–Raphson
method. Box 3 shows the resulting stepping scheme, where for the sake of
brevity the shape function are chosen to be the same for each element, i.e.
φk = φ for all k, and the initial condition is treated in the sense of (4.19).
Let the external forces of the system be given by f = fp + fnp, with fp being
potential forces deduced from a potential V (q, t) and fnp being non-potential
forces. Using (2.39) the principle of virtual action of the kth element (4.35)
takes the from

δAk = −
∫

Ωk

{
δL(φk, φ̇k, t) + δzkT

NkT
fnp
}

dt− δzkT
e1Pk + δzkT

eNkPk+1 = 0 ,

(4.38)
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Box 3 Stepping Scheme

1. Divide the time interval I into disjoint elements Ωk, such that
I =

⋃nel

k=1 Ωk.

2. Choose the shape function φ for every element and compute

I(zk) = −
∫

Ωk

{
ṄT

(
∂T

∂q̇

)T
+ NT

(
∂T

∂q

)T
+ NTf

}
dt

exactly or by applying a quadrature rule.

3. Find the motion of the first element (k = 1) by solving

I(z1)− e1

(
∂T

∂q̇

)T
(q0, q̇0, 0) + eNP2

(4.36)
= 0

with z1
1 = q0 for z1 and P2, using e.g. the Newton–Raphson method.

4. For each k > 1 solve

I(zk)− e1Pk + eNPk+1
(4.36)
= 0

with zk
1 = zk−1

N for zk and Pk+1, using e.g. the Newton–Raphson
method. Use Pk and zk−1

N from the solution of the previous element.

5. Construct continuous solution by means of (4.28).

for all variations δzk, where L = T − V . Introducing the discrete Lagrangian

Lk
d(zk) :=

∫
Ωk

L(φk, φ̇k, t)dt (4.39)

and the discrete non-potential forces

f̃np,k(zk) :=

∫
Ωk

NkT
fnpdt , (4.40)

the principle of virtual action (4.38) can be rewritten as

− δLk
d(zk)− δzkT

f̃np,k(zk)− δzkT
e1Pk + δzkT

eNkPk+1 = 0 ∀δzk . (4.41)

For a numerical treatment of (4.41) the time integration in the definition of the
discrete Lagrangian (4.39) and the discrete non-potential forces (4.40) has to
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be approximated by means of a quadrature rule. Using the notation Di := ∂
∂zki

and reformulating (4.41) to

−δAk = δzk
1

T
(

D1L
k
d(zk) + f̃np,k

1 (zk) + Pk

)
+

Nk−1∑
i=2

δzk
i

T
(

DiL
k
d(zk) + f̃np,k

i (zk)
)

+ δzk
Nk

T
(

DNL
k
d(zk) + f̃np,k

Nk
(zk)−Pk+1

)
= 0 ∀δzk ,

(4.42)

this leads to the system of equations

D1L
k
d(zk) + f̃np,k

1 (zk) + Pk = 0

DiL
k
d(zk) + f̃np,k

i (zk) = 0 for i = 2, . . . , Nk − 1

DNL
k
d(zk) + f̃np,k

Nk
(zk)−Pk+1 = 0

(4.43)

as a consequence of the fundamental lemma of calculus of variations. The
system of equations (4.43) is equivalent to the system of equations (4.36),
as merely a new notation has been introduced. Therefore, (4.43) defines the
same stepping scheme as (4.36). Box 4 shows the stepping scheme of Box 3
reformulated in terms of the discrete Lagrangian as defined by (4.43), where
again the shape functions are chosen to be the same for each element, i.e.
φk = φ for all k, and the initial condition is treated in the sense of (4.19).
Since for each element k, except the first, the initial impulsive force Pk stems
from the solution of the previous element k − 1, the last row of(4.43)

Pk = DNL
k−1
d (zk−1) + f̃np,k−1

N (zk−1) , (4.44)

and the impulsive force Pk can be eliminated in the stepping scheme for k 6= 1
and (4.43) is reformulated to

D1L
k
d(zk) + DNk

Lk−1
d (zk−1) + f̃np,k−1

Nk
(zk−1) + f̃np,k

1 (zk) = 0

DiL
k
d(zk) + f̃np,k

i (zk) = 0 for i = 2, . . . , Nk − 1 .
(4.45)

For given zk−1, the system of equations (4.45) can be solved for zk and gives
the motion within the kth element. (4.45) is called the extended set of discrete
Euler–Lagrange equations, cf. West (2004) Sec. 3.5. Note that Marsden and
West (2001) derived the extended set of discrete Euler–Lagrange equations
using concepts of discrete mechanics and they assumed the discrete Lagrangian
to be the same for every element. Box 5 represents a reformulation of the
stepping scheme of Box 4 by means of (4.45). For linear elements, the element
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coordinates are zk = (q(tk),q(tk+1))T. Introducing the notation qk = q(tk),
for linear elements (4.45) reduces to the discrete Euler–Lagrange equations

D1Ld(q
k,qk+1) + D2Ld(q

k−1,qk) + f̃np,k−1
2 (qk−1,qk) + f̃np,k

1 (qk,qk+1) = 0 .
(4.46)

Marsden and West (2001) derived (4.46) using the viewpoint of discrete me-
chanics. For linear elements (4.43) yields

Pk = −D1Ld(q
k,qk+1)− f̃np,k

1 (qk,qk+1)

Pk+1 = D2Ld(q
k,qk+1) + f̃np,k

2 (qk,qk+1) ,
(4.47)

which are the equations derived in Marsden and West (2001) p. 424 by means
of a discrete Legendre transformation.

