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Abstract. The main result of the paper is a novel approach for the treatment of hard con-
tacts, i.e. unilateral constraints, within a nonlinear finite element framework. The mechanical
description and the corresponding nonlinear finite element formulation allow for large defor-
mations in time and nonlinear elastic material response. The dynamical response of a nonlinear
elastic string which comes into contact with a rigid disk is analyzed.
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1 Introduction

A general theory which treats the dynamics of non-smooth systems in finite degree of free-
dom mechanics was already developed in Ref. [1]. It emerged that the principle of virtual work,
originally stated by Lagrange, may be used even in the extended framework of non-smooth dy-
namics as a fundamental principle. Recently, Ref. [2] proposed an axiomatic approach where
the principle of virtual work is used to derive the equations of motion for generalized continua.
Also in Ref. [3], where a thermomechanical problem is considered, the virtual work is the key
equation to derive the time evolution of a more general system. In structural mechanics where
elements like strings, beams, shells and many more are treated, approximate solutions for the
three dimensional problem, especially for the linear theory, are still very present. As shown
in Ref. [4], arbitrary structural elements may be deduced by the principle of virtual work and
constraint methods. Hence, the authors propose a unified formulation of deformable and rigid
bodies at the example of a flexible multibody system including hard contacts, based on the
principle of virtual work. In a very natural way the finite element method using absolute nodal
description (cf. Ref. [5]) is elaborated. The formulation allows for arbitrary time independent
material models and nonlinear deformation.

In Sec. 3 the equations of motion of the discretized system are obtained with the principle
of virtual work. General assumptions on force distributions are done and the discretization
of the string is shown in general and performed by a nonlinear shape function. In Sec. 4, the
constitutive equations for the introduced force distributions are specified. For the contact forces,
set-valued force laws are introduced which require an impact law to fully describe the dynamics
of the system. In Sec. 5 numerical results of the problem are shown.

2 Problem Description

As an example, the dynamical system depicted in Fig. 1 is analyzed. It consists of a ho-
mogenous disk and a string in the vertical plane. The disk is considered as a rigid body and is
characterized by its radius R and its density ρD. The string which is suspended at A and B,
has an undeformed length L, mass density ρ0 in its reference configuration, stiffness k and is
perfectly flexible, i.e. has no bending stiffness. The contact between the disk and the string is
modeled as a hard unilateral constraint with Coulomb type friction. In the case of impact, a
Newton-type impact law is used. The disk and the string are subjected to gravity.

Figure 1: The dynamical system with a rigid disk and a nonlinear elastic string.
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3 Virtual Work of the System

The mechanical system is considered as a set of material points S each of it placed in a
three dimensional Euclidean space by a corresponding time dependent position vector ξ(·, t).
Presently (·) stands for a specific material point. The vector field ξ(·, t) defines the motion of
the system S. Differentiability with respect to time almost everywhere allows for the definition
of a velocity and an acceleration vector field as ξ̇(·, t) = ∂ξ(·, t)/∂t and ξ̈(·, t) = ∂2ξ(·, t)/∂t2,
respectively. The mass dm of a material point, placed at ξ, is subjected to internal and external
forces dF. The principle of virtual work states that if the virtual work

δW =

∫

S
δξT(ξ̈dm− dF) = 0 ∀δξ,∀t (1)

vanishes for all variations δξ, then the system S is in dynamical equilibrium.
The system consists of two subsystems: The string S1 and the disk S2. Note that the problem

is two-dimensional, thus we neglect the third vector component in the further derivation. Sub-
sequently, since the integral is additive, derivations of the kinematics and force distributions are
done separately for each body and indexed by (•)1 for the string and (•)2 for the disk.

3.1 Kinematics

The string is modeled as a one-dimensional deformable body which means that each material
point of it may be addressed by a parameter s = [0, L]. With foresight to the numerical evalu-
ation, the kinematics of the string is constrained in such a way that the corresponding position
vector

ξ1(s, t) = r1(s,q1(t)) (2)

can be expressed by introducing finitely many generalized coordinates q1(t). Together with
the formulation of the systems virtual work this leads naturally to the so called finite element
method. We speak of local finite elements if the string is divided in the sense of Ref. [3, p. 324]:

"The system is divided into a certain number of cells each of which is de-
scribed by a small number of generalized coordinates, in such a way that
interconnections constraints are satisfied."

