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A Moreau-type Variational Integrator

Giuseppe Capobianco1,∗ and Simon R. Eugster1
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In this paper we derive a variational integrator for nonsmooth mechanical systems by discretizing the principle of virtual
action with finite elements in time. After the discretization with local finite elements, the constitutive laws for the contact
forces are introduced as in Moreau’s time stepping scheme. This derivation shows exemplary how variational integrators
for systems with frictional unilateral constraints can be derived. The long-time energy behavior of the presented scheme is
compared with the behavior of Moreau’s stepping scheme on an example system.
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1 Introduction

Mechanical systems often exhibit a particular differential geometric structure and the study of these various properties for
different classes of systems has a long tradition in mechanics. Hamiltonian systems, for example, are known to be symplectic
and conserve the total mechanical energy. In addition to conservation properties, a mechanical system can also show time
reversibility among other symmetries. These properties are of essential importance for the system behavior and it has proven to
be useful to respect the underlying structure also in the numerical treatment of the system. Such so-called structure preserving
numerical schemes are known to be very performing for long-time simulations and are very robust [1]. One possibility
to construct structure preserving integrators is by discretizing a variational principle with finite elements in time, leading
to a variational integrator [2]. By discretizing the principle of virtual action with finite elements in time and choosing the
discrete constitutive contact law of Moreau, we derive in this paper a variational integrator for nonsmooth mechanical systems.
Moreau’s contact law describes frictional unilateral constraints between contacting bodies with Newton-type impact law and
Coulomb friction law. It is suitable for problems with many contacts and can overcome accumulation points. Both the
qualities of the variational integrators and the qualities of Moreau’s contact law are therefore combined in the presented
scheme. Subsequent to the derivation of the stepping scheme, the presented scheme is compared with Moreau’s stepping
scheme in terms of long-time energy behavior.

2 Time-Continuous System

Consider the motion of a mechanical system S during the time interval I = [0, T ], which is parametrized by the time t and a set
of generalized coordinates q(t) ∈ Rn. Let q̇(t) ∈ Rn denote the corresponding generalized velocities of S, where ˙(•) = d

dt (•)
denotes the derivation with respect to time. The variational family q̂(t, ε), which contains the actual motion in the sense that
q̂(t, ε0) = q(t), is used to define the virtual displacements δq(t) = ∂q̂

∂ε (t, ε0)δε with an infinitesimal variational parameter δε.
The system S is restricted by scleronomic geometric unilateral constraints, which are represented by the inequalities gj(q) ≥ 0
(j = 1, . . . , nc) with the gap functions gj being zero in case of contact, positive in case of separation and negative when
penetration occurs. On velocity level, the state of the contact is fully described by the normal and tangential contact velocities
γN,j = ġj and γT,j , respectively. The contact velocities induce the generalized directions wN,j = (

∂γN,j

∂q̇ )T = (
∂gN,j

∂q )T

and wT,j = (
∂γT,j

∂q̇ )T, which are stored in the columns of the matrices WB = (wB,1, . . . ,wB,nc) for B ∈ {N,T} and
W = (WN ,WT ). The virtual action of the system

δA(δq) =

∫
I

{
δT (q, q̇, t) + δqT (f +Wλ)

}
dt+

m∑
i=1

δq(ti)
TWiΛi + δq(0)TP0 − δq(T )TPT (1)

with Wi = W |ti describes the dynamics of the system S, where the inertia of the system is given by the variation of the
kinetic energy T (q, q̇, t). Furthermore, the virtual action includes the effects of the contact forces λ, various external forces
f and impulsive contact forces Λi, which act at a priori unknown but countably many time instants ti. At the boundaries
of the time interval I two impulsive forces, P0 and PT , are introduced, which are required to impose the initial conditions.
Computing the variation of the kinetic energy in (1), i.e. δT = ∂T

∂q δq + ∂T
∂q̇ δq̇, and applying integration by parts on every
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non-impulsive time interval (ti, ti+1) of the term containing δq̇, we obtain the strong variational form of the virtual action

δA(δq) =

m∑
i=0

∫ ti+1

ti

δqT

[
− d

dt

(
∂T

∂q̇

)T
+

(
∂T

∂q

)T
+ f +Wλ

]
dt− δq(0)T

[(
∂T

∂q̇

)T∣∣∣∣∣
0+

− P0

]

−
m∑
i=1

δq(ti)
T

(∂T
∂q̇

)T∣∣∣∣∣
t+i

−
(
∂T

∂q̇

)T∣∣∣∣∣
t−i

−WiΛi

+ δq(T )T

[(
∂T

∂q̇

)T∣∣∣∣∣
T−

− PT

]
,

(2)

where the subscripts t− and t+ denote the left and right limits at t, respectively. The principle of virtual action postulates
the virtual action to vanish for all virtual displacement fields δq(t). Applying this principle to the strong variational form of
the virtual action (2) together with the fundamental lemma of calculus of variations, all terms in the square brackets have to
vanish pointwise. This leads directly to the equations of motion for the non-impulsive time intervals, the impact equations for
the time instants ti and the boundary conditions. Choosing appropriate constitutive laws for the contact forces λ and contact
impulses Λi, the resulting nonsmooth system can be used to describe unilaterally constrained systems with frictional contacts,
cf. [3]. A numerical approximation of the solution of such nonsmooth systems is derived in the next section.

