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Abstract. In this paper a novel approach for the inclusion of hard contacts, i.e. perfect unilateral constraints, in a finite
element framework is presented. The finite element formulation is derived for a two-dimensional representation of a cable.
Higher-order element shape functions using Bézier functions allow for the introduction of contact points arbitrary in number
and position along the element and enable the contact forces to follow the ongoing motion. The contact laws, which express the
impenetrability in normal direction and Coulomb friction law in tangential direction, can adequately be formulated as normal
cone inclusions. The developed cable element has no bending stiffness, is linear elastic and allows for large deformation.
Moreau’s time-stepping algorithm is used for the numerical time-integration. The novel approach is demonstrated on the
example of a frictional impact of a rigid disk on an elastic cable.
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INTRODUCTION

An impact of a rigid disk on a deformable cable is a non-smooth dynamical problem where the formulation of the
contact-impact problem have to conform with the formulation of the deformation of the body, i.e. the finite element
formulation. In [1] generalized contact-impact laws are introduced and by using proximal point methods a time
integration algorithm is presented, based on Moreau’s time-stepping algorithm [2]. In order to use this time-stepping
algorithm, the equations of motion have to arise in the following form

M(q) · q̈−h(t,q, q̇)− ∑
i∈H

wi ·λi = 0, γi = wT
i · q̇, γi ∈NCi(−λi) , (1)

where M is the symmetric mass matrix, q(t) is the vector with the generalized coordinates, h is the vector with all
smooth elastic, gyroscopic and dissipating generalized forces and λi are the constraint forces of the bilateral constraints
and contact forces of the normal and tangential contacts. The vectors wi(q) are the corresponding generalized force
directions which also appear in the relative constraint velocities γi. The force laws of the contact forces connecting
γi with λi are formulated as normal cone inclusions, characterized by a given set Ci. Depending on the chosen set
Ci one gets different normal cones representing different physical force laws. To read more about normal cone
inclusions one may refer to [1]. H (q, t) := {IB∪IN ∪IT} is the set of indices of the closed contacts. Where
IB := {B j, j = 1,2, . . . ,nB} indicates the nB bilateral constraints, IN :=

{
N j |gN j(q, t) = 0, j = 1, . . . ,nCP

}
and

IT :=
{

T j |gN j(q, t) = 0, j = 1, . . . ,nCP
}

indicate the normal and tangential contacts, respectively. The aim of this
paper is the contact formulation between a disk and a cable. The contact kinematics and the proper force laws should
be formulated in the sense of Equation (1). Firstly, the problem is described in detail. Subsequently, the kinematics is
introduced in which Bézier curves as element shape function are used. Lastly, the derivation of the contact formulation
between disk and cable is treated.

Problem Description

The dynamical system depicted in Figure (1a) consists of a disk and a cable. The disk is considered as a rigid body
and is characterized by its radius R [m ] and its mass mD [kg ]. The upper end of the cable is fixed at height h [m ] above
the ground, the lower end is pinned such that the cable is prestressed by a constant tension T [N ]. The cable has an
undeformed length L [m ], mass density ρ0 [kg/m ] and stiffness k [N ] and has no bending stiffness. The interaction
between the disk and the cable is modeled as a hard, unilateral contact in the normal direction and as a Coulomb type
friction with friction coefficient µ [− ] in the tangential direction. The entire system is subjected to gravitation given
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FIGURE 1. a) A sketch of the modeled system which consists of a disk and a cable. b) Free body diagram of a contact situation
between a point on the cable P(ξ ) and the rigid disk.

by the acceleration b [m/s2 ]. The system is modeled by its 2-dimensional representation in the xy-plane. The position
space is spanned by the orthonormalized, inertial basis (0,eI

x,eI
y). The acceleration b has only non-zero components in

the axial direction, namely b =−beI
y with b = 9.81 [m/s2 ].