A cell, commonly called element and indexed by (•)e, is a region of the string Ωe = [ne, ne+1] ⊂
[0, L] = ∪eΩ

e. The kinematics of this subset is described by the shape function re
1(s

e,qe
1(t)).

The parameter se (cf. Eq. (3)2) is called element coordinate and takes values in the interval [0, 1].
The connectivity matrix Ce

1 of an element extracts the small number of generalized coordinates
qe

1 = Ce
1q out of the generalized coordinates q(t) which describe the total system. With a

correct choice of shape functions re
1 and the use of the characteristic function χΩe(s), which is

1 inside and vanishes outside the region Ωe, the motion of the string

r1(s,q1) = r1(s,q) =
nel∑

e=1

χΩere
1(s

e,qe
1), se =

s− ne

ne+1 − ne
, qe

1 = Ce
1q , (3)

is discretized by nel number of elements. What does a correct choice of shape functions mean?
The local shape functions have to be chosen in such a way that the motion r1 is at least con-
tinuous in s. This condition is asked for in standard, polynomial based, finite element anal-
ysis. Since the occurring kinks between the elements may corrupt the contact interaction we
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strengthen this condition and ask for a twice differentiable C2-function. A shape function sat-
isfying this condition is e.g. a cubic Bézier spline of the form

re
1(s

e,qe
1) =

(
x1

y1

)
+ (se)2(3− 2se)

(
x4 − x1

y4 − y1

)
+

+ 3se(1− se)2r1

(
cos(φ1)
sin(φ1)

)
− 3(se)2(1− se)q4

(
cos(φ4)
sin(φ4)

)
, se ∈ [0, 1] , (4)

which is depicted in Fig. 2. The element function is neither linear in its generalized coordinates
qe

1(t) = (x1 y1 r1 φ1 x4 y4 q4 φ4)T nor restricted to nodal degrees of freedom as in standard
finite element formulations.

Figure 2: a) The position xi, yi and the angle φi belong to a node ni. The weight factors ri and qi are degrees
of freedom of the element. b) The element on the domain Ωe ⊂ [0, L] can be described by eight generalized
coordinates qe

1.

The disk is modeled as a two-dimensional rigid body. The position of each material point
(r, ϑ) ∈ S2 = [0, R] × [0, 2π], as depicted in Fig. 4, is uniquely described by the position
of the center of gravity rOM = (x(t) y(t))T and the orientation φ(t) of the body and can be
formulated as

ξ2((r, ϑ), t) = r2((r, ϑ),q2(t)) =

(
x
y

)
+ r

(
sin(φ + ϑ)

− cos(φ + ϑ)

)
, q2 = C2q. (5)

Analogous to an element of the string, the generalized coordinates q2(t) describing the disk are
extracted by its connectivity matrix C2.

3.2 Force Distributions

Besides the parametrization of the system, the modeling of the occurring forces is equally
important and has to be done carefully. In our consideration the string is modeled as perfectly
flexible. Thus the stress t(s) in the string, at least once differentiable in s, will be tangent to the
current configuration of the string (cf. Ref. [6, p. 16])

t× ∂r1

∂s
= 0 ⇔ t = T

∂r1/∂s

∥∂r1/∂s∥ , (6)

with a scalar valued function T which contains the force law for a specific material. Using this
assumption, we can draw the free body diagram as in Fig. 3 which gives us the following force
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distributions on the string

dF1 ≡ ∂t
∂s

ds + (b1 + l)ds + dz1 for s ∈ (0, L)
dF1 ≡ (t + FA)dη for s = 0
dF1 ≡ (−t + FB)dη for s = L .

(7)

The body forces b1 and the contact force distribution l are defined per unit line segment ds.
The contact force distribution l models the contact interaction between the string and the disk.
A perfect bilateral constraint force distribution dz1 guarantees that the string follows the kine-
matics, dictated by its discretization. The concept of atomic measures dη (cf. Ref. [1, p. 63])
allows us to include concentrated forces at the boundaries.

Figure 3: Free body diagram of the string.

The disk is subjected to the body force b2 defined per unit area segment r dr dϑ and the
reaction force −l of the contact force distribution. To fulfill the rigidity conditions a perfect
bilateral constraint force distribution dz2 is introduced on the interior of the disk and hence

dF2 ≡ dz2 + b2 r dr dϑ for (r, ϑ) ∈ (0, R)× (0, 2π)
dF2 ≡ −lR dϑ for (r, ϑ) ∈ {R} × (0, 2π) .