To show that the solution found by the stepping approach is equivalent to
the solution found by the monolithic approach, the virtual action of the system
is written as the sum of the virtual actions of the elements. As the principle
of virtual action (4.31) holds, the global virtual action

δA =

nel∑
k=1

δAk

(4.31)
= −

nel∑
k=1

∫
Ωk

{
δT (φk, φ̇k, t) + δzkT

NkT
f
}

dt

− δzkT
e1Pk + δzkT

eNPk+1

(4.48)

vanishes for all variations of zk and every k. Using (4.37), which implies
δzk

N = δzk+1
1 for k /∈ {1, nel}, after rearranging (4.48) to

δA = −
nel∑
k=1

∫
Ωk

{
δT (φk, φ̇k, t) + δzkT

NkT
f
}

dt− δz1T
e1P1 + δznelTeNkPnel+1

+

nel−1∑
k=2

(δzk
Nk

T − δzk+1
1

T
)Pk = 0 ∀δzk (4.49)

yields the principle of virtual action

δA = −
nel∑
k=1

∫
Ωk

{
δT (φk, φ̇k, t) + δzkT

NkT
f
}

dt

− δz1T
e1P1 + δznelTeNkPnel+1 = 0 ∀δzk .

(4.50)

By (4.32) and (4.33), which gives N1(0, z1) = e1 and Nnel(0, znel) = eNk , (4.50)
is the same as (4.6), which is used to derive the monolithic apporach. As the
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stepping approach and the monolithic approach both fulfill the same form of
the principle of virtual action, the motions found by the two approaches are
the same if the same shape functions, the same temporal nodes are used, and
the initial conditions are treated in the same way.
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Box 4 Stepping Scheme

1. Divide the time interval I into disjoint elements Ωk, such that
I =

⋃nel

k=1 Ωk.

2. Choose a shape function φ for each element and compute

Ld(z
k) =

∫
Ωk

L(φ, φ̇, t)dt, and f̃np,k(zk) =

∫
Ωk

NTfnpdt

exactly or by applying a quadrature rule.

3. Find the motion of the first element (k = 1) solving

D1Ld(z
1) + f̃np,1

1 (z1) +

(
∂T

∂q̇

)T
(q0, q̇0, 0) = 0

DiLd(z
1) + f̃np,1

i (z1) = 0 for i = 2, . . . , Nk − 1

DNL
k
d(z1) + f̃np,1

N (z1)−P2 = 0

with z1
1 = q0 for z1 and P2, using e.g. the Newton–Raphson method.

4. For each k > 1 solve

D1Ld(z
k) + f̃np,k

1 (zk) + Pk = 0

DiLd(z
k) + f̃np,k

i (zk) = 0 for i = 2, . . . , Nk − 1

DNLd(z
k) + f̃np,k

Nk
(zk)−Pk+1 = 0

with zk
1 = zk−1

N for zk and Pk+1, using e.g. the Newton–Raphson
method. Use Pk and zk−1

N from the solution of the previous element.

5. Construct continuous solution by means of (4.28).
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Box 5 Stepping Scheme

1. Divide the time interval I into disjoint elements Ωk such that
I =

⋃nel

k=1 Ωk.

2. Choose a shape function φ for each element and compute

Ld(z
k) =

∫
Ωk

L(φ, φ̇, t)dt, and f̃np,k(zk) =

∫
Ωk

NTfnpdt

exactly or by using a quadrature rule.

3. Find the motion of the first element (k = 1) by solving

D1Ld(z
1) + f̃np,1

1 (z1) +

(
∂T

∂q̇

)T
(q0, q̇0, 0) = 0

DiLd(z
1) + f̃np,1

i (z1) = 0 for i = 2, . . . , Nk − 1

DNLd(z
1) + f̃np,1

N (z1)−P2 = 0

with z1
1 = q0 for z1 and P2, using e.g. the Newton–Raphson method.

4. For each k > 1 solve

D1Ld(z
k) + DNLd(z

k−1) + f̃np,k−1
N (zk−1) + f̃np,k

1 (zk) = 0

DiLd(z
k) + f̃np,k

i (zk) = 0 for i = 2, . . . , N − 1 .

for zk and Pk+1, using e.g. the Newton–Raphson method. Use Pk

and zk−1 from the solution of the previous element.

5. Construct continuous solution by means of (4.28).
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Examples

In this chapter the finite element formulations of Chapter 4 are applied to find
the motions of the harmonic oscillator, the pendulum and the two body prob-
lem. All fields are discretized using linear Lagrange polynomials. Additionally,
the single-field formulation is discretized by quadratic Lagrange polynomials.
All these formulations are compared in terms of convergence to the analytical,
or to a very accurate numerical solution. Furthermore, the energy conservation
property of the numerical schemes are analyzed.

