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Abstract: In this paper, two approaches are established and compared that simulate the static
deformation of a tendon-driven, elastic continuum mechanism (ECM). The mechanism at hand
is made out of silicon and deforms in a large workspace as a results of any externally applied
wrench. This yields high dexterity and high mechanical robustness for the system, but also
the commonly used kinematic model is not suitable any more. The discussed models in this
paper are essentially different. At first, the finite element method (FEM) is used to discretize
the mechanism along its centerline. A nonlinear material law is setup and identified for the
axial direction and it could be shown that the established model matches the real system very
closely. The second model is more abstract. Here, a polynomial relationship is setup between the
Cartesian pose of the mechanism and the associated wrench necessary to achieve this deflection.
A comparison between the two models show, that the FEM model is slower but more accurate
and therefore useful for offline computations whereas the polynomial model seems more suitable
for real-time control approaches, with an acceptable accuracy and an efficient computation.
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1. INTRODUCTION

The system at hand consists of an elastic continuum mech-
anism (ECM) made out of silicon and is a planar version
of the mechanism described in [8]. While one side of the
mechanism is fixed to the ground, on top of the other side a
robot head is mounted. The planar mechanism is actuated
by two tendons in an antagonistic fashion. The tendons
are connected to the head-plate at each side. By pulling
at both tendons, a combined loading is exerted onto the
ECM to move the head into the desired direction. The
required kinematical and statical quantities of the system
model are depicted in Fig. 1.
The common approach to reduce the model complexity is
to assume that the center line of the mechanism deforms
like a circular arc, see e.g. [1]. With that, the geometry of
the deformation is heavily simplified and the static equa-
tions can be solved analytically. Based on that assumption,
[5] establish experimentally a bending stiffness, whereas
[7] utilizes the manufacturing data for their steel contin-
uum. If such a kinematic mapping cannot be used due
to changing loading conditions onto the system, so called
geometrically exact models, e.g. [9], which are usually
computationally expensive are applied. Another approach
is to hide the geometry of the deformation and the material
properties within a mapping that needs to be identified.
[6] teaches a neural network to relate actuation forces to
static Cartesian positions in the reachable workspace of
the manipulator. The model proved to be computationally
efficient and it was able to accurately predict the position
of the manipulator.

In this paper, we introduce a model-based on a nonlinear
beam formulation which can be solved using the Finite
Element Method (FEM). An alternative approach is pro-
posed in [2] which aims at a computational efficient model.
The assumption is that the Cartesian pose at the end of
the ECM is enough to describe the deformation behavior
which reduces the model of the ECM to a nonlinear Carte-

sian spring. In [3], an experimental procedure is explained
with which such a nonlinear spring can be identified ex-
perimentally as a mapping from the Cartesian pose to the
Cartesian wrench using multivariate polynomials.
The present work aims to compare the two aforementioned
models for a tendon-driven ECM. In the first part, the
FEM model together with the experimental identification
of the stiffness parameters, as e.g. the bending stiffness, are
discussed. In the second part, the identification procedure
for the polynomials is summarized. For brevity, we will
focus here only on the planar case, see Fig. 1, although,
the polynomial mapping is easily extendable to the spatial
case [3]. In contrast, a spatial FEM model can be derived
by the discussed formalism of this work. However, the dis-
cretization and interpolation of the rotation parametriza-
tion for the spatial model is not trivial and needs special
treatment.

The main contribution of this work is twofold: To the
best of the authors knowledge, this is the first work
that establishes a nonlinear FEM model of a tendon-
driven ECM with nonlinear input coupling and nonlinear
material law in the compression direction. Second, the
polynomial model is compared with the FEM model using
experimental data regarding accuracy and computation
time.

2. FINITE ELEMENT MODEL

The deformation of the system is embedded in the Eu-
clidean three-space E3 with origin O and coordinate frame
eIi ∈ E3, i = {x, y, z} and takes place exclusively in the
eIx-e

I
z-plane. The ECM is modeled as a planar nonlinear

Timoshenko beam. According to the Timoshenko beam
assumptions, the deformation of the three-dimensional
continuum can be described only by the deformation of
a centerline and the rotations of plane rigid cross-sections
attached to every point of the centerline. The centerline
r = r(ν) ∈ E3 is a curve parameterized by ν = [0, L] ⊂ IR,
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Fig. 1. Schematic drawing of the system.