MECHANICAL MODELING

Kinematics

The modeled system can be seen as a material set S = S1∪S2, where S1 and S2 are the collections of all material
points P of the disk and the rope, respectively [3]. The motion of the two bodies is expressed by a finite number of
generalized coordinates q(t) ∈Q ⊆ RN , the material points P ∈S , parameterized by (r,ϑ) ∈ Ω1 = [0,R]× [0,2π]
and ξ ∈Ω2 = [0,L], and the time t ∈ T . Thus, the motion of the disk x1 as a 2-dimensional body and the cable x2 as
a 1-dimensional body is seen as a map to the position space V

x1 : Q×Ω1×T → V x2 : Q×Ω2×T → V
(q,(r,ϑ), t) 7→ x1(q,(r,ϑ), t) (q,ξ , t) 7→ x2(q,ξ , t) .

(2)

Since the disk is considered to be rigid, the motion of a point (r,ϑ) on the disk is defined by the position of the
midpoint xD(t) = (x(t) y(t))T and the rotation angle ϕ(t) depicted in Figure(1b) and can therefore be written as

x1 = x1(q1,(r,ϑ)) =
(

x(t)
y(t)

)
+ r

(
cos(ϕ(t)+ϑ)
sin(ϕ(t)+ϑ)

)
, q1(t) = (x y ϕ)T , (3)

where q1 = L1 · q are the local generalized coordinates extracted out of the global generalized coordinates q using
a Boolean matrix L1, called connectivity matrix [4]. The implementation of the connectivity matrix is part of the
meshing process and therefore L can be considered as a known matrix.

The cable as a continuous structure, parameterized by Ω2 with infinite many degrees of freedom has to be discretized
by ne elements. Inside the elements, the kinematics is described by spatial element shape functions

xe
2 : Ω̂e

2×Q→ V

(ξ e,qe
2) 7→ xe

2(ξ
e,qe

2) ,
(4)

where ξ e is the element coordinate and qe
2 = Le

2 ·q are the local generalized coordinates. For an appropriate model of
the cable the spatial element function xe

2 have to be at least a polynomial of degree three. Whereas a linear polynomial
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guarantees C0-continuity, a quadratic polynomial guarantees in addition C1-continuity (differentiability). But it is still
possible that the direction of the curve changes in a connecting node, i.e. inversion occurs. Therefore information about
the incoming and outgoing direction in a node is needed. Using cubic Bézier curves the directions are formulated by
two aiming points p2 and p3, cf. Figure (2b). The function

xe
2 = x1 +(ξ e)2(3−2ξ e)(x4−x1)+3ξ e(1−ξ e)2r1eϕ(ϕ1)−3(ξ e)2(1−ξ e)q4eϕ(ϕ4) ξ e ∈ [0,1] (5)

can be described by eight local coordinates

qe
2(t) = (x1 y1 r1 ϕ1 x4 y4 q4 ϕ4) . (6)

and is depicted In Figure (2b) for the interval ξ e ∈ [0,1]. At ξ e = 0, the point p1 with the position x1 = (x1 y1) is
located with a weighted gradient r1eϕ(ϕ1), where eϕ(ϕ) = (cos(ϕ) sin(ϕ))T. At ξ e = 1, point p4 is located with
position x4 = (x4 y4) and a weighted gradient q4eϕ(ϕ4). In Figure (2a) one can see a node Ni, which is the connecting
point between two elements. The angle ϕi and the position of the node xi and yi belong to the node and are called
nodal degrees of freedom. On the contrary, the weight factors ri and qi are element degrees of freedom. Hence, the
discretized rope with ne elements and nn = ne +1 nodes holds ndo f = 3nn +2ne degrees of freedom.

FIGURE 2. a) The position xi,yi and the angle ϕi belong to a node Ni. The weight factors ri and qi are degrees of freedom of the
element. b) The element on the domain Ω̂e ∈ [0,1] can be described by eight local coordinates qe

2.