3 Stepping Scheme

The dynamics of S is approximated numerically by a Bubnov–Galerkin approach in time. Introducing a uniform grid of N
temporal nodes (t1, . . . , tN ), the time interval I is subdivided into temporal elements Ωk = [tk, tk+1) of constant length
∆t = tk+1 − tk. For every element we approximate the motion by a local shape function given by the linear Lagrangian
polynomial

q(t) = (1− sk(t))qk + sk(t)qk+1 with sk(t) =
t− tk

∆t
for t ∈ Ωk . (3)

The variation δqk of the discrete coordinates qk induce a virtual displacement field δq(t) admissible with respect to (3). For a
discretization in the sense of Bubnov–Galerkin, we substitute q(t) in (1) by (3) and choose admissible virtual displacements.
The global motion q(t) defined by (3) is absolutely continuous and piecewiese linear in t. Therefore, the velocity q̇(t) is
piecewise constant with velocity jumps only at the temporal nodes tk. It follows from the impact equations that the impulsive
contact forces can only be non-zero for those time instants for which velocity jumps occur. Hence, the impulsive forces appear
only at the temporal nodes. The integral over the time interval I is approximated numerically by applying the trapezoidal rule∫ tk+1

tk

h(t)dt =
∆t

2

(
h(tk) + h(tk+1)

)
(4)

in each temporal element Ωk. For the computation of the discrete virtual action, the abbreviation uk = (qk+1 − qk)/∆t and
the notations T,q = (∂T∂q )T and T,q̇ = (∂T∂q̇ )T are introduced. The discretization of the second term of the variation of the
kinetic energy in (1) is

N−1∑
k=1

∫ tk+1

tk

δq̇TT,q̇ (q, q̇, t)dt
(3)
=

N−1∑
k=1

∫ tk+1

tk

1

∆t

(
δqk+1 − δqk

)T
T,q̇
(
(1− sk)qk + skqk+1,uk, t

)
dt

(4)
=

N−1∑
k=1

1

2

(
δqk+1 − δqk

)T(
T,q̇ (qk,uk, tk) + T,q̇ (qk+1,uk, tk+1)

)
.

(5)

Using b = T,q +f +Wλ, the first term of the variation of the kinetic energy and the external force contributions of (1) are
discretized as

N−1∑
k=1

∫ tk+1

tk

δqTb(q, q̇, t)dt
(3)
=

N−1∑
k=1

∫ tk+1

tk

(
(1− sk)δqk + skδqk+1

)T
b
(
(1− sk)qk + skqk+1,uk, t

)
dt

(4)
=

N−1∑
k=1

∆t

2

(
δqTk b(qk,uk, tk) + δqTk+1b(qk+1,uk, tk+1)

)
.

(6)

In what follows, the time dependency of the kinetic energy and the external force is dropped in the notation, as the time instant
is always evaluated corresponding to the discrete coordinate, e.g. f(qk, •) = f(qk, •, tk). Using (5) and (6) in the virtual
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action (1), we obtain the discrete virtual action

δA = δqT1

[
−1

2

(
T,q̇ (q1,u1) + T,q̇ (q2,u1)

)
+

∆t

2

(
T,q (q1,u1) + f(q1,u1) +W1λ1

)
+W1Λ1 + P0

]
+

N−1∑
k=2

δqTk

[
1

2

(
T,q̇ (qk−1,uk−1) + T,q̇ (qk,uk−1)− T,q̇ (qk,uk)− T,q̇ (qk+1,uk)

)
+

∆t

2

(
T,q (qk,uk−1) + T,q (qk,uk) + f(qk,uk−1) + f(qk,uk)

)
+Wk(∆tλk + Λk)

]
+ δqTN

[
1

2

(
T,q̇ (qN−1,uN−1) + T,q̇ (qN ,uN−1)

)
+

∆t

2

(
T,q (qN ,uN−1) + f(qN ,uN−1) +WNλN

)
+WNΛN − PT

]
.