where ν is the arclength of the undeformed beam with
length L. The cross-sections of the beam are represented
by the cross-section-fixed frames eCi = eCi (ν) ∈ E3, i =
{x, y, z} continuously varying along the centerline. The
beam is fixed to the ground such that r(0) = 0 and
eCi (0) = eIi , i = {x, y, z}. On top of the beam at ν = L
a rigid and massless plate with a width of 2d is attached.
In P and R two massless tendons are connected to the
plate. Both tendons are redirected by a pulley and sub-
jected at their ends to the tensile forces λl ≥ 0 and λr
≥ 0, respectively. The head is modeled as a rigid body
with center of mass (CoM) S, mass mH and is rigidly
connected to the beam in Q such that head-fixed frame
eHi := eCi (L), i = {x, y, z}.
The Cartesian coordinate representation of a vector a ∈
E3 in an arbitrary orthonormal B-system rotated against
the I-system is denoted as Ba = (aBx aBy aBz )

T ∈ IR3

with a = aBx e
B
x + aBy e

B
y + aBz e

B
z ∈ E3. The orthogonal

transformation matrix AIB ∈ R3×3 relates the respective
coordinates in accordance with Ia = AIBBa and corre-
sponds with the coordinates of the B-frame basis vectors
in the I-system, i.e. AIB = (Ie

B
x Ie

B
y Ie

B
z ) ∈ IR3×3. The

inverse of the transformation matrix AIB is denoted as
ABI = A−1

IB = AT
IB .

2.1 Kinematics

The centerline r(ν) and the basis vectors of the cross-
section-fixed frames eCi (ν) are represented in the I-system
as

Ir(ν) =

(
x(ν)
0

z(ν)

)
, AIC(ν) =

(
cos θ(ν) 0 sin θ(ν)

0 1 0
− sin θ(ν) 0 cos θ(ν)

)
,

(1)
and determined by the real-valued generalized position
functions x = x(ν), z = z(ν) and θ = θ(ν). Hence, the
position vector rOQ and the basis vectors of the H-system
are given in the I-system by

IrOQ = Ir(L), AIH = AIC(L). (2)

With (2) and the dimensions from Fig. 1, the position of
the CoM of the head is

IrOS = IrOQ + h Ie
H
x + b Ie

H
z . (3)

The change of the cross-section orientation along ν is
described by the material curvature, the skew-symmetric
matrix

I k̂IC(ν) = A′
IC(ν)A

T
IC(ν) ∈ IR3×3 (4)

which appears in the expression

(Ie
C
x )

′ = (AICCe
C
x )

′ = A′
ICA

T
ICIe

C
x = I k̂ICIe

C
x (5)

and holds analogously for the Ie
C
y - and Ie

C
z -direction.

Note that (•)′ denotes the derivative with respect to the
argument. Inserting (1) into (4), straightforward compu-
tation leads to the material curvature vector

IkIC(ν) = (I k̂IC(ν))̌ = ( 0 θ′(ν) 0 )
T
. (6)

Virtual Displacements and Rotations Let x̄ = x̄(ν, ε),
z̄ = z̄(ν, ε) and θ̄ = θ̄(ν, ε) be variational families of the
generalized position functions, i.e. differentiable parame-
terizations with respect to a parameter ε ∈ IR such that
the actual positions (we are looking for) are embedded in
the family and are obtained for ε = ε0. Inserting these
functions in (1), the variational families r̄ = r̄(ν, ε) and
ĀIC = ĀIC(ν, ε) are induced. The virtual displacement
of the centerline δr and the virtual rotations of the cross-
sections δφ̂IC are then defined by

Iδr =
∂I r̂

∂ε

∣∣∣∣
ε=ε0

, Iδφ̂IC =
∂ĀIC

∂ε

∣∣∣∣
ε=ε0

AT
IC . (7)

Explicit computation using (1) and (2) gives

Iδr(ν) = ( δx(ν) 0 δz(ν) )
T
, IδrQ = ( δxL 0 δzL )

T
, (8)

where δxL = δx(L), δzL = δz(L). Analogously to the
material curvature vector (6), computation of the second
equality in (7) leads to the virtual rotation vector

IδφIC(ν) = (Iδφ̂IC(ν))̌ = ( 0 δθ(ν) 0 )
T
. (9)

To establish the virtual work of the external forces acting
onto the system, we will need the virtual displacement
of the CoM and the virtual displacements of the tendon
connection points which are for δθL = δθ(L)

IδrS = IδrQ + δθLIe
H
y × (h Ie

H
x + b Ie

H
z ), (10)

IδrP = IδrQ + δθLIe
H
y × d Ie

H
z , (11)

IδrR = IδrQ − δθLIe
H
y × d Ie

H
z . (12)

Strain Measures The strain measures are defined as the
centerline’s tangent in the cross-section-fixed C-system