(8)

3.3 Virtual Work for Admissible Virtual Displacements

The principle of virtual work, Eq. (1), holds for all virtual displacements δξ. Hence the
virtual displacements can be chosen as admissible or as inadmissible with respect to the defined
kinematics in Eq. (2) and (5). Virtual displacements admissible to the kinematics are of the
form

δξi =
∂ri

∂q
δq ∀δq, for i = 1, 2 . (9)

With respect to the principle of d’Alembert-Lagrange (cf. Ref. [1, p. 48]), the virtual work of
the perfect bilateral constraints vanishes for all admissible virtual displacements. Using Eq. (1)
together with Eq. (7), (8) and the principle of d’Alembert-Lagrange, the virtual work of S for
admissible virtual displacements, Eq. (9), is obtained as

δW = δqT

[{∫

S1

(
∂r1

∂q

)T

r̈1 dm +

∫

S2

(
∂r2

∂q

)T

r̈2 dm

}
+

∫ L

0

(
∂2r1

∂s∂q

)T

tds

−
{∫ L

0

(
∂r1

∂q

)T

b1ds +

(
∂r1

∂q
(s = 0)

)T

FA +

(
∂r1

∂q
(s = L)

)T

FB

+

∫ 2π

0

∫ R

0

(
∂r2

∂q

)T

b2 r dr dϑ

}
−

{∫ L

0

(
∂r1

∂q

)T

l ds−
∫ 2π

0

(
∂r2

∂q

)T

lR dϑ

}]
, (10)
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in which integration by parts has been applied. The expressions in the curly brackets are the gen-
eralized forces called inertia forces, internal forces, external forces and contact forces. Hence
the principle of virtual work can be written in short as

δW = δqT
[
f inertia + f int − f ext − f contact

]
= 0 ∀δq . (11)

Since this equality holds for all virtual displacements δq, it relates directly to the strong form
of the dynamical equilibrium.

4 Constitutive Equations

To evaluate the system, the generalized forces have to be specified. Therefore constitutive
equations for these forces have to be formulated. For several force laws the mass distributions
of the two bodies have to be known. The distribution on the boundary vanishes for the particular
body. For the string one defines an arbitrary stress free state of the string as its reference state
r1,ref (s,q1,ref ). In this state the mass per unit line segment is ρ0. For the homogenous disk the
density ρD is defined per unit area segment. Hence the mass distributions of the two bodies are

dm ≡ ρ0 ∥∂r1,ref/∂s∥ ds for s ∈ (0, L)
dm ≡ 0 for s = {0, L}
dm ≡ ρD r dr dϑ for (r, ϑ) ∈ (0, R)× (0, 2π) .

(12)

4.1 Inertia Forces

As stated in Ref. [7, p. 540] or Ref. [8] the following equivalence

∫

S

(
∂r

∂q

)T

r̈dm =

∫

S
dm

(
∂r

∂q

)T ∂r

∂q
q̈ +

∫

S
dm

(
∂r

∂q

)T ∂2r

∂q⊗ ∂q
: q̇⊗ q̇

= Mq̈ + Γ : q̇⊗ q̇

(13)

holds, where M is the symmetric and positive definite mass matrix and Γ are the Christoffel
symbols of the second kind. The colon denotes the double contraction between higher order
tensors and ⊗ is the tensor product. Evaluated for the two bodies this leads to

M1 =
∑

e

(Ce
1)

T

{∫ 1

0

ρ0

(
∂re

1

∂qe
1

)T (
∂re

1

∂qe
1

) ∥∥∥∥
∂re

1,ref

∂se

∥∥∥∥ dse

}
Ce

1

M2 = (C2)
T

{∫ 2π

0

∫ R

0

ρD

(
∂r2

∂q2

)T (
∂r2

∂q2

)
r dr dϑ

}
C2

= (C2)
T



ρD




R2π 0 0
0 R2π 0

0 0 R4

2
π






C2

Γ1 : q̇⊗ q̇ =
∑

e

(Ce
1)

