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In this paper, we consider the dynamical behavior of a tendon-driven compliant neck mechanism which is used to actuate
the head of a humanoid robot as proposed by [1, 2]. The neck is realized as a silicone block mounted onto the robot’s
torso. At the top end of the silicone block an aluminum plate interconnects the compliant neck with the head. At the same
plate, tendons are attached whose actuation causes the soft and flexible block to deform thereby inducing a motion of the
robot’s head. For workspace design and control of the head’s trajectory, a mechanical model is required which appropriately
describes the entire neck-head system. We present a dynamic model of the system in which the silicone block and the head
are modeled as a planar nonlinear Timoshenko beam and a rigid body, respectively. The tendon actuations are included as
external configuration-dependent forces.
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The motion of the system is described in the three-dimensional Euclidean vector space E3 with origin O and right-handed
orthonormal coordinate frame eIi ∈ E3, i = {x, y, z} and takes place exclusively in the eIx-eIz-plane, see Fig. 1b. The cartesian
coordinate representation of a vector a ∈ E3 in an arbitrary orthonormal B-system rotated against the I-system is denoted
as Ba = (aBx , a

B
y , a

B
z )T ∈ R3 with a = aBx e

B
x + aBy e

B
y + aBz e

B
z ∈ E3. The neck made out of silicone is modeled as a

planar nonlinear Timoshenko beam. According to the Timoshenko beam assumptions, the motion of the three-dimensional
continuum can be described merely by the motion of a centerline and the rotations of plane rigid cross-sections attached to
every point of the centerline. The centerline r = r(s, t) ∈ E3 is a plane curve at time t parameterized by s = [0, L] ⊂ R being
the arclength of the undeformed beam with length L. The cross-sections of the beam are represented by the cross-section-fixed
frames eCi = eCi (s, t) ∈ E3, i = {x, y, z} continuously varying along the centerline and in time. The beam is fixed to the
ground such that r(0, t) = 0 and eCi (0, t) = eIi , i = {x, y, z}. The inertia properties of the beam ρA and ρJyy are the mass
and moment of inertia density per unit arclength s, respectively. On top of the beam at s = L a rigid and massless plate with
a width of 2b is attached as depicted in Fig. 1c. In P and R two massless tendons are connected to the plate. Both tendons are
redirected by a pulley and subjected at their ends to the tensile forces λl ≥ 0 and λr ≥ 0, respectively. The head is modeled as
a rigid body with center of mass (CoM) S, mass m, moment of inertia J and is rigidly connected to the beam in r(L, t) such
that the head-fixed frame eHi (t) := eCi (L, t), i = {x, y, z}.

The centerline r and the orthogonal transformation matrix AIC relating the respective coordinates according to Ia =
AICCa are determined by the real-valued generalized position functions x = x(s, t), z = z(s, t) and θ = θ(s, t), i.e.

Ir(s, t) =

x(s, t)
0

z(s, t)

 , AIC(s, t) =

 cos θ(s, t) 0 sin θ(s, t)
0 1 0

− sin θ(s, t) 0 cos θ(s, t)

 . (1)
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Fig. 1: a) Neck-head system of humanoid presented in [1]. b) Planar kinematics. c) Dimensions, applied forces and inertia properties.
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Let j : R3 → so(3) be the bijective map that relates triples with skew-symmetric matrices of R3×3. The changes in the
orientation of the cross-section along s or when time t passes are described by the material curvature vector kIC and the
angular velocity vector ωIC which are determined in the I-system by the relations

IkIC(s, t) = j−1
(
A′IC(s, t)AT

IC(s, t)
)
, IωIC(s) = j−1

(
ȦIC(s, t)AT

IC(s, t)
)
. (2)

Note that (•)′ and (•̇) denote the derivatives with respect to s and t, respectively. Inserting (1) into (2), straightforward com-
putation leads to the material curvature vector kIC(s, t) = θ′(s, t)eIy and the angular velocity vector ωIC(s, t) = θ̇(s, t)eIy .

