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The theory of invariant continuum mechanics is based on the concept that forces and stresses are defined as elements of the
cotangent bundle of the configuration manifold. While body and physical space are modeled as differentiable manifolds, the
infinite dimensional configuration manifold is given by all configurations of the body in the physical space. In this paper a
virtual work principle is postulated which leads together with an induced traction stress and Stokes’ theorem directly to the
local equilibrium equations and the traction boundary conditions.
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1 Kinematics

Let the body B be a compact three-dimensional smooth manifold with boundary and local charts θ : B ⊃ U → R3. The
physical space S is a three-dimensional smooth manifold without boundary equipped with an affine connection ∇ and local
charts x : S ⊃ V → R3. A smooth vector field u : S → TS is a mapping from the manifold S to the tangent bundle TS such
that πS ◦u = IdS , where πS : TS → S is the natural projection which maps the ordered pair of base point and tangent vector
(Q,u) ∈ TS to the base pointQ. An affine connection assigns to a pair of smooth vector fields u,v ∈ Γ(TS) another smooth
vector field ∇uv ∈ Γ(TS) called covariant derivative of v along u. For the vector fields of a holonomic basis ∂xi ∈ Γ(TS)
with i = {1, 2, 3} to the local chart x, the covariant derivative of the basis vector ∂xk along another basis vector ∂xm is
expressed as linear combination ∇∂xm∂xk = Γimk∂xi , where Γimk are the Christoffel symbols and Einstein’s summation
convention is applied. Let ω ∈ Γ(T ∗S) be a covector field on S, then the affine connection directly induces a smooth tensor
field∇v ∈ Γ(TS⊗T ∗S) by the relation∇v(ω,u) = ω ·∇v ·u = ω ·∇uv, where the dot denotes the duality pairing between
the adjacent tensor slots. Locally, the covariant derivative can be expressed as∇v = vi;j∂xi⊗dxj = (vi,j +Γijkv

k)∂xi⊗dxj .
We define a configuration of the body in the physical space to be the continuously differentiable map κ : B → S. If

additionally the principle of impenetrability and the permanence of matter are claimed, the mapping κ and its differentials
Dκ(P ) : TPB → Tκ(P )S at P ∈ B have to be injective. These conditions induce the configuration κ to be a C1-continuous
embedding of the body into the physical space. Hence, the set ofC1-continuous embeddings Emb(B,S) constitute the infinite
dimensional configuration manifold Q. The pullback tangent bundle over the body B by κ is the triple (κ∗TS, κ∗πS ,B)
with the total space κ∗TS := {(P,v) ∈ B × TS : πS(v) = κ(P )} and the natural projection κ∗πS : κ∗TS → B defined
by κ∗πS(P,v) = P . For any smooth vector field v ∈ Γ(TS) we associate a C1-continuous section through the pullback
tangent bundle by δκ = κ∗v = (·,v ◦ κ) ∈ C1(κ∗TS) which assigns to every material point P ∈ B the material point
itself and a tangent vector in the physical space at the current configuration of the material point. The isomorphism between
the tangent space TκQ and the set of pullback sections C1(κ∗TS) is discussed in Eugster [1]. Consequently, an element
δκ ∈ C1(κ∗TS) ∼= TκQ is called virtual displacement field. By definition of the pullback sections, the holonomic basis
vectors ∂xi ∈ Γ(TS) directly imply a basis gi := ∂xi ◦ κ for pullback sections δκ = (·, δκigi) ∈ C1(κ∗TS). In a similiar
way, the affine connection ∇ induces an affine connection ∇̂ on the pullback tangent bundle κ∗TS. This enables us to define
the tensor field of the total covariant derivative ∇̂δκ ∈ C0(κ∗TS ⊗ T ∗B) which is represented locally as

∇̂δκ = δκi;Jgi ⊗ dθJ = (δκi,J +Γ̂iJkδκ
k)gi ⊗ dθJ = (δκi,J +FmJ (Γimk ◦ κ)δκk)gi ⊗ dθJ , (1)

where FmJ := ∂κm

∂θJ
is the coordinate representation of the tangent map between body and physical space.

2 Force Representation

In the sense of analytical mechanics, the space of forces is the set of all real-valued linear functionals on the space of virtual
displacements, i.e. f ∈ C1(κ∗TS)∗ :=

{
f : C1(κ∗TS)→ R | linear

}
. The scalar δW := f(δκ) obtained by the evaluation

of a force f ∈ C1(κ∗TS)∗ acting on a virtual displacement δκ is called virtual work. According to Segev [2], forces of
C1(κ∗TS)∗ have a representation by a collection of tensor measures (f0, f1) ∈ C0(κ∗TS)∗ ⊕ C0(κ∗TS ⊗ T ∗B)∗ with the
virtual work contribution