T

{∫ 1

0

ρ0

(
∂re

1

∂qe
1

)T ∂2re
1

∂qe
1 ⊗ ∂qe

1

: q̇e
1 ⊗ q̇e

1

∥∥∥∥
∂re

1,ref

∂se

∥∥∥∥ dse

}

Γ2 : q̇⊗ q̇ = 0 ,

(14)

where M = M1 + M2, Γ = Γ1 + Γ2 and
∑

e stands for the summation defined in Eq. (3).
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4.2 Internal Forces

Since the string is a deformable body, the reaction force against deformation, i.e. the stress,
is not a constraint force as in a rigid body but contributes to the virtual work of the system. To
evaluate the stress a constitutive equation is needed which combines kinematical quantities, e.g.
the state of deformation, with force quantities. The measure of deformation compares an actual
spatial configuration r1 with the reference configuration r1,ref , introduced above. An intuitive
choice of the measure of deformation is the stretch νe, which is the quotient of the incremental
lengthes of the actual curve and the curve in the reference configuration

νe =
dL

dLref

=
∥dre

1∥∥∥dre
1,ref

∥∥ =
∥∂re

1/∂se∥∥∥∂re
1,ref/∂se

∥∥ . (15)

The internal force vector from Eq. (10) and (11) together with Eq. (6) is

f int =
∑

e

(Ce
1)

T

∫ 1

0

(
∂2re

1

∂qe
1∂se

)T

tedse, te = T e(νe)
∂re

1/∂se

∥∂re
1/∂se∥ . (16)

As an example of a nonlinear material law, a neo-Hookean material is chosen which depends
merely on the stretch at the specific material point, i.e.

T e(νe) =
k

3

(
νe − 1

(νe)2

)
. (17)

4.3 External Forces

The external forces of the system are the body forces b1 = ρ0∥∂r1,ref/∂s∥g and b2 = ρDg
due to gravity g = (0 − g)T and the bearing reactions Fi = λBi ei, for i = {A,B}. Due to
the chosen numerical scheme, the reaction forces are modeled as perfect bilateral constraints
with a set-valued force law as depicted in Fig. 5a. The force law is formulated as a normal cone
inclusion (cf. Ref. [1, 9] ) of the form

Fi = λBi ei, gBi ∈ NR(−λBi), for i = A,B (18)

where gBi is the gap function between the actual position of the string’s endpoints and its desired
suspension points. The vector ei is the normalized direction vector between these points. Due
to Eq. (10) and (11) the external forces can be written as

f ext =
∑

e

(Ce
1)

T

{∫ 1

0

ρ0

(
∂re

1

∂qe
1

)T

g

∥∥∥∥
∂re

1,ref

∂se

∥∥∥∥ dse

}
+

(
C1

1

)T

{(
∂r1

1(s
e = 0)

∂q1
1

)T

eAλBA

}

+
(
Cnel

1

)T

{(
∂rnel

1 (se = 1)

∂qnel
1

)T

eBλBB

}
+ (C2)

T
{(

0 − ρDR2πg 0
)T

}
.

(19)

4.4 Contact Forces

During the motion of the system, the string constraints the disk by surrounding its contour.
The force distribution l as the contact interaction between the two bodies seems to be an ap-
propriate choice for a continuous formulation. But in the kinematically discretized model the
contact force distribution will typically degenerate into discrete forces at a limited number of
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points, the positions of which are a priori unknown. A convenient approach is to introduce a
dense grid of ncp possible contact points at arbitrarily given material points of the string and
to approximate the force distribution l by introducing discrete contact forces in normal and
tangential direction in the sense that

f contact =

∫ L

0

(
∂r1

∂q

)T

lds−
∫ 2π

0

(
∂r2

∂q

)T

lRdϑ

≈
ncp∑

i=1

[(
∂r2

∂q
− ∂r1

∂q

)T

(FN + FT )

]

i

=

ncp∑

i=1

[wNλN + wT λT ]i . (20)

In the following the contact model is developed for an arbitrary point P on the string with
material coordinate si placed at rOP = r1(si,q1). The corresponding contact point on the disk
at (R, ϑi) is placed at rOQ = r2((R, ϑi),q2).

Figure 4: Parametrization of the disk’s material points and contact kinematics.