Consider x̂ = x̂(s, t, ε), ẑ = ẑ(s, t, ε) and θ̂ = θ̂(s, t, ε) to be differentiable parametrizations with respect to a parameter
ε ∈ R such that the actual positions are embedded in the parametrization and are obtained for ε = ε0. Replacing the
corresponding functions in (1), the variational families r̂ = r̂(s, t, ε) and ÂIC = ÂIC(s, t, ε) are obtained. Introducing
δx = ∂x̂/∂ε|ε=ε0δε, δz = ∂ẑ/∂ε|ε=ε0δε and δθ = ∂θ̂/∂ε|ε=ε0δε, the virtual displacement of the centerline δr = δr(s, t)
and the virtual rotations of the cross-sections δφIC = δφIC(s, t) are defined by

Iδr =
∂I r̂

∂ε

∣∣∣∣
ε=ε0

δε = (δx, 0, δz)T , IδφIC = j−1
(
∂ÂIC

∂ε

∣∣∣∣
ε=ε0

δε AT
IC

)
= (0, δθ, 0)T . (3)

To establish the virtual work of the external forces acting on the system, we will need the virtual displacement of the head’s
CoM and the virtual displacements of the tendon connection points P and R. Using the abbreviations δθL(t) = δθ(L, t) and
δrL(t) = δr(L, t) together with the dimensions of Fig. 1c, the required virtual displacements are

δrS = δrL − hδθLeHz , δrP = δrL + bδθLe
H
x , δrR = δrL − bδθLeHx . (4)

The axial strain γx = γx(s, t), the shear strain γz = γz(s, t) and the material curvature κ = κ(s, t) capturing the deforma-
tion of the beam are defined by the relations

(γx, 0, γz)T = AT
ICIr

′ = (x′ cos θ−y′ sin θ, 0, x′ sin θ+y′ cos θ)T , (0, κ, 0)T = AT
ICIkIC = (0, θ′, 0)T . (5)

The hyperelastic constitutive behavior of the beam is captured by the specific strain energy function

Ψ(γx, γz, κ) =
EA

3

(γ2x
2

+ γ−1x

)
+
GA

2
γ2z +

EI

2
κ2 (6)

in which EA, GA, and EI denote the axial stiffness, the shear stiffness and the bending stiffness of the beam, respectively.
The corresponding virtual work contribution of the internal forces is then

δW int = −
∫ L

0

δΨ(γx, γz, κ)ds = −
∫ L

0

{
∂Ψ

∂γx
δγx +

∂Ψ

∂γz
δγz +

∂Ψ

∂κ
δκ

}
ds . (7)

The virtual work contribution of the external forces of the system

δW ext =

∫ L

0

−ρAgeIx · δr ds−mgeIx · δrS + λlel · δrP + λrer · δrR (8)

is due to gravity with gravity constant g and due to the tendon actuation with tendon forces λlel and λrer. Note that the unit
tendon direction vectors for the left el ∈ E3 and right er ∈ E3 tendon as depicted in Fig. 1c are nonlinear functions of the
centers of the pulleys and the position vectors of P andR. Introducing the abbreviations xL(t) = x(L, t), zL(t) = z(L, t) and
θL(t) = θ(L, t) together with the acceleration of the head’s CoM IaS = (ẍL−h sin θLθ̈L−h cos θLθ̇

2
L, 0, z̈L−h cos θLθ̈L +

h sin θLθ̇
2
L)T, the virtual work expression due to inertia is

δW dyn = −
∫ L

0

{ρAr̈ · δr + ρJyy θ̈δθ}ds−maS · δrS − Jθ̈LδθL . (9)

To determine the dynamical equations of the system, we postulate the principle of virtual work that assumes the total virtual
work δW tot = δW int + δW ext + δW dyn of the system to vanish for all admissible virtual displacements. The principle of
virtual work with the contributions (7), (8) and (9) corresponds to the weak variational expression of a nonlinear partial
differential equation which, together with its associated boundary conditions, can be obtained by integration by parts of the
contributions in (7). Since this PDE cannot be solved analytically, in [3] a finite element approximation in space is applied
which discretizes the total virtual work by suitable shape functions for x(s, t), z(s, t) and θ(s, t). For the dynamical case
considered at hand, this discretization would lead directly to a set of ODE’s which can be solved numerically by standard
ODE-solvers.
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