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Modeling planar pantographic sheets using a nonlinear Euler–Bernoulli
beam element based on B-spline functions
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An undeformed pantographic sheet consists of two orthogonal arrays of straight fibers interconnected by internal pins. In this
paper, we model the fibers of this lattice-like sheet as nonlinear Euler–Bernoulli beams and use B-spline functions for their
finite element discretization. Using the concept of one-dimensional generalized force laws, we show how different models for
the pins can be introduced in the model. Finally, the simulation of a tensile test is presented.
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A pantographic sheet is a 3D printed structure which consists of two layers, each consisting of parallel fibers. These layers
lie on top of each other and are orientated such that the fibers are orthogonal to each other. At every crossing point, the fibers
of the upper and lower layers are interconnected by a pin, which gives the pantographic sheet a lattice-like structure. The
rectangular pantographic sheet is clamped to a block at both ends, see Fig. 3. To describe the deformation of a pantographic
sheet, we model each beam as a planar, nonlinear Euler–Bernoulli beam which we discretize using the finite element approach
with B-spline shape functions. To model the pins and the clamping, we introduce one-dimensional generalized force laws with
suitable constitutive relations. Our approach is similar to the one used in [1]. For more details on the modeling of pantographic
sheets and some experimental validation of these models, we refer to [1, 2].

The Euler-Bernoulli assumption, demanding the cross sections of the beam to remain orthogonal with respect to its cen-
terline, allows to formulate the kinematics of the i-th beam using the deformation of the centerline only. We parametrize the
centerline of the i-th beam of length Li by a parameter ξ ∈ [0, 1] and describe the position of a point on the centerline in the
reference configuration by Xi(ξ) = Xi(ξ)ex + Yi(ξ)ey and in the deformed configuration by xi(ξ) = xi(ξ)ex + yi(ξ)ey ,
cf. Fig. 1. Denoting with prime the derivative with respect to ξ, we introduce the tangent vectors Gi = X′i and gi = x′i to the
centerline. Their inclinations are described by the angles Φi and ϕi, respectively. Denoting the lengths of the tangent vectors

reference configuration deformed configuration

Fig. 1: Kinematics of the Euler-Bernoulli beam. Index i is omitted.

measured in the Euclidean norm as Gi = ||Gi|| and gi = ||gi||, we introduce as deformation measures of the beam the axial
stretch λi and the material curvature κi as

λi(ξ) =
gi(ξ)
Gi(ξ)

and κi(ξ) =
ϕ′i(ξ)

Gi(ξ)
. (1)

We assume that the reference configuration is of the form Xi(ξ) = ξLiex, which leads to Gi = Li and Φi = 0. Using the
variations δλi and δκi of the deformation measures (1) and assuming linear elastic constitutive laws for the axial force Ni and
the bending moment Mi, the internal virtual work of the i-th beam is given by

δW int
i = −

∫ 1

0

{Ni(ξ)δλi(ξ) +Mi(ξ)δκi(ξ)}Gidξ, with Ni = EAi(λi − 1) and Mi = EIiκi , (2)

where EAi and EIi are the axial and the bending stiffnesses of the beam. For a Galerkin-type finite element discretization
of the beam, we approximate its centerline by B-spline polynomials. This approximation can be written in the form xi(ξ) =
Ni(ξ)qi, where Ni is the matrix of B-spline basis functions and qi is the vector consisting of the coordinates of the control
points, cf. [3]. Computing the stretch measures λi(ξ,qi) and κi(ξ,qi), using the approximation in (1) and assuming that their
variations used in (2) are induced by a virtual displacement δqi of the control points, the discretized internal virtual work is

δW int
i = −

∫ 1

0

{
Ni(ξ,qi)

∂λi
∂qi

+Mi(ξ,qi)
∂κi
∂qi

}
δqiGidξ = f int

i (qi)Tδqi , (3)
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where we have introduced the discrete internal force vector f int
i of the i-th beam. We model every fiber segment connecting

two pins of the pantographic sheet as such a discretized Euler–Bernoulli beam, see Fig. 2. Assuming that the pantographic
sheet is modeled by nb beams, the degrees of freedom of the pantographic sheet are the collection q = (qT

1 . . . qT
nb

)T of all
control point coordinates.