Contact formulation

During the contact between disk and cable line distributed contact forces in normal and tangential direction of the
contact line occur, denoted by lN and lT . The contact forces act as external forces and contribute

∫
S dfc · δx to the

virtual work of the system. After introducing generalized coordinates q and following the principle of d’Alembert-
Lagrange, the strong form of the equilibrium equations are achieved where the contact forces take the form

∫

S
dfc · ∂x

∂q
=

∫

∂Ω1

dϑR(−lN − lT ) · ∂x1

∂q
+

∫

Ω2

dξ (lN + lT ) · ∂x2

∂q
. (7)

The contact forces interact on the contact line, i.e. between the boundary of the disk ∂Ω1 and the domain of the cable
Ω2. In the kinematically discretized model the distributed contact forces will typically degenerate into concentrated
forces at a limited number of points, the positions of which are a priori unknown. Therefore a convenient approach is
to introduce a dense grid of nCP possible contact points at arbitrarily given material points of the rope and approximate
in the sense

∫

∂Ω1

dϑR(−lN − lT ) · ∂x1

∂q
+

∫

Ω2

dξ (lN + lT ) · ∂x2

∂q
≈

nCP

∑
j=1

[
(fN(ξ )+ fT (ξ )) ·

(
∂x2

∂q
− ∂x1

∂q

)]

j
. (8)

Thus, the interaction is modeled pointwise as a hard, unilateral contact in the normal direction and as a Coulomb type
friction with friction coefficient µ in the tangential direction. Therefore, the constitutive law will be introduced for a
general material point P on the rope with coordinate ξ which is in contact with the disk.

It is convenient to introduce a normal and tangential direction η(ξ ) and τ(ξ ), respectively. The normal direction η
for a contact point on the rope is the normalized connection line between the the position of the disk’s midpoint xD
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and the position of the contact point x2 itself. The tangential direction τ is orthogonal to the normal direction and is
introduced as depicted in Figure (1b) and is achieved by a rotation of the normal

η =
x2−xD

‖x2−xD‖ , τ = Rη , R = (eI
x⊗ eI

y− eI
y⊗ eI

x) . (9)

With the introduction of normal and tangential directions η and τ , the contact forces can be written as fN = λN(ξ )η
and fT = λT (ξ )τ .

After the discretization of the rope by finite elements a relation between the nCP contact points on the rope, which
can be chosen arbitrarily, have to be given. During the meshing process, where a grid of contact points j is generated,
the connection to the element e( j) and the element coordinate ξ e( j) is stored. Using this information Equation (8) is
reformulated in the sense of Equation (1)

nCP

∑
j=1

[
(fN(ξ )+ fT (ξ )) ·

(
∂x2

∂q
− ∂x1

∂q

)]

j
=

nCP

∑
j=1

(λN jη j +λT jτ j) ·
(

∂xe( j)
2

∂qe
2
·Le( j)

2 − ∂x1

∂q1
·L1

)

=
nCP

∑
j=1

(wN jλN j +wT jλT j) .

(10)

CONCLUSIONS

The impact of the disk and the ongoing motion of both bodies after the impact can be simulated successfully using
Moreau’s time-stepping algorithm and generates reasonable results, cf. Figure (3), though benchmark examples or
analytical solutions are yet missing.

The great advantage of the presented procedure is the decoupling of the number of contact points from the number of
elements. To avoid, that the simulated disk flies through the cable, a dense grid of contact points is needed. Conversely,
due to the high order of the shape function just a few elements are sufficient to develop the basic eigenmodes of the
pinned cable. Thus, it would be numerically highly inefficient if the contact points are bound to the element nodes and
the number of contact points have to coincide with the number of elements. Additionally high frequency eigenmodes
which decay very fast are damped out numerically without an introduction of material damping. For future projects
one can imagine adaptive contact grid refinement at the positions of contact.

FIGURE 3. Simulation of the frictional impact with initial velocity v0 and gravity b.
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