Cγ(ν) =
(
γC
x (ν) 0 γC

z (ν)
)T

= AT
IC(ν)Ir

′(ν) (13)

together with the material curvature vector in the C-
system

CkIC(ν) = AT
IC(ν)IkIC(ν) = ( 0 θ′(ν) 0 )

T
. (14)

2.2 Static Equilibrium Equations of the System

To determine the equilibrium equations of the system, we
use the principle of virtual work which postulates that
the total virtual work δW tot of the system is zero for all
admissible virtual displacements. For static equilibrium,
the total virtual work is composed of internal and external
virtual work contributions δW int and δW ext, respectively.
For the system at hand this results in the requirement

δW tot = δW int + δW ext = 0 ∀δradm, δφIC,adm (15)

whereas the admissible virtual displacements and rotations
are given by the ones of (7), (8) and (9) which additionally
respect the clamping condition at ν = 0, i.e. Iδradm(0) = 0
and IδφIC,adm(0) = 0. In the following, we introduce all
virtual work contributions of the system.
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Fig. 1. Schematic drawing of the system.

where ν is the arclength of the undeformed beam with
length L. The cross-sections of the beam are represented
by the cross-section-fixed frames eCi = eCi (ν) ∈ E3, i =
{x, y, z} continuously varying along the centerline. The
beam is fixed to the ground such that r(0) = 0 and
eCi (0) = eIi , i = {x, y, z}. On top of the beam at ν = L
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T ∈ IR3

with a = aBx e
B
x + aBy e

B
y + aBz e

B
z ∈ E3. The orthogonal

transformation matrix AIB ∈ R3×3 relates the respective
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B
x Ie

B
y Ie

B
z ) ∈ IR3×3. The
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Ir(ν) =
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x(ν)
0

z(ν)

)
, AIC(ν) =

(
cos θ(ν) 0 sin θ(ν)

0 1 0
− sin θ(ν) 0 cos θ(ν)

)
,

(1)
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are given in the I-system by
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H
x + b Ie

H
z . (3)
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I k̂IC(ν) = A′
IC(ν)A

T
IC(ν) ∈ IR3×3 (4)

which appears in the expression

(Ie
C
x )

′ = (AICCe
C
x )

′ = A′
ICA

T
ICIe

C
x = I k̂ICIe

C
x (5)

and holds analogously for the Ie
C
y - and Ie

C
z -direction.

Note that (•)′ denotes the derivative with respect to the
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T
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∂I r̂

∂ε
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ε=ε0

, Iδφ̂IC =
∂ĀIC

∂ε

∣∣∣∣
ε=ε0

AT
IC . (7)

Explicit computation using (1) and (2) gives

Iδr(ν) = ( δx(ν) 0 δz(ν) )
T
, IδrQ = ( δxL 0 δzL )

T
, (8)

where δxL = δx(L), δzL = δz(L). Analogously to the
material curvature vector (6), computation of the second
equality in (7) leads to the virtual rotation vector

IδφIC(ν) = (Iδφ̂IC(ν))̌ = ( 0 δθ(ν) 0 )
T
. (9)

To establish the virtual work of the external forces acting
onto the system, we will need the virtual displacement
of the CoM and the virtual displacements of the tendon
connection points which are for δθL = δθ(L)

IδrS = IδrQ + δθLIe
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H
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Strain Measures The strain measures are defined as the
centerline’s tangent in the cross-section-fixed C-system
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)T

= AT
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′(ν) (13)

together with the material curvature vector in the C-
system

CkIC(ν) = AT
IC(ν)IkIC(ν) = ( 0 θ′(ν) 0 )

T
. (14)

2.2 Static Equilibrium Equations of the System

To determine the equilibrium equations of the system, we
use the principle of virtual work which postulates that
the total virtual work δW tot of the system is zero for all
admissible virtual displacements. For static equilibrium,
the total virtual work is composed of internal and external
virtual work contributions δW int and δW ext, respectively.
For the system at hand this results in the requirement

δW tot = δW int + δW ext = 0 ∀δradm, δφIC,adm (15)

whereas the admissible virtual displacements and rotations
are given by the ones of (7), (8) and (9) which additionally
respect the clamping condition at ν = 0, i.e. Iδradm(0) = 0
and IδφIC,adm(0) = 0. In the following, we introduce all
virtual work contributions of the system.
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Virtual work of internal forces The only internal forces
of the system come from the nonlinear Timoshenko beam
whose internal virtual work contribution is according to
[4] given by

δW int = −
∫ L

0

{
In

T (Iδr
′ − IδφIC × Ir

′)

+ Im
T
Iδφ

′
IC

}
dν.