Preliminaries

The linear element described by the element coordinate ze = (ze
1, z

e
2)T is defined

by the shape function

φ(s, ze) = (1− s)ze
1 + sze

2 . (5.1)

The quadratic element described by the element coordinate ze = (ze
1, z

e
2, z

e
3)T

is defined by the shape function

φ(s, ze) = (2s− 1)(s− 1)ze
1 − 4(s2 − s)ze

2 + (2s− 1)sze
3 . (5.2)

To study the convergence behavior of the finite element solution (4.16) defined
by the global vector of element coordinates z towards a reference solution
qref(t) of the mechanical system, we introduce the error function

e =
1

T

∫
I

(
qref(t)−

nel∑
e=1

χΩe(t)φe(se(t),Cez)

)2

dt . (5.3)

The error function e measures the mean quadratic error between the finite
element solution and the reference solution. Furthermore the relative energy
error

eE =
Edisc − Eref

Eref

(5.4)

43
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of the discrete finite element solution with respect to the reference solution is
defined, where E = T+V is the total energy consisting of kinetic and potential
energy T and V , respectively.

5.1 Harmonic Oscillator

Consider the mechanical system consisting of a mass m, which is connected to
the inertial origin with a spring of stiffness c. The displacement of the mass
is measured by the coordinate q : R → R which is a function of time. The
mass-spring system is depicted in Figure 5.1. The kinetic and potential energy

Figure 5.1: Sketch of the harmonic oscillator modeled as mass-spring system with mass m
and stiffness c.

of the system are given by

T (q̇) =
1

2
mq̇2 and V (q) =

1

2
cq2 . (5.5)

Using the energy representations (5.5) in Hamilton’s law of varying action
(2.41) yields

δA = −
∫
I
{δq̇(t)mq̇(t)− δq(t) cq(t)}dt+ δq(t)P |∂I = 0 ∀ δq(t) , (5.6)

which describes the motion of the mass-spring system during the time interval
I, where the external impulsive forces are given by the constitutive equations
(2.36). The Euler–Lagrange equations (2.45) lead to the initial value problem
given by

mq̈(t) + cq(t) = 0 s.t. q(0) = q0, q̇(0) = u0 , (5.7)

where the values of q0 and u0 are given initial conditions. The analytical
solution

qref(t) = q0 cos(
√
c/m t) +

u0√
c/m

sin(
√
c/m t) (5.8)

of (5.7) is used as the reference solution for this example. Assume that the
time interval I is discretized using a uniform grid of nodes (t1, . . . , tnN

) =
(0,∆t, 2∆t, . . . , T ), with ∆t = T/(nN − 1) for a chosen number of nodes nN .
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Figure 5.2: Motion of the harmonic oscillator defined by m = 1 and c = 1 with initial
conditions q(0) = 0.5 and q̇(0) = 0.5 during the time interval I = [0, 10]. Analytical
solution (5.8) and single-field finite element solution using linear elements with temporal
length ∆t = 1 and ∆t = 0.5.

Figure 5.2 shows two discretized trajectories of the mass-spring system cal-
culated using the single-field formulation described by (4.19) with linear shape
functions. It can be seen, that the analytical solution (5.8) is better approx-
imated by the discrete solution with more elements. This can be quantified
by means of the error defined in (5.3), which measures the mean quadratic
error between the finite element solution and the analytical solution of the
harmonic oscillator. Figure 5.3 shows the convergence behavior of the single-
and multi-field formulations with linear elements, which can be seen to be
quadratic. Moreover, the convergence behavior of the single-field formulation
with quadratic elements is shown to be cubic.

For this example, all pure multi-field formulations have the same conver-
gence behavior and for each number of elements chosen, lead to solutions with
the smallest error compared to the other formulations with linear elements.
Further investigations have shown that the order of the error e of the mixed
multi-field formulations seem to depend only on the value of the parameter
α and not on β. As shown in Figure 5.3 the formulation with α = 0.5 leads
to smaller errors than the single-field formulation. Using the pure multi-field
formulations the error can be reduced by one order of magnitude with respect
to the single-field formulation. The single-field formulation with quadratic
elements performs best, as the error compared to the other formulations is
between one and two orders of magnitude smaller.

Figure 5.4 shows the temporal evolution of the energy error (5.4), which
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Figure 5.3: Convergence towards analytcal solution of the harmonic oscillator defined by
m = 1 and c = 1 with initial conditions q(0) = 0.5 and q̇(0) = 0.5 during the time interval
I = [0, 100]. Linear elements used for single-field (single), pure multi-field formulation
(multi), mixed multi-field (mix) with α = 0.5. The single-field formulation with quadratic
elements (quad) has slope below −3 in the double logarithmic scale, while the others have
a slope of approximately −2.
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Figure 5.4: Energy error (5.4) of the harmonic oscillator defined by m = 1 and c = 1 with
initial conditions q(0) = 0.5 and q̇(0) = 0.5 during the time interval I = [0, 10]. Linear
elements used for single-field (single), pure multi-field formulation (multi), mixed multi-
field (mix) with α = 0.5 and quadratic elements (quad) for single-field formulation. All
formulations have been computed with ∆t = 0.2.
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oscillates around a constant error level. The energy error is bounded for all
formulations. Further investigations have shown that the energy error remains
bounded even for much longer time intervals I and that these bounds converge
to zero if the number of elements are increased. The best energy performance
is achieved by the single-field formulation with the quadratic element, as it
oscillates around the smallest error level with very small amplitudes. The
mixed multi-field formulation performs very well too, but exhibits error peaks
near the boundaries of I.

