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The point of view that a beam can be considered as a three-dimensional continuum with a constrained position field (cf. [1])
together with the virtual work principle and the concept of perfect constraint stresses, leads to a systematic way to reduce the
equilibrium equations of the continuous body to an ordinary differential equation describing the constrained displacement field
of the beam. Using virtual displacements, being non-admissible with respect to the constrained beam kinematics, together
with the solution of the boundary value problem, allows us to analytically determine the constraint stresses and consequently
the total stresses of a beam up to a certain indeterminacy.
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1 Constrained Displacement Fields in Linear Elasticity

Let the body B̄ be a closed subset of the Euclidean three-space E3 which is parameterized by cartesian coordinates (x, y, z)
induced by the basis (ex, ey, ez). The displacement field and the virtual displacement field of the body are the vector valued
functions u : B̄ → E3 and δu : B̄ → E3. The linear strain is the tensor valued function ε(u) = 1

2 ((∇u)T +∇u), where ∇
denotes the gradient in E3. The equilibrium conditions of a continuous body undergoing an infinitesimal displacement field
are determined by the principle of virtual work stating that

∀ δu , δW (δu) = δW int(δu)− δW ext(δu) =

∫
B̄

σ : ε(δu) dV −
∫
B̄

δu · df = 0 , (1)

where σ denotes the total stress field, dV = dx dy dz and df is a measure which allows for Dirac-contribution as well. For an
unconstrained continuous body, the total stress field consists of an impressed stress field σ = σI only. It is possible to restrict
the kinematics of the body to a constrained displacement field ua, being an element of a submanifold C of the manifold of all
piecewise continuous displacement fields. The restriction of the displacements of a continuous body to the submanifold C is
guaranteed by a constraint stress field σC . Hence, the total stress field of a continuous body with a constrained displacement
field is σ = σI +σC . We call an element of the tangent space TuC of the submanifold C at u admissible virtual displacement
field. The constraint stress field σC is called perfect, if the virtual work contribution

δW int
C (δu) =

∫
B̄

σC : ε(δu) dV = 0 ∀ δu ∈ TuC . (2)

Let E and G denote Young’s and shear modulus, respectively, and i, j = {1, 2, 3}. Then, the material law of the impressed
stresses is for the normal stresses σIii = Eεii and for the shear stresses σIij = 2Gεij , where i 6= j.

2 The Plane Linear Euler-Bernoulli Beam

Consider a clamped beam of length l, as depicted in Fig. 1, with constant cross section area A, Young’s modulus E and shear
modulus G. The line of centroids is parallel to the ex-direction and passes through the origin O. At x = l, at the centroid of
the cross section, a concentrated force Pez is applied. Let q(x) = (u(x), w(x))T be the generalized displacement functions.
Denoting derivative with respect to x by a superposed prime (·)′, we assume the beam, as a continuous body, to follow the
constrained displacement field u = ua(q,q′) defined pointwise for any (x, y, z) ∈ B̄ as

u(x, y, z) = ua(q,q′)(x, y, z) = (u(x)− w′(x)z, 0, w(x))T , u(0) = w(0) = w′(0) = 0 . (3)

The generalized displacement functions u and w, being the new unknowns of the constrained body, describe the longitudinal
and transversal displacements, respectively. The admissible virtual displacements, i.e. δu ∈ TuC are induced by the variation
of the constrained displacement field (3) as δua = (δu− δw′z, 0, δw)T ∈ TuC with δu(0) = δw(0) = δw′(0) = 0.

At first, the virtual work of the continuous body (1) is evaluated for admissible virtual displacements δua. Since the
constraint stresses due to the kinematical restrictions (3) are assumed to be perfect, their virtual work contribution (2) vanishes
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Fig. 1: Plane linearized Euler-Bernoulli beam. Fig. 2: Non-admissible virtual displacement field.

by definition. The admissible virtual strains are obtained as ε(δua) = (δu′−δw′′z)ex⊗ex. We denoteNI(x) :=
∫
A
σIxxdA

and MI(x) :=
∫
A
σIxxdA as the resultant contact normal forces and the resultant contact couples, respectively. Defining

A :=
∫
A

dA and I :=
∫
A
z2dA together with the property of the line of centroids, i.e.