With respect to Fig. (4) the discrete contact forces can be written as FN = λN eN and
FT = λT eT as normal and tangential contact forces, respectively. The normal direction eN for
a contact point is the normed connection line between the contact point rOP and the position
of the disk’s midpoint rOM = r2((0, 0),q2). The tangential direction eT is orthogonal to the
normal direction and is introduced as depicted in Fig. (4)

eN =
rOM − rOP

∥rOM − rOP∥
, eT = (eI

x ⊗ eI
y − eI

y ⊗ eI
x)eN . (21)

It can be shown easily that for an arbitrary contact point the generalized force directions can be
written as

wN = (C2)
T

(
eN

0

)
− (Ce

1)
T

(
∂re

1

∂qe
1

)T

eN , wT = (C2)
T

(
eT

R

)
− (Ce

1)
T

(
∂re

1

∂qe
1

)T

eT .

(22)

The contact forces contribute to the equations of motion as stated in Eq. (20). For the normal
and tangential force law, the contact kinematics in normal and tangential direction are needed.
The gap function gN and its corresponding constraint velocity γN are given by

gN = eT
N (rOM − rOP )−R (23)

γN = eT
N (ṙOM − ṙOP ) = eT

N

(
∂rOM

∂q
− ∂rOP

∂q

)
q̇ = wT

N q̇ . (24)
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For gN > 0, the contact is open, for a vanishing contact distance, the contact is closed and if
gN < 0, then the contact penetrates. The constraint velocity in tangential direction is given as

γT = eT
T (ṙOQ − ṙOP ) = eT

T (ṙOM + Rφ̇eT − ṙOP )

= eT
T

(
Rφ̇eT +

(
∂rOM

∂q
− ∂rOP

∂q

)
q̇

)
= wT

T q̇ .
(25)

The contact laws are formulated as set-valued force laws which guarantee the impenetrability
condition of a contact. The most concise formulation can be attended using the concept of
normal cone inclusions. The force law in normal direction is the law for a unilateral constraint

gN > 0 ⇒ −λN = 0

gN = 0 ⇒ γN ∈ NR−0
(−λN) .

(26)

In tangential direction we introduce a force law for plane Coulomb friction which depends on
the normal contact force λN , i.e.

gN > 0 ⇒ −λT = 0

gN = 0 ⇒ γT ∈ N[−µλN ,µλN ](−λT ).
(27)

The two force laws are sketched in Fig. 5b and 5c.

Figure 5: Set-valued force laws. a) Perfect bilateral constraint on displacement level. b) and c) Unilateral frictional
constraint on velocity level.

4.5 Impact Laws

So far, the equations of motion in the form of Eq. (11) with their corresponding force laws
were formulated. This formulation describes the dynamics of the spatially discretized system
where closed contacts remain closed, open contact remain open and stick-slip behavior occurs.
Briefly this is called the post impact dynamics of the system. Because of the introduction of set-
valued force laws which may e.g. fulfill the impenetrability condition exactly, discontinuities
in velocities may occur in addition. For these discontinuities Eq. (11) is not valid anymore.
Hence an impact equation and a corresponding impact law is needed for the specific instant of
time where the solution jumps. Such impact equations and impact laws are explained concisely
in Ref. [9, 10] for a general finite degree of freedom system with contact forces formulated as
normal cone inclusions. We chose a Newton type of impact law which connects the pre and
post impact velocities by a restitution coefficient ε. Since we deal with elastic structures and
due to the argumentation in Ref. [11] the restitution coefficient ε is chosen to be zero for all
contact laws.
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Parameter Value Parameter Value
Gravity g = 9.81 kgms−2 Length string (undeformed) L = 1m
Distance suspension points AB = 0.8m Density string (undeformed) ρ0 = 0.3142 kgm−1

Friction coefficient µ = 0.2 Stiffness string k = 853.75N
Radius disk ex.1/ex.2 R = 0.3/0.1m Number of elements nel = 2
Density disk ex.1/ex.2 ρD = 100/0.1 kgm−2 Number of contact pts. ex.1/ex.2 ncp = 20/60

Table 1: Simulation parameters for example 1 and 2.

5 Examples

To show the possibilities of our formulation two different examples were simulated. The
chosen parameters are listed in Tab. 1. The transient dynamic behavior of the system was
evaluated with Moreau’s timestepping algorithm as described in Ref. [12], which is a time-
discretization on velocity impulse level.

Figure 6: Due to large deformations of the string multiple contact points are closed.