To model the pins and the clamping, we introduce one-dimensional generalized force elements. The kinematics of such
a force element is described by a scalar function g, called gap function. The force f of the force element exerted on the
pantographic sheet can be modeled by a constitutive force law relating f to g. According to [4], the virtual work contribution
of a one-dimensional force law is given by the product of the variation of the gap and the force, i.e.

δW fl = δg f = δqT

(
∂g

∂q

)T
f . (4)

We model the pin between the discretized Euler–Bernoulli beams i, j, k and l using several force elements, cf. Fig. 2.
First the end points of the beams k and j are joined by the two ideal constraint force laws −f c

1/2 ∈ R s.t. gc
1/2(q) = 0

with gc
1(q) = ex·(xk(1) − xj(0)) and gc

2(q) = ey·(xk(1) − xj(0)). The same is done for the beam pairs (i, l) and (i, j).
To account for the fact that the beams i and l are of the same fiber of the pantographic sheet, the ideal constraint force law
−f c

3 ∈ R s.t. gc
3(q) = 0 with gc

3(q) = ϕi(1) − ϕl(0) is introduced to achieve that the two beams have the same tangent
orientation at their connection point. The same is done for the beam pair (j, k). These constraints together result in an ideal
pivot between the fibers. The torsional stiffness of the pin is modeled by adding a linear torsional spring with stiffness c
described by the force law −f s

1(q) = c gs
1(q) with gs

1(q) = ϕi(1)−ϕj(0) + π/2. In an analogous manner, we can model the
clamping of the pantographic sheet to the environment by additional ideal constraint force laws.
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Fig. 2: Modeling of a pin (left) illustration of a real pin (right). Fig. 3: Simulation of a tensile test. Undeformed
(gray) and deformed (black) configuration.

Summing up all the virtual work contributions modeling the pantographic sheet, the total virtual work is

δW tot = δqT

 nb∑
b=1

f int
b (q) +

ns∑
i=1

(
∂gs

i

∂q

)T
f s
i (q) + f ext(q) +

nc∑
j=1

(
∂gc

j

∂q

)T
f c
j

 , (5)

where with f ext we have accounted for external forces acting on the pantographic sheet and ns and nc denote the number of
springs and ideal constraints, respectively.

By the principle of virtual work, the total virtual work (5) of the pantographic sheet has to vanish for all virtual displace-
ments δq, which implies that the expression in square brackets has to be equal to zero. This together with the constraint
equations gc

j(q) = 0 for j = 1, . . . , nc results in a system of nonlinear algebraic equations for the control point coordinates q
of the B-spline shape functions and for the constraint forces f c

j . This system of equations is solved using the Newton–Raphson
method.

Fig. 3 shows the simulation result of a tensile test. The simulated pantographic sheet has an undeformed width of w =
0.21[m]. The stiffnesses EAi = 2304[N], EIi = 1.555 · 10−4[Nm2] and c = 0.004[N] have been assumed. Fifth order B-
spline polynomials with one element per beam have been used for the simulation and the integral in (3) has been approximated
by a Gaussian quadrature with five points per element. For an external force F = 10.29[N] an elongation u = 0.048[m] has
been computed.

The modeling approach used in this paper is very versatile. Using the concept of ideal constraint force laws, we can
implement different boundary conditions and other models of the pin can be realized by combining different one-dimensional
force laws. For instance, we can account for a finite shear stiffness of a pin by replacing the ideal force laws introduced
between the pair of beams (i, j) with a linear spring with stiffness k characterized by the force law −f s

2(q) = k gs
2(q) with

gs
2(q) = ||xi(1) − xj(0)||. Obviously also nonlinear constitutive equations for the spring are allowed and can be treated in

the same way.
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