∫
A
zdA = 0, the virtual work

principle (1) for admissible virtual displacements with the previously introduced material law of the impressed stresses σI ,
takes the form

δW (δua) =

∫ l

0

(
δu′
∫
A

σIxxdA− δw′′
∫
A

zσIxxdA

)
dx− Pδw(l) =

∫ l

0

(δu′NI − δw′′MI) dx− Pδw(l)

=

∫ l

0

(δu′EAu′ + δw′′EIw′′) dx− δw(l)P = 0 ∀ δu, δw ,

(4)

where δu(0) = δw(0) = δw′(0) = 0 in order to satisfy the clamping boundary condition. The generalized constitutive laws
NI = EAu′ and MI = −EIw′′ follow directly from (4). Using the material law of σI for the constrained displacement field
ua together with the generalized constitutive laws, the relations σIxx = E(u′ − zw′′) = NI

A + MI

I z and σIxy = σIxz =
σIyy = σIyz = σIzz = 0 are obtained. By applying integration by parts to (4), once for the δu′-terms and twice for the
δw′′ terms, the strong variational form of the plane Euler-Bernoulli beam can be derived. The solution of the corresponding
boundary value problem is obtained as NI(x) = 0 and MI(x) = P (x− l).

3 Transverse Shear Stress in the Euler-Bernoulli Beam

To determine the constraint stresses and consequently the total stresses of the beam as a continuous body, the virtual work
principle (1) has to be evaluated for non-admissible virtual displacements. Such a non-admissible virtual displacement is
δuna = δah(x − x0)ex, where h(x) denotes the Heaviside function and δa ∈ R. Using the non-admissible virtual strains
ε(δuna) = δa δ(x0) ex ⊗ ex, where δ(x) denotes the Delta-Dirac distribution, together with the solution of the boundary
value problem, the principle of virtual work

δW (δuna) = δa

∫
A

(σCxx + σIxx)|x0
dA = δa

∫
A

(
σCxx +

MI

I
z

)∣∣∣∣
x0

dA = δa

∫
A

σCxxdA = 0 ∀ δa

demand the integral of the normal constraint stresses to vanish. This condition cannot be satisfied uniquely. Here, the trivial
solution σCxx = 0 is chosen. As sketched in Fig. 2, to extract the shear constraint stresses, we assume the non-admissible
virtual displacements δuna = δa(x)h(z − z0)ex, with δa(x) being a smooth function satisfying δa(0) = δa(l) = 0. This
leads to the non-admissible virtual strains ε(δuna) = δa′h(z − z0)ex ⊗ ex + 1

2δaδ(z0)(ex ⊗ ez + ez ⊗ ex). Assume the
constraint stresses σCxz to be constant in ey-direction and define the first moment of area as S(z0) :=

∫
A
h(z − z0)zdA.

Then, by applying integration by parts on the δa′-term and introducing the thickness b(z0) at z0, the virtual work principle is

δW (δuna) =

∫ l

0

∫
A

(σIxxδa
′h(z − z0) + σCxzδaδ(z0)) dAdx =

∫ l

0

(
δa′

MI

I
S(z0) + σCxzδab(z0)

)
dx

=

∫ l

0

δa

(
−M

′
IS(z0)

I
+ σCxzb(z0)

)
dx = 0 ∀ δa ,

(5)

where δa(0) = δa(l) = 0. The bracket in the last line of (5) has to vanish pointwise, which leads to

σxz(z) = σCxz(z) =
M ′IS(z)

Ib(z)
=
PS(z)

Ib(z)

which is the commonly known formula for the transverse shear stress in an Euler-Bernoulli beam, cf. [2].
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