In the first problem (see Fig. 6), a heavy disk falls into the hanging string whereat large
deformations of the string occur. During the motion multiple contacts close and the string
surrounds the disk. In Fig. 7 one can see how a light disk rolls on the string. The decoupling of
the number of contact points from the number of elements allows it, to introduce a dense grid of
60 contact points such that rolling of the disk can be performed. Both problems were simulated
with merely two finite elements. Neither convergence nor stability problems occurred.

Figure 7: Rolling of the disk is possible due to a dense grid of contact points and frictional contact laws in each
contact point.
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6 Conclusions

In this paper we showed a novel approach for the treatment of hard contacts within a nonlin-
ear finite element framework. The fundamental equation for the derivation of the finite element
formulation was the virtual work which was stated for the complete system from the very first.
For doing that, both the rigid and the deformable body were formulated as continuous bodies. It
is obvious that the rigid body sticks together by a constraint force distribution. But we want to
mention, that even a deformable body is subjected to a constraint force distribution as soon as
we describe its kinematics by finitely many degrees of freedom. Therefore the latter constraint
force distribution has to be considered right from the beginning as it was done in Eq. (7). Gen-
erally, discrete forces are not included into the concept of classical continuum mechanics. With
the introduction of an atomic measure, discrete forces could be applied to the deformable body
in the continuous formulation. Even though the boundary of the string is zero-dimensional the
boundary forces and so the boundary condition appear explicitly in the virtual work of the sys-
tem. The contact force distribution as the interaction between the two bodies was approximated
by finitely many contact points each of which holds a set-valued force law.

Eventually the nonlinear finite element formulation was obtained as a minor product of the
virtual work and the discretization of the deformable body by finitely many generalized coor-
dinates. This natural formulation restricts an element shape function neither to be linear in its
generalized coordinates nor to be described only by nodal degrees of freedom. With Bézier
splines a non-standard choice of shape function was shown.

References

[1] Ch. Glocker. Set-Valued Force Laws: Dynamics of Non-Smooth Systems, volume 1 of
Lecture Notes in Applied Mechanics. Springer-Verlag, Berlin, 2001.

[2] G. Del Piero. On the method of virtual power in continuum mechanics. Journal of Me-
chanics of Materials and Structures, 4, 281–292, 2009.

[3] M. Biot. Non-linear thermoelasticity, irreversible thermodynamics and elastic instability.
Indiana University Mathematics Journal, 23, 309–335, 1974.

[4] S. S. Antman. Ordinary differential equations of non-linear elasticity I: Foundations of
the theories of non-linearly elastic rods and shells. Archive for Rational Mechanics and
Analysis, 61, 307–351, 1976.

[5] A. A. Shabana. Dynamics of Multibody Systems. EngineeringPro collection. Cambridge
University Press, 2005.

[6] S. S. Antman. Nonlinear Problems of Elasticity. Applied mathematical sciences. Springer-
Verlag, New York, 2005.

[7] J. G. Papastavridis. Analytical Mechanics: A Comprehensive Treatise on the Dynamics of
Constrained Systems : For Engineers, Physicists, and Mathematicians. Oxford University
Press, 2002.

[8] S. R. Eugster. Dynamics of an Elevator: 2-Dimensional Modeling and Simulation. Mas-
ter’s thesis, ETH Zurich, 2009.

11

ISBN 978-2-8052-0116-5



Simon R. Eugster, Christoph Glocker

[9] Ch. Glocker. Simulation von harten Kontakten mit Reibung: Eine iterative Projektions-
methode. In VDI-Berichte No. 1968: Schwingungen in Antrieben 2006 Tagung, Fulda,
volume 1968. VDI Verlag, Düsseldorf, 2006.

[10] Ch. Glocker. An introduction to impacts. In Nonsmooth Mechanics of Solids. CISM
Courses and Lectures, volume 485, 45–101. Springer-Verlag, Wien, New York, 2006.

[11] Ch. Glocker. Concepts for modeling impacts without friction. Acta Mechanica, 168, 1–19,
2004.

[12] R. I. Leine, H. Nijmeijer. Dynamics and Bifurcations of Non-Smooth Mechanical Systems,
volume 18 of Lecture Notes in Applied and Computational Mechanics. Springer-Verlag,
Berlin, 2004.

12

ISBN 978-2-8052-0116-5