δW (δκ) =

∫
B
δκdf0 +

∫
B
∇̂δκdf1 . (2)
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It is convenient to assume the existence of a virtual work density which is of the same form for any subbody B′ ⊂ B. Then
the set of forces can be restricted further to smooth tensor fields of covector-valued volume forms Γ(κ∗T ∗S ⊗ Λ3T ∗B)
and tensor-valued volume forms Γ(κ∗T ∗S ⊗ TB ⊗ Λ3T ∗B) in the interior of the body and covector-valued volume forms
Γ(κ∗T ∗S ⊗Λ2T ∗∂B) on the boundary manifold ∂B. In the sense of Germain [3], the forces acting on the body are classified
into internal and external forces, respectively. Whereas internal forces of B are forces which model the interaction between
subbodies of B, external forces are forces from other bodies which interact with B and have no common material point
with B. External forces, represented by the tensor fields of body forces β ∈ Γ(κ∗T ∗S ⊗ Λ3T ∗B) and traction forces
τ ∈ Γ(κ∗T ∗S ⊗ Λ2T ∗∂B) on the boundary, model long range forces. Internal forces, represented by the tensor field of
variational stresses π ∈ Γ(κ∗T ∗S ⊗ TB ⊗ Λ3T ∗B), model short range forces. The corresponding virtual work contributions
are

δW ext(δκ) :=

∫
B
δκ · β +

∫
∂B
δκ · τ , δW int(δκ) :=

∫
B
−∇̂δκ : π , (3)

where the colon indicates the contraction between the two adjacent tensor slots.

3 Equilibrium Equation

As the fundamental axiom of mechanics, the principle of virtual work states that the virtual work of all forces of the body has
to vanish for all virtual displacements, i.e. δW (δκ) = δW ext(δκ) + δW int(δκ) = 0,∀δκ ∈ C1(κ∗TS). By a contraction
between the second and the third slot in the variational stress π a mapping pσ : Γ(κ∗T ∗S ⊗ TB ⊗ Λ3T ∗B) → Γ(κ∗T ∗S ⊗
Λ2T ∗B) is defined which induces to every variational stress π a covector-valued two-form σ = pσ(π) called traction stress.
Using a telescopic expansion by d(δκ · σ) ∈ Γ(Λ3T ∗B) and applying Stokes’ theorem, the virtual work of the body is

δW (δκ) =

∫
B

{
−∇̂δκ : π + d(δκ · σ)− d(δκ · σ) + δκ · β

}
+

∫
∂B
δκ · τ

=

∫
B
{−∇̂δκ : π + d(δκ · σ) + δκ · β}+

∫
∂B
{δκ · τ − ι∗(δκ · σ)} ,

(4)

where ι : ∂B → B, ι(P ) = P is the inclusion of the boundary in B. Furthermore, the divergence of the variational stress is
defined by the relation δκ ·Divπ := −∇̂δκ : π + d(δκ · pσ(π)). By straight forward computation

−∇̂δκ : π + d(δκ · pσ(π)) = ((δκiπJi123),J −(δκi,J +Γ̂iJkδκ
k)πJi123)dθ1 ∧ dθ2 ∧ dθ3

= δκi(πJi123,J −Γ̂kJiπ
J
k123)dθ1 ∧ dθ2 ∧ dθ3 = δκ ·Divπ

(5)

we obtain the coordinate representation of the divergence Divπ = (πJi123,J −Γ̂kJiπ
J
k123)gi ⊗ dθ1 ∧ dθ2 ∧ dθ3. Using local

charts λ : ∂B ⊃ W → R2 for the boundary manifold, the pullback of the dual base vector of T ∗B to the boundary can be
expressed by ι∗(dθI) = ∂ιI

∂λα dλα, where greek indices run from 1 to 2 and ιI := θI ◦ ι ◦ λ−1. The pullback of the traction
stress to the boundary ι∗(σ) is defined by the relation δκ · ι∗(pσ(π)) := ι∗(δκ · pσ(π)) which is in local coordinates

ι∗(δκ · pσ(π)) = ι∗(δκk(π1
k123 dθ2 ∧ dθ3 − π2

k123 dθ1 ∧ dθ3 + π3
k123 dθ1 ∧ dθ2))

= δκk
(
πJk123εJKL

∂ιK

∂λ1
∂ιL

∂λ2
dλ1 ∧ dλ2

)
= δκk

(
πJk123NJ dλ1 ∧ dλ2

)
= δκ · ι∗(pσ(π)) ,

(6)

where we introduced the abbreviation NJ = εJKL
∂ιK

∂λ1
∂ιL

∂λ2 and the Levi-Civita symbol εJKL. Thus, the coordinate represen-
tation of the traction force on the boundary induced by the traction stress is ι∗(pσ(π)) = πJk123NJ g

k ⊗ dλ1 ∧ dλ2. Using (5)
and (6) together with (4) leads to the following form of the principle of virtual work

δW (δκ) =

∫
B
δκ · (Div(π) + β) +

∫
∂B
δκ · (τ − ι∗(σ)) = 0 ∀δκ ∈ C1(κ∗TS) . (7)

The principle of virtual work (7) together with the Fundamental Theorem of Calculus of Variations directly implies the
complete boundary value problem with the equilibrium equation Div(π) + β = 0 in the interior of the body and the traction
boundary condition τ = ι∗(σ).
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