(16)

Therein the resultant contact forces n = n(ν) ∈ E3

and resultant contact couples m = m(ν) ∈ E3 can be
identified. Since for the planar system the contact force in
eIy-direction does not contribute to the virtual work, only

the contact forces in eIx- and eIz-direction are of interest.
These can be expressed as

In(ν) =

(
nI
x(ν)
∗

nI
z(ν)

)
= AICCn(ν) = AIC

(
N(ν)
0

Q(ν)

)
, (17)

where N = N(ν) ∈ IR and Q = Q(ν) ∈ IR are the normal
and shear forces acting at each cross-section. In the contact
couple Im(ν) = (∗ M(ν) ∗)T only the eIy-direction with
the bending moment M = M(ν) ∈ IR is relevant. Using
the planar kinematics (8) and (9) together with the just
introduced contact forces and couples, the internal virtual
work expression (16) takes the form

δW int = −
∫ L

0

{
δx′nI

x + δz′nI
z − δθ(z′nI

x − x′nI
z)

+ δθ′M
}
dν.

(18)

The constitutive laws describing the material behavior
of the beam are formulated between force and strain
components of the cross-section-fixed C-system, i.e.

N =
EA

3

(
γC
x − 1

(γC
x )2

)
, Q = GAγC

z , M = EIθ′, (19)

with the axial stiffness EA ∈ IR, the shear stiffness GA ∈
IR and the bending stiffness EI ∈ IR. Note the nonlinear
Neo-Hookean material law for the normal force which
takes into account the experimentally observed stiffening
behavior of the material in compression. Linearization
around the undeformed configuration, i.e. γC

x = 1, leads
directly to Hooke’s law N = EA(γC

x − 1).

Virtual work of external forces The virtual work contri-
butions of the external forces of the system is additively
composed of the virtual work due to gravity and the virtual
work of the tendon actuation,

δW ext = δW ext,g + δW ext,t. (20)

For a cross-section density ρA, the virtual work due to
gravity with gravity constant g

δW ext,g =

∫ L

0

−(ρAg 0 0)Iδrdν − (mHg 0 0)IδrS , (21)

can be further simplified using (10) to

δW ext,g =

∫ L

0

−(ρAg 0 0)Iδrdν −mHgδxL

−mHgδθL(Ie
I
x)

T (Ie
H
y × (hIe

H
x + bIe

H
z )).

(22)

The virtual work of the tendon actuation

δW ext,t = λlIe
T
l IδrP + λR Ie

T
r IδrR (23)

is rewritten using (11) and (12) to

δW ext,t = (δx 0 δz)
(
Iel Ier

)
λ

+ δθ(Ie
H
y )T

(
dIe

H
z × Iel −dIe

H
z × Ier

)
λ

(24)

with the tendon force vector λ = (λl λr)
T and the unit

tendon direction vectors for left Ie
H
l ∈ IR3 and right

Ie
H
r ∈ IR3 tendon as depicted in Fig. 1, i.e.

Ie
H
l =

(
eIl,x 0 eIl,z

)T
= Irp,l − IrP /‖Irp,l − IrP ‖,

Ie
H
r =

(
eIr,x 0 eIr,z

)T
= Irp,r − IrR/‖Irp,r − IrR‖.

(25)
Note that the position vectors rp,l and rp,r, which denote
the points where the tendons run onto the corresponding
pulley, depend on rQ and θL.
Within the identification process in Sect. 2.4, instead of
the tendon forces and the gravity forces, an external force

IF
H
id ∈ IR3 is exerted at point Q whose virtual work is

δW ext,id = IF
H
idδrQ. (26)

The principle of virtual work (15) with the contributions
(18), (22) and (24) corresponds to a weak variational
expression of a nonlinear ordinary differential equation
which can be obtained by integration by parts of (18).
Since this ODE cannot be solved analytically, we intro-
duce in the subsequent section the finite element method
discretizing (15) in the sense of Bubnov-Galerkin. In doing
so, we reduce an infinite dimensional system to a finite
dimensional one.