Concluding from the convergence behavior and the energy considerations,
the single-field formulation with quadratic elements is the numerical approach
with the best performance. Note that the time integration in the principle of
virtual action (5.6), after discretization, can be computed exactly. Therefore
the performances seen for this example are due to the choice of the shape
function only and are not biased by the choice of some quadrature rule for the
time integration.
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5.2 Simple Pendulum

The simple pendulum consists of a mass m, which is attached to a mass-less
rigid bar of length l and is pivoted on an inertial point. The only degree
of freedom of this planar mechanical system is described by the time depen-
dent generalized coordinate q(t) ∈ R. A sketch of the pendulum is given in
Figure 5.5. The kinetic and potential energy of the pendulum are given by

Figure 5.5: Sketch of a pendulum with length l and mass m.

T (q̇) =
1

2
ml2q̇2 and V (q) = −mgl cos q(t) , (5.9)

where the potential energy models the influence of gravitation on the pendu-
lum. Using (5.9) the principle of virtual action for the pendulum is

δA = −
∫
I
{δq̇(t)ml2q̇(t)− δq(t)mgl sin q(t)}dt+ δq(t)P |∂I = 0 ∀ δq (5.10)

by Hamilton’s law of varying action (2.41). The equation of motion (2.45)
takes the form of the initial value problem

ml2q̈(t) +mgl sin q(t) = 0 s.t. q(0) = q0, q̇(0) = u0 (5.11)

and follow from (5.10) by means of the fundamental lemma of calculus of varia-
tions applied after integration by parts. As the differential equation (5.11) has
no analytical solution, a very accurate numerical solution of (5.11), computed
by the ode45 solver of MATLAB, is used as the reference motion qref(t).

Figure 5.6 shows a trajectory of the pendulum calculated by a single-field
finite element approach, where the elements are chosen to be linear and the
time integral in (4.36) is approximated by the trapezoidal rule. Linear elements
together with the trapezoidal rule lead to an explicit stepping scheme, the Ver-
let algorithm1, which is computationally very cheap. If quadratic elements are

1cf. Appendix A.5.
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Figure 5.6: Motion of the pendulum characterized by m = 1 and l = 2 with initial conditions
q(0) = 4π

5 and q̇(0) = 0.8 during the time interval I = [0, 8]. Reference solution and single-
field finite element solution with linear elements whose temporal length is ∆t = 0.32. The
virtual action of the gravitational force is integrated using the trapezoidal rule.

used instead of linear ones, the stepping scheme becomes implicit and there-
fore more costly. Nevertheless, it has the advantage that the discrete velocities
are continuous in time, whereas the linear elements give piecewise constant
velocities, as shown in Figure 5.7. The velocity field given by the multi-field
formulations with linear elements have the same properties as the ones of the
single-field formulation with quadratic elements, but as the multi-field formu-
lations are monolithic approaches, they are computationally very expensive.
For long time intervals I and high number of elements, the set of implicit non-
linear equations associated with the multi-field formulations gets very large.
In addition to that, the matrices which arise, when the set of equations is
solved using the Newton-Raphson method, are often badly conditionned and
the Newton-Raphson method does not converge. The matrices of the mixed
multi-field approach show a better condition number as the ones of the pure
multi-field formulation, this is due to the parameters α and β, which can be
used to influence the condition number of the matrices. When a high number
of elements is chosen, the Netwton–Raphson method used to solve the pure
multi-field formulation does not converge for this example. Thus, Figure 5.8
shows only the convergence behavior of the discrete finite element solutions
towards the reference solution for the single-field formulation with linear and
quadratic elements, and for a mixed multi-field formulation. The convergence
of all approaches is quadratic and the error of the single-field formulation with
quadratic elements is about half order of magnitude smaller compared to the
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Figure 5.7: Velocity field of the pendulum characterized by m = 1 and l = 2 with initial
conditions q(0) = 4π

5 and q̇(0) = 0.8 during the time interval I = [0, 8]. Reference solution
(ref) and single-field finite element solution with linear (lin) and quadratic (quad) elements,
whose temporal length is ∆t = 0.32. The virtual action of the gravitational force is integrated
using the trapezoidal rule.

102 102.2 102.4 102.6 102.8

10−3

10−2

nel

e

lin
mix
quad

Figure 5.8: Convergence towards reference solution of the simple pendulum defined by
m = 2 and l = 1.5 with initial conditions q(0) = 3π

5 and q̇(0) = 0.2 during the time interval
I = [0, 20]. Single-field formulation with linear (lin) and quadratic (quad) elements, and
mixed multi-field formulation (mix) with α = 0.5.
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Figure 5.9: Motion of the harmonic oscillator defined by m = 1 and c = 1 with initial
conditions q(0) = 0.5 and q̇(0) = 0.5 during the time interval I = [0, 10]. Analytical
solution and single-field finite element solution with linear elements whose temporal length
is ∆t = 1 and ∆t = 0.5, respectively.

formulations with linear elements.
Figure 5.9 shows the temporal evolution of the energy error (5.4) of the

different finite element approaches. The energy error is seen to be bounded
and oscillates around constant error levels. Further investigations have shown
that the error bounds converge to zero, if the number of elements is increased.