(7)

The principle of virtual action demands the virtual action (7) to vanish for all δqk and induces the terms in the square brackets
to be equal to zero. The vanishing of the first square bracket defines the first step of the numerical scheme, which is used to
compute q2 from the initial position q1 and the initial velocity of the system. The initial velocity defines the intial impulsive
force P0 through the boundary condition resulting from the principle of virtual action on (2), which is then used in the first
step of the scheme. The second bracket defines the stepping equation for every other temporal node.

To specify the behavior of the unilateral constraints, we define the discrete percussion Pk = ∆tλk + Λk, which combines
the effects of both the impulsive and the non-impulsive contact forces during a temporal element. We introduce the normal
percussion PN,k and the tangential percussion PT,k, such that Pk = (PT

N,k P
T
T,k)T. Moreover, we introduce the kinematic

quantities ξNi,k = wT
N,i|k(uk+1 + εNiuk) and ξTi,k = wT

T,i|k(uk+1 + εTiuk) using the Newtonian restitution coefficient
εNi and εTi for the i-th contact. This gives the framework to use the discrete constitutive contact law of Moreau [4] as done
by [3], which takes into account Coulomb friction and a Newton type impact law. Finally, our stepping scheme is given by the
stepping equation and the normal cone inclusions of the constitutive law, namely

0 =
1

2

(
T,q̇ (qk−1,uk−1) + T,q̇ (qk,uk−1)− T,q̇ (qk,uk)− T,q̇ (qk+1,uk)

)
+

∆t

2

(
T,q (qk,uk−1) + T,q (qk,uk) + f(qk,uk−1) + f(qk,uk)

)
+WN,kPN,k +WT,kPT,k

uk−1 = (qk − qk−1)/∆t , uk = (qk+1 − qk)/∆t

− ξNi,k ∈ NR+
0

(PNi,k) , ∀i ∈ J = {i | gi(qk) ≤ 0}
− ξTi,k ∈ NCT

(PTi,k) , ∀i ∈ J = {i | gi(qk) ≤ 0} ,

(8)

where CT is the force reservoir of the percussion due to friction, e.g. CT = {PT | ||PT || ≤ µPN} for isotropic Coulomb
friction. For given coordinates qk−1 and qk, the subsequent coordinate qk+1 can be calculated by the stepping scheme (8).
This gives iteratively the piecewise linear motion of the unilaterally constrained system S. The normal cone inclusions in (8)
can be reformulated as implicit proximal point equations, which can be solved at every time step by a fixed point iteration [3].

4 Numerical results

For mechanical systems with constant mass matrix and external forces not depending on the velocities, the proposed stepping
scheme coincides with the well established stepping scheme of Moreau, cf. [3]. Most of the benchmark examples used for
rigid multibody systems with multiple unilateral constraints and friction, such as the woodpecker toy [5], have constant mass
matrix and constant external forces. Consequently, the presented integrator coincides with Moreau’s scheme for the most
common benchmark examples. To show the differences, we consider the spring pendulum of Fig. 1 having a non-constant
mass matrix. The spring pendulum consists of a massm connected to a pivotO by a spring with stiffness k and an undeformed
length l0. As generalized coordinates, the length l(t) of the spring and the angle ϕ(t) are chosen, i.e. q(t) =

(
l(t) ϕ(t)

)T
. For

ϕ(t) = 0 the pendulum is in contact with a vertical wall. The contact is characterized by the normal restitution coefficient εN
and has no friction. The system is energy conserving during the contact free motion, as we assume that the spring pendulum
is only subjected to gravity. Choosing the impact parameter εN = 1, no energy dissipates during the impacts and the motion
of the spring pendulum preserves the energy E of the system. In Fig. 2 the relative energy error e(t) = E(t)−E(0)

E(0) of the
numerical solutions calculated by the proposed scheme (8) and Moreau’s scheme are plotted over time. The energy error
of Moreau’s scheme becomes negative and very large in magnitude for the long-time simulation. We can see around 40%
of energy dissipation after 250s of simulation time caused only by the numerical scheme. In contrast, the presented scheme
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Fig. 1: The spring pendulum. Fig. 2: Energy error e plotted over time t. Simulation parameters: l0 = 1, k = 100,
g = 9.81, m = 1, ∆t = 0.002, l(0) = 1.1, ϕ(0) = π/4, l̇(0) = ϕ̇(0) = 0.

shows a stable long-time energy behavior with an energy error appearing to be bounded and oscillating around the zero error
level with an amplitude of about 0.35%.

5 Conclusions

We presented a systematic approach to derive variational integrators for mechanical systems with frictional contacts. By com-
bining the discretization of the virtual action with finite elements in time with the discrete contact law of Moreau, our scheme
combines the qualities of the variational integrators and the contact law. The excellent long-time energy behavior shown for
the spring pendulum is typical for variational integrators. On the other hand, our scheme can be used for systems with many
frictional contacts, as granular media, and it can overcome accumulation points. Both properties are due to Moreau’s contact
law.
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