2.3 Finite Element Method

Aiming for linear Lagrangian shape functions, the pa-
rameter space of ν, i.e. [0, L], is divided by the nodes
n1 = 0 < . . . < ne < · · · < nkel+1 = L into kel element
sets Ωe = [ne, ne+1]. Using the relation

νe(ν) =
2

ne+1 − ne
(ν − ne)− 1, (27)

it is convenient to introduce in every element set Ωe the
element coordinate νe ∈ [−1, 1]. Then the generalized
position function x is approximated by the linear inter-
polation of the nodal coordinates xe = x(ne). Accordingly
the position function takes the form

x(ν) =

kel∑
e=1

χΩe
(ν)N(νe(ν))T

(
xe

xe+1

)
, (28)

where χΩe
is the characteristic function being one for

ν ∈ Ωe and zero elsewhere and

N(νe) = 0.5 ( 1− νe 1 + νe )
T

(29)
corresponds to the linear shape function which linearly
interpolates two subsequent nodal coordinates. The gen-
eralized position functions z and θ are approximated anal-
ogously such that the continuous formulation can be rep-
resented by the finite set of coordinates

q =
(
x1 z1 θ1 · · · xkel+1 zkel+1 θkel+1

)T
. (30)

The element connectivity matrix Ce
x ∈ IR3(kel+1)×2 being

defined by

qe
x =

(
xe xe+1

)T
= (Ce

x)
Tq (31)

extracts from the generalized coordinates q the relevant
coordinates for the linear interpolation within one element.
Besides the analogous definition for z and θ, we introduce

also the connectivity matrix CL ∈ IR3(kel+1)×3 given by

qkel+1 =
(
xkel+1 zkel+1 θkel+1

)T
= (CL)Tq. (32)

Applying the chain rule together with (27), the derivative
of (28) with respect to ν is obtained as

x′(ν) =

kel∑
e=1

χΩe
(ν)N ′(νe(ν))T

2

∆Le
qe
x (33)
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with N ′ = (−0.5 0.5 )
T
and ∆Le = ne+1−ne. Moreover,

the approximation (28) induces together with (31) also

δx(ν) =

kel∑
e=1

χΩe
(ν)N(νe(ν))T (Ce

x)
T δq,

δx′(ν) =

kel∑
e=1

χΩe
(ν)N ′(νe(ν))T

2

∆Le
(Ce

x)
T δq.

(34)

Providing the same computations for z and θ, the virtual
work of the internal forces (18) is approximated by insert-
ing (33) and (34). Together with a change of coordinates
in the respective integral expression, we then obtain

δW int = δqT
kel∑
e=1

[
Ce

xf
int,e
x +Ce

zf
int,e
z +Ce

θf
int,e
θ

]

= δqTf int,

(35)

where

f int,e
x = −

∫ 1

−1

N ′nI
xdν

e, f int,e
z = −

∫ 1

−1

N ′nI
zdν

e,

f int,e
θ = −

∫ 1

−1

N ′M +N
(
x′nI

z − z′nI
x

) ∆Le

2
dνe,

f int =

kel∑
e=1

[
Ce

xf
int,e
x +Ce

zf
int,e
z +Ce

θf
int,e
θ

]
.

(36)

Note that the approximation of the position functions are
also used within the evaluation of nI

x, n
I
z and M which is

why f int = f int(q) is a nonlinear vector valued function.
All integral expressions are evaluated numerically using
Gauss quadrature. The discretization of the external vir-
tual work due to gravity (22) leads to

δW ext,g = δqTf ext,g, (37)

where

f ext,g = −
kel∑
e=1

Ce
xρAg

∫ 1

−1

N
∆Le

2
dνe

−mHgCL

(
1
0

(Ie
I
x)

T
(
Ie

H
y × (h eHx + b Ie

H
z )

)
)
.

(38)

Using (32), the discretization of the virtual work of the
tendon forces (24) is

δW ext,t = (δqkel+1)TPλ = δqTCLPλ (39)

with the tendon coupling matrix

P =




eIl,x eIr,x
eIl,z eIr,z

d(Ie
H
y )T Ie

H
z × Iel −d(Ie

H
y )T Ie

H
z × Ier


. (40)

Using (35), (37) and (39) in the principle of virtual work
(15), the infinite dimensional variational expression is
reduced to the finite dimensional expression

δqT
(
f int + f ext,g +CLPλ

)
= 0 ∀δqadm (41)

which induces a nonlinear vector valued equation which
can be solved numerically.

2.4 Identification of the stiffness parameters

In this section, the experimental identification process is
discussed in which the stiffness parameters EA, GA and

Fig. 2. Planar testbed used for the identification process.

EI for the constitutive laws (19) are identified. Two dif-
ferent experiments are carried out to excite independently
the axial stiffness EA as well as the shear and bending
stiffness GA and EI, respectively.
The elastic parameters are incorporated in the FEMmodel
being described by a nonlinear function. Thus, a nonlinear
least square optimization is applied for the identification
process using the ”lsqnonlin” routine from MATLAB.
Within this nonlinear optimization, the error function
∆(ξ) ∈ IRm, is minimized to find the desired parameters
ξ ∈ IRp,

min
ξ

||∆(ξ)||22, (42)

where m, p ∈ IR are the number of measurements and
the number of identified parameters, respectively. The
identification process is performed for kel = 20 number
of elements.