The single-field approach with quadratic elements is the preferable ap-
proach to find the discrete trajectory of the simple pendulum, as it shows the
smallest errors with respect to the reference solution and is computationally
cheap compared to the multi-field formulations. As it can be formulated as a
stepping equation, the performance does not depend on the length of the time
interval I chosen, but it depends only on the length of the single element.
Hence, long term simulations can be performed, which is not possible with the
monolithic approaches because of the bad convergence of the Newton–Raphson
method described above.
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5.3 Two-Body Problem

Let a body of mass M be attached to the origin of the inertial eI
x-eI

y-frame, cf.
Figure 5.10. The position of the body with mass m, which moves under the
influence of the gravitational field of M , is addressed by the coordinate vector
q = (x, y)T in the eI

x-eI
y-frame. The kinetic energy and the potential energy,

Figure 5.10: Sketch of two-body problem. Body with mass m orbiting around body with
mass M under the influence of the gravitational force fg.

which models gravity, are given by

T (q̇) =
1

2
m q̇Tq̇ and V (q) = −GMm√

qTq
, (5.12)

where G denotes the gravitational constant. The gravitational force acting on
m is

fg = −
(
∂V

∂q

)T
= − GMm

(qTq)3/2
q , (5.13)

which inserted in the principle of virtual action (2.29) yields

δA = −
∫
I
{δq̇T mq̇− δqT GMm

(qTq)3/2
q}dt+ δqT P

∣∣
∂I = 0 ∀ δq . (5.14)

The equations of motion (2.34) together with the constitutive law for the
boundary impulsive forces (2.36) define the initial value problem

mq̈ = − GMm

(qTq)3/2
q s.t. q(0) = q0, q̇(0) = u0 , (5.15)

where q0 and u0 are given initial conditions. As the initial value problem
(5.15) has no analytical solution, a very accurate numerical solution of (5.15),
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Figure 5.11: Trajectory of the two-body problem defined by m = 1 and GM = 1, with initial
conditions q(0) = (2, 0)T and q̇(0) = (0, 0.6)T. Reference solution (ref) and single-field finite
element solution (lin) with linear elements.

computed by the ode45 solver of MATLAB, is used as the reference motion
qref(t).

Figure 5.11 shows a trajectory of the two body problem calculated with the
single-field finite element approach with linear elements. The time integration
in (4.36) is approximated by means of the trapezoidal rule.

Figure 5.12 shows the convergence of the single-field finite element solutions
with linear and quadratic elements and the mixed multi-field finite element
solution of (5.14) towards the very accurate reference solution qref(t). For both,
the linear and the quadratic shape functions, the convergence is quadratic.
The finite element solution with quadratic shape functions shows an error,
which is one order of magnitude smaller than the one for the linear element.
That means, it needs approximately four times more linear elements to get the
same accuracy as achieved with the quadratic element. The mixed multi-field
formulation shows the largest error and is computationally very costly, as it
has to be solved monolithically. Furthermore the convergence of the Newton–
Raphson method used to solve the associated nonlinear set of equations is very
poor. For the pure multi-field approaches this convergence is even worse and
did not converge at all for this example, which is why no convergence plot
is given in Figure 5.12. If the chosen time interval is longer than I = [0, 10],
which corresponds roughly to one period of the body of mass m around the one
of mass M , the mixed multi-field finite element approach does not converge
either. Hence, the energy error plotted in Figure 5.13 is only shown for the
single-field formulations, as these are the sole that allow a long-term simulation.
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Figure 5.12: Convergence plot of the two-body problem defined by m = 1 and GM = 1, with
initial conditions q(0) = (2, 0)T and q̇(0) = (0, 0.6)T. Single-field finite element approach
with linear (lin) and quadratic (quad) elements, with integration time T = 50.

This is due to the fact that the single-field formulation can be reformulated
to a stepping scheme. Figure 5.13 shows that the energy error is bounded,
and of the same order for both, the linear and quadratic element. Further
investigations have shown that the boundaries converge to zero energy error, if
the number of elements is increased. In other words, the energy error decreases
with decreasing time step ∆t.

As for the other examples, the single-field finite element approach with
quadratic elements is the preferable approach, as it is the most accurate and
is computationally cheap due to the possibility to implement it as a step-
ping scheme. Moreover it is seen that the monolithic multi-field approaches,
which seem to have no equivalent stepping scheme, are computationally very
expensive and are not suitable for long-term simulations. Note however that
multi-field stepping schemes exist, cf. Borri et al. (1992) and Betsch and Stein-
mann (2000a). Nevertheless, it is not clear yet if they can be deduced from
the principle of virtual action (5.14) in the sense of a finite element method.
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Figure 5.13: Convergence plot of the two-body problem defined by m = 1 and GM = 1, with
initial conditions q(0) = (2, 0)T and q̇(0) = (0, 0.6)T. Single-field finite element approach
with linear (lin) and quadratic (quad) elements, with integration time T = 50.





Chapter 6

Conclusions and Outlook

In this thesis a systematic approach is presented, which allows to derive dif-
ferent numerical schemes for the computation of the motion of mechanical
systems in minimal coordinates. Starting from the principle of virtual action
as an axiom of mechanics, single- and multi-field formulations of the principle
of virtual action have been derived by imposing perfect motion constraints
and using the Legendre–Fenchel transform. These formulations have been dis-
cretized using temporal finite elements. The choice of the shape function used
for the time finite element discretization, together with the choice of the formu-
lation of the principle of virtual action, results in different numerical schemes.
Monolithic numerical schemes have been derived for all formulations. For the
single-field formulation it is shown that there is an equivalent stepping scheme.

