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The language of differential geometry allows a coordinate-free representation of physical quantities. This led to the devel-
opment of several geometric theories for the description of finite-dimensional mechanical systems. These approaches differ
in the mathematical concepts they invoke and in the classes of mechanical systems they can describe. This short note aims
to give an overview on the following three popular approaches, all of which are limited to time-independent mechanical sys-
tems. While in the first approach, the motion of the mechanical system is considered as a curve in the system’s configuration
manifold, in the latter two, the corresponding motions are interpreted as curves in the tangent or the cotangent bundle of the
configuration manifold.
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For a mechanical system with n degrees of freedom, we consider the configuration manifold as an n-dimensional smooth
manifold Q representing all possible configurations of the system. Locally, there are charts

φ : Q ⊇ U → Rn, q 7→ φ(q) = (q1, . . . , qn) (1)

commonly referred to as generalized coordinates of the system. The configuration manifold is equipped with a Riemannian
metric g, locally written as g=gijdq

i⊗dqj .1 The Riemannian metric endows each tangent space TqQ with an inner product
and models the mass of the mechanical system, i.e., the component matrix [gij ] corresponds to the mass matrix of the system.
The pair (Q, g) is a Riemannian manifold on which the dynamics is formulated in this first approach. The motion of the system
can be considered as a curve γ : R ⊃ I → Q. The tangent field along γ is denoted by γ̇(t) = (γ(t), γ̇γ(t)) and associates
with each time instant t ∈ I a position γ(t) ∈ Q and a velocity γ̇γ(t) ∈ Tγ(t)Q of the mechanical system. Denoting the i-th
coordinate function of the chart φ by φi : U → R, both the positions and velocities can be expressed locally as

(
q1(t), . . . , qn(t)

)
=

(
φ1 ◦ γ(t), . . . , φn ◦ γ(t)

)
, and γ̇γ(t) = q̇i(t)

∂

∂qi

∣∣∣∣
γ(t)

, (2)

where the dot on the right hand side of the second equation stands for the derivative with respect to time t. On a Riemannian
manifold, there exists a unique metric compatible and torsion free connection, called Levi-Civita connection, whose Christoffel
symbols Γklm are determined by the metric coefficients, i.e., 2Γklm = gkr(∂gmr/∂q

l + ∂grl/∂q
m − ∂glm/∂qr) with gkr such

that gkrgrm = δkm. Then, the covariant derivative of the Levi-Civita connection allows to define the acceleration at time t by

(∇γ̇ γ̇)γ(t) =
(
q̈k(t) + Γklm(γ(t))q̇l(t)q̇m(t)

) ∂

∂qk

∣∣∣∣
γ(t)

. (3)

The nonpotential forces fnp = fnpi dqi ∈ Ω1(Q) are modeled as one-forms on the configuration manifold Q. The potential
forces fp=−dV ∈ Ω1(Q) are those one-forms that can be written as the exterior derivative of a potential which is a smooth
real-valued function V : Q → R. In the first approach, see Prop. 3.7.4. in [1], we postulate that the motion γ is the curve
determined by gγ(t)

(
· , (∇γ̇ γ̇)γ(t)

)
= −dVγ(t)(·) + fnpγ(t)(·), which locally can be expressed as

gik(γ(t))
[
q̈k(t) + Γklm(γ(t))q̇l(t)q̇m(t)

]
dqi|γ(t) =

[(
−∂V
∂qi

+ fnpi

)
◦ γ(t)

]
dqi|γ(t) , (4)

which are the equations of motion of a finite-dimensional mechanical system. Moreover, equation (4) can be interpreted as a
generalization of Newton’s ‘mass× acceleration = applied forces’. The drawback of working on the configuration manifold
is that neither velocity- nor time-dependent forces can be considered.

Velocity-dependent forces can be defined on a space comprising positions and velocities. Therefore, the second approach
(see [3]) describes the dynamics on the 2n-dimensional tangent bundle TQ of the configuration manifold (Q, g). The tangent
bundle with the natural projection π : TQ→ Q is called the state space of the system. Indeed, a point (q, vq) ∈ TQ represents
the system’s state, where q ∈ Q and vq ∈ TqQ represent the position and velocity, respectively. The chart (1) of Q induces the
natural chart Φ: TQ ⊇ π−1(U) → R2n, (q, vq = ui∂/∂qi|q) 7→ (q1, . . . , qn, u1, . . . , un) of the tangent bundle TQ, where
π−1(U) denotes the preimage of the neighborhoodU with the natural projection π. The motion η of the system is a curve in the
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state space TQ and is considered to be an integral curve of the Lagrangian vector field X=Ai∂/∂qi+Bi∂/∂ui ∈ Vect(TQ),
i.e., η̇(t) = X(η(t)). The tangent field η̇(t) = (η(t), η̇η(t)) along η associates with each time instant t ∈ I a position and
velocity η(t) ∈ TQ as well as a velocity and acceleration η̇η(t) ∈ Tη(t)(TQ) of the mechanical system. Locally, this can be
written as

(
q1(t), . . . , qn(t), u1(t), . . . , un(t)