Compression test for identification of EA In the com-
pression test, a cylindrical specimen made of silicon is com-
pressed up to 20% of the undeformed length L. The test
is conducted for two different lengths L = [28mm, 40mm].
The measured quantities are the axial force fx [N] and the
displacement ∆L [m] which are illustrated in Fig. 3 as a

stress-strain diagram with the axial stress σx = fx
A and

the axial strain γC
x = ∆L

L . For ξ = EA, the error function
used for the identification is

∆(EA) = ( x̃1 − x1(EA) . . . x̃m − xm(EA) )
T
, (43)

where x̃i is the measured and xi(EA) is the computed
axial position for an external force

IF
H
id = (−fx 0 0 )

T
(44)

with the virtual work contribution (26). In the left diagram
of Fig. 3, a clear nonlinearity in the measured stress-
strain curve (red curve) can be observed, which can be
reproduced much better by the Neo-Hookean material law
(19) than by the linear Hookean law. Tab. 1 shows that
the linear Hookean law overestimates the stiffness of the
specimens.

Table 1. Left: Identified EA for Hookean and Neo-Hookean
material laws. Right: Identified GA and EI.

compression shear
L [mm] EAnH [N] EAH [N] ft,max GA [N] EI [Nm2]

28 7448.94 8972.10 33 N 2405 2.993
40 7591.09 9071.84 66 N 2422 3.003

Shear test for identification of GA and EI For the shear
test, a force in eIz-direction is applied at the tip of the
ECM as depicted in Fig. 2 which leads to a bending
deformation about the eIy-axis and a shear deformation

along the eIz-axis. For all displacements increments, the
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with N ′ = (−0.5 0.5 )
T
and ∆Le = ne+1−ne. Moreover,

the approximation (28) induces together with (31) also

δx(ν) =

kel∑
e=1

χΩe
(ν)N(νe(ν))T (Ce

x)
T δq,

δx′(ν) =

kel∑
e=1

χΩe
(ν)N ′(νe(ν))T

2

∆Le
(Ce

x)
T δq.

(34)

Providing the same computations for z and θ, the virtual
work of the internal forces (18) is approximated by insert-
ing (33) and (34). Together with a change of coordinates
in the respective integral expression, we then obtain

δW int = δqT
kel∑
e=1

[
Ce

xf
int,e
x +Ce

zf
int,e
z +Ce

θf
int,e
θ

]

= δqTf int,

(35)

where

f int,e
x = −

∫ 1

−1

N ′nI
xdν

e, f int,e
z = −

∫ 1

−1

N ′nI
zdν

e,

f int,e
θ = −

∫ 1

−1

N ′M +N
(
x′nI

z − z′nI
x

) ∆Le

2
dνe,

f int =
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Ce

xf
int,e
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int,e
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θf
int,e
θ

]
.
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Note that the approximation of the position functions are
also used within the evaluation of nI

x, n
I
z and M which is

why f int = f int(q) is a nonlinear vector valued function.
All integral expressions are evaluated numerically using
Gauss quadrature. The discretization of the external vir-
tual work due to gravity (22) leads to

δW ext,g = δqTf ext,g, (37)

where

f ext,g = −
kel∑
e=1

Ce
xρAg

∫ 1

−1

N
∆Le

2
dνe

−mHgCL

(
1
0

(Ie
I
x)

T
(
Ie

H
y × (h eHx + b Ie

H
z )

)
)
.

(38)

Using (32), the discretization of the virtual work of the
tendon forces (24) is

δW ext,t = (δqkel+1)TPλ = δqTCLPλ (39)

with the tendon coupling matrix

P =


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eIl,x eIr,x
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d(Ie
H
y )T Ie

H
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H
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H
z × Ier


. (40)

Using (35), (37) and (39) in the principle of virtual work
(15), the infinite dimensional variational expression is
reduced to the finite dimensional expression

δqT
(
f int + f ext,g +CLPλ

)
= 0 ∀δqadm (41)

which induces a nonlinear vector valued equation which
can be solved numerically.

2.4 Identification of the stiffness parameters

In this section, the experimental identification process is
discussed in which the stiffness parameters EA, GA and

Fig. 2. Planar testbed used for the identification process.

EI for the constitutive laws (19) are identified. Two dif-
ferent experiments are carried out to excite independently
the axial stiffness EA as well as the shear and bending
stiffness GA and EI, respectively.
The elastic parameters are incorporated in the FEMmodel
being described by a nonlinear function. Thus, a nonlinear
least square optimization is applied for the identification
process using the ”lsqnonlin” routine from MATLAB.
Within this nonlinear optimization, the error function
∆(ξ) ∈ IRm, is minimized to find the desired parameters
ξ ∈ IRp,

min
ξ

||∆(ξ)||22, (42)

where m, p ∈ IR are the number of measurements and
the number of identified parameters, respectively. The
identification process is performed for kel = 20 number
of elements.