The main achievement of this thesis can be summarized as follows:

- The dynamical forces have been interpreted as internal forces in time
direction. Relating them to the velocity by means of a linear constitutive
law, leads to a version of the principle of virtual action, which can be used
to derive the principle of virtual work and Lagrange’s central equation.

- For finite degree of freedom systems, a formulation of the principle of
virtual action has been derived, which depends on the generalized coor-
dinates only. Moreover, Hamilton’s law of varying action and the prin-
ciple of Hamilton have been shown to be special cases of the principle of
virtual action.

- Using the Legendre–Fenchel transform, multi-field formulations of the
principle of virtual action for finite degree of freedom systems have been
derived. Namely, the canonical formulation, whose independent fields
are the generalized position and the generalized momentum, and the
three-field formulations.
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- Finite elements in time have been used to discretize the different for-
mulations of the principle of virtual action. The performance of the
resulting monolithic finite element formulations has been tested on three
simple mechanical systems. It is shown that the monolithic approaches
are computationally very expensive and lead to algorithms with poor
convergence.

- It is shown that the monolithic single-field formulation is equivalent to a
stepping scheme. The stepping schemes are found to be very performing
in terms of numerical stability and computational cost. Moreover, as
for all the finite element discretizations of the principle of virtual action,
they have good numerical conservation properties.

- The equivalence of the stepping schemes derived by the finite element
approach and the stepping schemes derived in the sense of discrete me-
chanics is shown.

The above insights make the time finite element methods very promising
for the application in industrial design and development, but for a good appli-
cability further research is required. The following open questions and tasks
are identified:

- The theory has to be extended to describe mechanical systems with per-
fect holonomic and non-holonomic constraints.

- To describe frictional impacts, it has to be analyzed, how unilateral con-
straints with set-valued constitutive force laws can be treated using the
principle of virtual action. Moreover, the finite element discretization of
the principle of virtual action, and especially the set-valued force laws
have to be addressed.

- The interaction of differential geometry, measure theory and functional
analysis in all derivations presented in this thesis has to be analyzed. For
the restriction of the virtual action to the virtual action of one element,
integration by parts and the choice of a discontinuous virtual displace-
ment field is required. It is not completely clear, what happens at the
boundary of the element and where the boundary conditions arise from.

- It has to be understood, how the point wise Legendre–Fenchel transform,
used for the derivation of the multi-field formulations, interacts with the
motion constraints, which are used to arrive at finite element formula-
tions by the choice of shape functions. Apparently it is not possible
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to find stepping schemes, which are equivalent to the monolithic multi-
field approach. This might be proven or disproved, if this interaction is
understood.

- From a numerical point of view the performance of time finite element
methods should be compared to the common integrators, the efficient
implementation should be addressed and the conservation properties of
the numerical schemes should be proven.





Appendix A

Miscellaneous

In this chapter we address some miscellaneous topics. In Section A.1, an ex-
ample is used to visualize the claim of Chapter 4, which says that the velocity
initial condition should be imposed by means of the initial impulsive force as
this is the most natural way to do it. In Section A.2 the influence of the
quadrature rule chosen to approximate the time integration in the finite ele-
ment formulations is shown by an example. The possiblity to derive time finite
element methods for the description of frictional impacts is discussed briefly
in Section A.3. A reinterpretation of the generalized momentum together with
an alternative derivation of the multi-field formulations is discussed in Sec-
tion A.4. In Section A.5, the Verlet algorithm is derived using the time finite
element stepping approach of Section 4.2.

A.1 On the Initial Condition

At the end of Section 4.1 two ways of treating the initial conditions are intro-
duced, i.e. demanding the first element to have the same initial velocity as the
analytical solution as in (4.18) or imposing the initial condition by the use of
the initial impulsive force as in (4.19). From the treatment of the finite element
discretization through a stepping approach, imposing the initial condition us-
ing the initial impulsive force appears to be the more natural choice, cf. end of
Section 4.2. Figure A.1 shows two discretized motions of the mass-spring sys-
tem described in Section 5.1, which are compared with the analytical solution
of the harmonic oscillator. The discretized motion, where the initial condition
is treated as in (4.18) has the same initial velocity as the analytical solution,
therefore the first element is tangent to the analytical solution. As the discrete
motion is piecewise linear, the discrete motion, which fulfills the initial condi-
tion on the velocity exactly, overshoots and therefore approximates the exact
solution poorly. The exact motion is better approximated by the second dis-
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Figure A.1: Motion of the harmonic oscillator defined by m = 1 and c = 1 with initial
conditions q(0) = 0.5 and q̇(0) = 0.5 during the time interval I = [0, 2]. Analytical solution
(analytic), discrete solution with exact initial velocity (velocity) as in (4.18) and discrete
solution with given initial impulsive force (impulse) as in (4.19). Both discretizations use
∆t = 0.5.

crete motion, where the initial conditions are imposed by an initial impulsive
force. This confirms that imposing the initial condition in such a way is the
better and more natural choice. Note however that by augmenting the number
of elements, both discrete motions converge to the exact motion.