)
=

(
Φ1 ◦ η(t), . . . ,Φ2n ◦ η(t)

)
, η̇η(t) = q̇i(t)

∂

∂qi

∣∣∣∣
η(t)

+ u̇i(t)
∂

∂ui

∣∣∣∣
η(t)

. (5)

Note that it will be the role of the Lagrangian vector field to relate the time derivatives q̇i(t) with the velocity coordinates ui(t).
The Lagrangian L : TQ → R of a time-independent mechanical system classically is of the form L(q, vq) = 1

2gq(vq, vq) −
V (q), where V is the potential modeling the potential forces similar to the first paragraph. The Lagrangian can be used to
define the energy function E : TQ → R given by E = ∂L

∂uj u
j − L as well as the Cartan one-form θL = ∂L

∂ui dqi ∈ Ω1(TQ).
The Lagrangian two-form

ΩL = −dθL =
∂2L

∂qj∂ui
dqi ∧ dqj +

∂2L

∂uj∂ui
dqi ∧ duj ∈ Ω2(TQ) , (6)

obtained by taking the exterior derivative of the Cartan one-form is a symplectic form. The nonpotential forces are modeled
as semi-basic one-forms fnp = fnpi dqi ∈ Ω1(TQ), see [2]. In this approach, we postulate that the Lagrangian vector field
X , of which the motion is an integral curve, is determined by ΩL(X, ·) = dE(·)− fnp(·). Evaluating these conditions along
η, we locally get

q̇i(t)
∂

∂qi

∣∣∣∣
η(t)

+ u̇i(t)
∂

∂ui

∣∣∣∣
η(t)

= Ai ◦ η(t)
∂

∂qi

∣∣∣∣
η(t)

+Bi ◦ η(t)
∂

∂ui

∣∣∣∣
η(t)

,

0 =

[
∂2L

∂uj∂ui
Bj +

∂2L

∂qj∂ui
Aj − ∂L

∂qi
− fnpi +

∂2L

∂qi∂uj
(uj −Aj)

]

η(t)

dqi|η(t) +

[
∂2L

∂ui∂uj
(uj −Aj)

]

η(t)

dui|η(t) .
(7)

The vanishing of the dui-components implies the kinematic equations that relate the time derivatives q̇i(t) with the velocity
coordinates ui(t). The vanishing dqi-components provide Lagrange’s equations of the second kind for mechanical systems
with position- and velocity-dependent forces.

Analogously, the dynamics can be formulated on the phase space (see Prop. 3.3.2. in [1]), i.e., on the cotangent bundle
T ∗Q of the configuration manifold (Q, g). Here, each state (q, pq) ∈ T ∗Q corresponds to a position q ∈ Q and a gener-
alized momentum pq ∈ T ∗

qQ which locally can be expressed by charts Ψ: T ∗Q ⊇ π−1(U) → R2n, (q, pq = pidq
i|q) 7→

(q1, . . . , qn, p1, . . . , pn). The motion ζ of the system is now seen as a curve in the phase space T ∗Q assumed to be an in-
tegral curve of the Hamiltonian vector field Y=Ai∂/∂qi+Ci∂/∂pi ∈ Vect(T ∗Q), i.e., ζ̇(t) = Y (ζ(t)). The cotangent
bundle comes with the canonical symplectic form ΩH=−dθH=dqi∧dpi ∈ Ω2(T ∗Q), where θH=pidq

i ∈ Ω1(T ∗Q) is the
canonical one-form of T ∗Q. The Hamiltonian H : T ∗Q → R of a time-independent mechanical system classically is of
the form H(q, pq) = 1

2g
−1
q (pq, pq) + V (q), where V is the potential and g−1 is the bundle metric of the cotangent bundle

induced by the Riemannian metric g. The nonpotential forces are modeled as semi-basic one-forms fnp = fnpi dqi. In this
last approach, we postulate that the Hamiltonian vector field Y , of which the motion is an integral curve, is determined by
ΩH(Y, ·) = dH(·)− fnp(·). Evaluating these conditions along ζ leads to

q̇i(t)
∂

∂qi

∣∣∣∣
ζ(t)

+ ṗi(t)
∂

∂pi

∣∣∣∣
ζ(t)

= Ai ◦ ζ(t)
∂

∂qi

∣∣∣∣
ζ(t)

+ Ci ◦ ζ(t)
∂

∂pi

∣∣∣∣
ζ(t)

,

0 =

[
∂H

∂qi
− fnpi + Ci

]

ζ(t)

dqi|ζ(t) +

[
∂H

∂pi
−Ai

]

ζ(t)

dpi|ζ(t)
(8)

The vanishing of both the dqi- and dpi-components implies Hamilton’s equations for a mechanical system with position- and
momentum-dependent forces. For the geometric treatment of time-dependent mechanical systems, where also time-dependent
forces can be treated, the reader is referred to the related PAMM contributions ‘Kinematics of finite-dimensional mechanical
systems on Galilean manifolds’ as well as ‘Dynamics of finite-dimensional mechanical systems on Galilean manifolds’.
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