Compression test for identification of EA In the com-
pression test, a cylindrical specimen made of silicon is com-
pressed up to 20% of the undeformed length L. The test
is conducted for two different lengths L = [28mm, 40mm].
The measured quantities are the axial force fx [N] and the
displacement ∆L [m] which are illustrated in Fig. 3 as a

stress-strain diagram with the axial stress σx = fx
A and

the axial strain γC
x = ∆L

L . For ξ = EA, the error function
used for the identification is

∆(EA) = ( x̃1 − x1(EA) . . . x̃m − xm(EA) )
T
, (43)

where x̃i is the measured and xi(EA) is the computed
axial position for an external force

IF
H
id = (−fx 0 0 )

T
(44)

with the virtual work contribution (26). In the left diagram
of Fig. 3, a clear nonlinearity in the measured stress-
strain curve (red curve) can be observed, which can be
reproduced much better by the Neo-Hookean material law
(19) than by the linear Hookean law. Tab. 1 shows that
the linear Hookean law overestimates the stiffness of the
specimens.

Table 1. Left: Identified EA for Hookean and Neo-Hookean
material laws. Right: Identified GA and EI.

compression shear
L [mm] EAnH [N] EAH [N] ft,max GA [N] EI [Nm2]

28 7448.94 8972.10 33 N 2405 2.993
40 7591.09 9071.84 66 N 2422 3.003

Shear test for identification of GA and EI For the shear
test, a force in eIz-direction is applied at the tip of the
ECM as depicted in Fig. 2 which leads to a bending
deformation about the eIy-axis and a shear deformation

along the eIz-axis. For all displacements increments, the
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Fig. 3. Left: Identification of EA. Right: Error of the
position ex, ez and orientation eθ in the shear test
between measured and modeled data.
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Fig. 4. Workspace P with close-up view (right) of the
planar ECM for 1000 randomly applied tendon forces
(λl, λr) in the range of [0N-160N].

position and orientation are measured by a camera as
well as the applied tendon force. The identified value
EA = 7500[N] from the compression test is used within
the shear test as an initial guess for the bending stiffness
EI = 7500/A·I = 871080·I [Nm2] with second moment of

area I. Here, ξ = (GA EI )
T ∈ IR2 and the error function

for the identification is

∆(ξ) =(
z̃1 − z1(ξ) θ̃1 − θ1(ξ) . . . z̃m − zm(ξ) θ̃m − θm(ξ)

)T
,

where z̃i, θ̃i are the measured and zi, θi are the computed
z-position and tip angle for the external force

IF
H
id = ( 0 0 ft )

T
. (45)

The results of the identification procedure are depicted in
Fig. 3 and in Tab. 1.

3. POLYNOMIAL MODEL

As mentioned in the Introduction, an abstract model-
ing approach based on polynomials is suggested by [2]
for a model-based control approach for an ECM. The
model considers that the mapping from the Cartesian pose
(xL, zL, θL) ∈ IR3 in the workspace P to an associated

Cartesian wrench applied at the head Ih
H ∈ IR3 which is

necessary to deflect the ECM into this configuration, can
be represented by a polynomial function. In [3], a method
for the identification of such a mapping is proposed and
the results show that polynomials of order 3 provide the
best match for simulation and experimental data. For each
wrench component (h1 h2 h3)

T = (fx fz τy)
T , a multivari-

ate polynomial mapping of the form

hj = xTβj , j = 1, 2, 3, (46)

is identified, where βj ∈ IR20 represents the polynomial

coefficients for the j-th wrench component and x ∈ IR20 is
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Fig. 5. Histogram of erel computed with 300 testing points.
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Fig. 6. Left: Error of the computed head position by the
FEM model and the measured head position for a
positive bending motion. Right: Error of the predicted
wrench from the polynomial map and measured head
wrench for all wrench components.

x =(1 xL zL θL (xL)
2 xLzL · · · (θL)2 · · · (xL)

3

(xL)
2zL · · · xLzLθL · · · (θL)

3)T .
(47)

To find the coefficients via a polynomial regression accord-
ing to [10], the training set C with 1000 poses is calculated
using the calibrated FEM model from the former section.
The input of the FEM simulation is a random wrench from
the set