A.2 On the Time Integration

In all the examples of Chapter 5 the time integrals are approximated by the
trapezoidal rule. In this section we show for the simple pendulum of Sec-
tion (5.2) that the choice of different quadrature rules has an impact on the
error (5.3). Therefore take the principle of virtual action for the kth element
(4.35) and use linear shape functions (5.1). The variation of the kinetic energy
in (4.35) is integrated exactly and by the fundamental lemma of calculus of
variations leads to the stepping scheme defined by the equation

m

∆t

(
−1 1
−1 1

)
+∆t

∫ 1

0

(
1− s
s

)
mgl sin((1−s)zk1 +szk2 )+

(
−Pk

Pk+1

)
= 0 , (A.1)

which corresponds to (4.36). The integral of the external forces is approxi-
mated by the quadrature rule defined in Box 6. Figure A.2 shows the con-
vergence of the finite element solution found by the stepping scheme (A.1)
towards a very accurate reference solution of the simple pendulum in terms of
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Figure A.2: Convergence towards reference solution of the simple pendulum defined by
m = 2 and l = 1.5 with initial conditions q(0) = 2π

5 and q̇(0) = 0.2 during the time interval
I = [0, 10]. Single-field formulation with linear elements. The external forces are integrated
using a one point gaussian (gauss1), two point gaussian (gauss2) and the trapezoidal (trapez)
quadrature rule.

the error (5.3). Figure A.2 shows that the convergence is quadratic and that
the two point gaussian quadrature rule leads to the most accurate solutions.
This is not surprising, as the two point gaussian quadrature rule is the one
that approximates the integral of the external forces best. Note however that
for linear elements, the trapezoidal rule leads to an explicit stepping scheme,
which is called the Verlet algorithm, cf. Section A.5. The other quadrature
rules do not lead to explicit stepping schemes.

Box 6 Quadrature Rules

The integral of a function g(s) over the interval [0, 1] can be approximated
by a quadrature rule of the form∫ 1

0

g(s) dt ≈
n∑

i=1

wig(si) . (A.2)

There are different possibilities to choose the weights wi, the number of
quadrature points n and the quadrature points si.

n w1 s1 w2 s2

gaussian 1 1 1/2 - -

gaussian 2 1/2 (1−
√

1/3)/2 1/2 (1 +
√

1/3)/2
trapezoidal 2 1/2 0 1/2 1



64 Chapter A. Miscellaneous

A.3 On Impulsive Forces

In this section we show that the presence of an impulsive force P acting on a
mechanical system at a time instant t ∈ int(I) of the considered time interval
I = [0, T ] results in an impact equation or equivalently in a jump condition
for the velocities at t = t.

The virtual action contribution δq(t)TP of the impulsive force is added to
the principle of virtual action (2.29), which gives

δA = −
∫
I

{
δT (q, q̇, t) + δqTf

}
dt+ δq(t)TP + δqTP

∣∣
∂I = 0 ∀δq . (A.3)

Applying integration by parts to (A.3) leads to the strong variational formu-
lation of the principle of virtual action

δA =

∫
I\{t}

δqT

(
d

dt

(
∂T

∂q̇

)T
−
(
∂T

∂q

)T
− f

)
dt

+ δq(t)T

(
P +

(
∂T−

∂q̇

)T
−
(
∂T+

∂q̇

)T)∣∣∣∣
∂I

+ δqT

(
P−

(
∂T

∂q̇

)T)∣∣∣∣
∂I

= 0 ∀δq ,

(A.4)

where we have introduced the notation(
∂T−

∂q̇

)T
:= lim

t ↑ t

(
∂T

∂q̇

)T
(q(t), q̇(t), t)(

∂T+

∂q̇

)T
:= lim

t ↓ t

(
∂T

∂q̇

)T
(q(t), q̇(t), t)

(A.5)

and have assumed that q(t) is continuous in t = t. By the fundamental
lemma of calculus of variations, the terms in brackets of (A.4) vanish pointwise.
Therefore the equation of motion

d

dt

(
∂T

∂q̇

)T
−
(
∂T

∂q

)T
= f (A.6)

holds for all time instants t ∈ I\{t}, in which no impulsive force acts. For the
time instant t = t, in which the impulsive force acts, the equation of motion
(A.6) is replaced by the impact equation(

∂T+

∂q̇

)T
−
(
∂T−

∂q̇

)T
= P . (A.7)
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The boundary terms give the boundary conditions(
∂T

∂q̇

)T
(q(0), q̇(0), 0) = P0(

∂T

∂q̇

)T
(q(T ), q̇(T ), T ) = PT ,

(A.8)

which are the same as (2.35). The equation of motion (A.6) and the impact
equation (A.8) are used together with a contact model and impact constitu-
tive equations to model frictional impacts between rigid bodies, cf. Glocker
(2006). Using a finite element discretization in the sense of Chapter 4, nu-
merical schemes for the simulation of rigid multi body systems with frictional
impacts can be derived from (A.3).

A.4 Multi-field Formulations Revisited

Instead of using the Legendre–Fenchel transform to derive the (q,u,p)- and
canonical formulation of the principle of virtual action, as described in Chap-
ter 3, they can be derived using a Lagrangian multiplier approach. In this
framework the generalized velocity q̇ in the kinetic energy of the principle of
virtual action (2.29) is replaced by the independent generalized velocity u and
the equality u = q̇ is enforced by the Lagrangian multiplier p, which is the
generalized momentum. This procedure yields the (q,u,p)-formulation of the
principle of virtual action (3.26), which is restated here

δA = −
∫
I

{
δ
(
T (q,u, t) + pT(q̇− u)

)
+ δqTf

}
dt+ δqTP

∣∣
∂I = 0 . (A.9)

To arrive at the canonical formulation the dependence of (A.9) on u has to
be eliminated. Looking at the strong variational form (3.27) of the (q,u,p)-
formulation of the principle of virtual action, it is clear that the generalized
velocity u can be eliminated by the choice

u = u(q,p, t) s.t. p =

(
∂T

∂u

)T
(q,u, t) . (A.10)

Due to convexity of the kinetic energy (2.28) it is always possible to express
u in dependence of (q,p, t) explicitly. Using the definition of the conjugate
kinetic energy in the form

T ∗(q,p, t) = pTu− T (q,u, t) s.t. p =

(
∂T

∂u

)T
(q,u, t) , (A.11)
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which is equivalent to the definition given in (3.11), and eliminating u from
(A.9) by means of (A.10) gives the canonical formulation of the principle of
virtual action

δA = −
∫
I

{
δ
(
q̇Tp− T ∗(q,p, t)

)
+ δqTf

}
dt+ δqTP

∣∣
∂I=0 ∀δq,∀δp . (A.12)

This derivation allows to interpret the generalized momentum as constraint
force which enforces the velocity constraint u = q̇, but this interpretation is
not very satisfying as in the canonical formalism p appears but u does not.
This indicates that the role of p is still not clear. Moreover, this derivation,
proposed by Lanczos (1970), does not allow the derivation of the generalized
(q,u,p)-formulation presented in Section 3.4.

A.5 The Verlet Algorithm

Let the motion of the mechanical system S be described by the generalized
coordinates q(t) and a constant mass matrix M. Then by (2.28) the kinetic
energy of the system is

T (q̇) =
1

2
qTMq . (A.13)

The motion of the system S during the time interval I = [0, T ] is described
by the principle of virtual action

δA = −
∫
I

{
δq̇TMq̇ + δqTf(q(t))

}
dt+ δqTP

∣∣
∂I = 0 ∀δq . (A.14)

Introducing the nN temporal nodes (t1, . . . , tnN
) that subdivide the time inter-

val I = [0, T ] into the nel elements Ωe = [te, te+1], as done in Section 4.2 the
principle of virtual action for the kth element (4.31) is

−
∫

Ωk

{
δq̇kT

Mq̇k + δqkT
f(qk(t))

}
dt−δq(tk)TPk +δq(tk+1)TPk+1 = 0 (A.15)

for all δqk.Restricting the motion qk(t) of the element to the motion described
by the linear polynomial

qk(t) = (1− s(t))zk + s(t)zk+1) , (A.16)

where the element coordinate s(t) is defined as in (4.2), and the notation
zk = q(tk) has been introduced. The motion of the kth element, which is
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restricted to the linear polynomial (A.16) is described by the principle of virtual
action (4.35), i.e.

δAk = −
∫

Ωk

1

∆t2
(−δzkT

+ δzk+1T
)M(−zk + zk+1)dt

−
∫

Ωk

((1− s(t))δzkT
+ s(t)δzk+1T

))f((1− s(t))zk + s(t)zk+1))dt

− δzkT
Pk + δzk+1T

Pk+1 . (A.17)

Approximating the time integration in (A.17) by the trapezoidal rule (A.2)
together with the fundamental lemma of calculus of variations leads to the
stepping equations

1

∆t
M(zk − zk+1) +

1

2
∆t f(zk) + Pk = 0

1

∆t
M(−zk + zk+1) +

1

2
∆t f(zk+1)−Pk+1 = 0 .

(A.18)

which correspond to the stepping equations (4.43). For k > 1 the impulsive
force Pk can be expressed in terms of the motion of the previous element,
which by the second equation of (A.18) is

Pk =
1

∆t
M(−zk−1 + zk) +

1

2
∆t f(zk) (A.19)

and can be inserted into the first equation of (A.18) yielding

1

∆t
M(−zk+1 + 2zk − zk−1) + ∆t f(zk) = 0 , (A.20)

the discrete Euler–Lagrange equations (4.46). Rearranging (A.20) leads to the
stepping equation

zk+1 = 2zk − zk−1 + ∆t2 M−1f(zk) , (A.21)

which is often called the Verlet algorithm, cf. Verlet (1967). This stepping
scheme corresponds to the Newmark β-method with the parameter choice
β = 0 and γ = 1/2. Note that the Verlet algorithm is explicit because the
trapezoidal rule was chosen for the time integration in (A.18). Equation (A.20)
can be derived by approximating the time derivative of the equation of motion
(2.34) of the system S, which is

Mq̈(t) = f(q(t)) , (A.22)

by means of a central difference as

M
1

∆t2
(q(tk+1)− 2q(tk) + q(tk−1)) = f(q(tk)) (A.23)
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at t = tk, which is equivalent to (A.20). The derivation of the Verlet algorithm
using the central difference does not show the variational nature of the algo-
rithm. Therefore, all the convenient properties of the algorithm, such as the
discrete energy conservation, have to be shown separately. In the framework of
variational integrators, the conservation properties can be shown generally, cf.
Marsden and West (2001). For further reading on the central difference method
and the Newmark β-method we refer to Belytschko et al. (2013) Chap. 6.
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