{h ∈ IR3|hmin < h < hmax}, (48)

with hmax = [20, 80, 11] and hmin = [−330, −80, −11].
The maximum and minimum values are chosen to ensure
that the training set C covers well the reachable workspace
P of the ECM, see Fig. 4.
To evaluate the accuracy of the polynomial model, 300
data pairs from C are randomly chosen to serve as the
test set. The relative error distribution of each hj of a 3-
degree polynomial regression model is depicted in Fig. 5,

in which ĥj and hj denote the estimated and the observed
value of the polynomial model. The vertical axis represents
the amount of prediction points referred to a prediction
error level. Most of the predicted wrench components have
a relative error less than 0.02. The points with relative
error beyond the interval [−0.02, 0.02] are not displayed
as located in a small range around zero (from −2[N] to
2[N] for the force and from −0.2[Nm] to 0.2[Nm] for the
torque).

4. COMPARISON

This section will compare the two established models re-
garding there prediction accuracy and computation time.
For the evaluation, we use experimental data from the
planar testbed where a combined loading is applied, i.e. the
mechanism is moved with two antagonistically arranged
tendons, cf. Fig. 2. As the established models are static
ones, the data is measured at poses in static equilibrium.

4.1 Accuracy

The accuracy of the FEM model is mainly dependent on
the identified material parameters provided that the as-
sumptions about the geometry of the deformation and the
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Fig. 7. Histograms of the computational time used by the
FEM model (left) and the polynomial model (right)
computed with 100 randomly selected poses from C.

applied material laws match well. In Fig. 6, a comparison
is shown between static poses of simulated and measured
data. The input to the FEM model are the measured
tendon forces λ for which (xL, zL, θL) is computed and
compared with the measured head pose by the camera
system. The left plot of Fig. 6 states, that the errors stay
below 5% with respect to the measured workspace (z:
2.6%, x: 4.7%, θ: 1.8%) yielding an accurate model.
To evaluate the accuracy of the polynomial model, the
same measured data is used, however, the input is the mea-
sured head-pose to compute the associated head wrench.
The measured head wrench is computed based on the
measured tendon forces and the tendon coupling matrix
P introduced in (40). The results are depicted in the right
of Fig. 6. Compared with the accuracy of the FEM model,
the polynomial model is less accurate (x: 9.4% z: 11.6% θ:
9.7%).

4.2 Computational Efficiency

As stated in the motivation, a primary goal of the iden-
tified mapping is to be computationally efficient for the
use in real time control. To investigate the computational
efficiency, 100 pose-wrench pairs are randomly selected
from P and are used as input of the polynomial model
and the FEM model and the computational time of each
model is measured. Fig. 7 depicts the histogram of the
computation time, which states that the polynomial model
is at least 200 times faster than the FEM model.

4.3 Discussion

Both models prove to represent the deformation character-
istic of the tendon-driven ECM. The FEM model is more
accurate but needs more time for one simulation run. By
reducing the number of elements, this computation time
can be decreased and it is an open research question in
this field to which extend the number of elements can be
reduced without losing accuracy. Also, more sophisticated
shape functions can be applied which incorporate the char-
acteristic of a deformed center line. By that, it could be
possible to reduce the number of elements still achieving
high accuracy.
The polynomial model is computationally fast but lacks
accuracy. To increase the accuracy, the polynomial model
can be experimentally trained to match the real system as
proposed in [3]. However, maximum model errors of 11%
are still in a very good range. From a modeling perspective,
it should be investigated the validity of the assumption
that the deformation of the ECM can be described by
(xL, zL, θL) only.

5. CONCLUSION

In this work, two models are investigated to simulate the
static deformation of a tendon-driven elastic continuum

mechanism. At first, a nonlinear FEM model is setup
and the parameters are experimentally identified. The
incorporated geometry of the deformation matches well
the real system. Furthermore, it could be observed during
the experiments that a Neo-Hookean material law for the
axial compression needs to be implemented to generate an
accurate model. To the authors knowledge, this is the first
time that a FEM model with nonlinear material law and
nonlinear tendon-coupling is applied for simulation and
identification of a tendon-driven ECM. In the future, the
number of elements and alternative shape functions shall
be identified to increase the computational efficiency.
The second model is based on multivariate polynomials
which maps from the Cartesian head position of the ECM
to the associated wrench necessary for this deformation.
The model proved to match the experimental platform
well, however with less accuracy compared to the FEM
model. In the future, the identification process in which
the polynomial coefficients are found needs to be updated
to incorporate that physical properties are displayed by
the polynomial model, e.g. the symmetry of the associated
stiffness matrix. This property could be incorporated in
the identification process which would benefit from a
reduction of the to be identified polynomial coefficients.
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