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A second gradient continuum formulation for bi-pantographic fabrics
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Bi-pantographic fabrics are materials that are composed of two families of fibers with a micro-structure. The micro-structure
of a straight fiber is given by a periodic arrangement of cells that resembles an expanding barrier. The planar behavior of
such a fabric is captured at a macroscopic scale by a second gradient continuum. The corresponding strain energy function
depends upon the fiber stretches, as well as upon the gradients in fiber direction of the stretches and inclination angles. In this
brief communication, we present the equilibrium equations, which must be satisfied in the bulk of the continuum.
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For the continuous modeling of the planar mechanical behavior of bi-pantographic fabrics, we work in a two-dimensional
physical space modeled by the two-dimensional Euclidean vector space E2. The placement χ : Ω → E2, X 7→ x = χ(X)
maps points X from the reference configuration Ω ⊂ E2 into the physical space. The image of the placement map ω = χ(Ω)
defines the actual configuration of the continuum. We introduce the two orthonormal and positively oriented bases (E1, E2)
and (e1, e2) for objects with image in the reference and in the actual configuration, respectively. Hence, the placement map
is written as xiei = χi(X)ei, where Einstein’s summation convention is applied here and in what follows for upper- and
lower-case roman letters. Let χ̂ : R × Ω → E2, (ε,X) 7→ x = χ̂(ε,X) be a one-parameter family of mappings such that
χ(X) = χ̂(0, X). Then the variation of the placement δχ(X) = ∂χ̂i/∂ε(0, X)ei defines the virtual displacement field
δχ = δχ(X) ∈ E2. For the constitutive modeling of the bi-pantograph, we require the first and second gradient of placement,
whose components are F iA = ∂χi/∂XA and F iAB = ∂2χi/∂XA∂XB . From the definition of the virtual displacement and
the symmetry of the second derivatives, it readily follows that the variation of these gradients correspond respectively with
the first and second gradient of the virtual displacement, i.e., δF iA = ∂(δχi)/∂XA and δF iAB = ∂2(δχi)/∂XA∂XB . For an
elastic second gradient continuum with a strain energy density W = W (F iA, F

i
AB), the internal virtual work functional can

be represented as

δW int(δχ) = −
∫

Ω

{PAi δF iA + PABi δF iAB}dΩ = −δE int(δχ) = −
∫

Ω

{
∂W

∂F iA
δF iA +

∂W

∂F iAB
δF iAB

}
dΩ ,

where PAi = ∂W/∂F iA and P iAB = ∂W/∂F iAB denote the components of the Piola–Lagrange stress and double stress,
respectively. If the continuum is subjected to an external volume force density per unit reference volume FΩ, in [1], it is
shown that the equilibrium conditions of a planar second gradient continuum are given by the partial differential equations

∂

∂XA

(
PAi −

∂PABi
∂XB

)
+ FΩ

i = 0 (1)

together with suitable boundary conditions, which we omit here for the sake of brevity.
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Fig. 1: (left) Tensile test of a bi-pantographic fabric. (right) Continuous fiber kinematics and micro-structure of the discrete model [2, 3].
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In [2], the homogenization of a discrete model of the bi-pantograph (Fig. 1) results in a strain energy density of the form

W (ρα, ρα,α, ϑα,α) =

2∑
α=1

[f(ρα)(ϑα,α)2 + g(ρα)(ρα,α)2 + h(ρα)] , (2)

where ρα are the fiber stretches, ρα,α the stretch gradients in fiber direction, and ϑα,α the inclination angle gradients in fiber
direction, i.e., the fiber curvatures. In the following, we show the dependence of these kinematical quantities on the first and
second gradient of placement to derive the equilibrium equations.

As said, the bi-pantograph consists of two fiber families, which in the reference configuration are orthogonal to each
other, see Fig. 1. The two families are represented by the unit normal vector fields D1 = DA

1 EA =
√

2/2(E1 + E2) and
D2 = DA

2 EA =
√

2/2(−E1+E2), which are tangent vectors to the respective fiber curves. Throughout the deformation, these
directions are mapped to dα = FDα = ρατα, where ρα = [F iAD

A
αFiBD

B
α ]1/2 denotes the fiber stretch and τα = τ iαei = ταi e

i

is the unit tangent vector of the deformed fiber curve (ei is the dual basis of ei). The inclination angle with respect to the
horizontal e1-axis can then be computed as ϑα = arctan

(
F 2
AD

A
α /F

1
AD

A
α

)
. Defining the fiber derivative of a scalar valued

function as f,α := ∂f/∂XADA
α , the variation and the fiber derivative of the stretch can be computed as

δρα = ταi δF
i
AD

A
α , ρα,α = ταi F

i
ABD

A
αD

B
α .

Let R = e2 ⊗ e1 − e1 ⊗ e2 be the linear map defining the normal to the tangent να = ναi e
i = Rτα. The variation and the

fiber derivative of the inclination angle, which is the fiber curvature, can then be computed as

δϑα = ρ−1
α ναi δF

i
AD

A
α , ϑα,α = ρ−1

α ναi F
i
ABD

A
αD

B
α .

Using the identities δij − ταi ταj = ναi ν
α
j and Rijνjα = −ταi , the variation of the unit tangent τα and its normal να can be

written as

δταi = ρ−1
α ναi ν

α
j δF

j
AD

A
α , δναi = −ρ−1

α ταi ν
α
j δF

j
AD

A
α .

Consequently, the variations of the fiber derivative of the stretch and the curvature read as

δρα,α = δF iA(ϑα,αν
α
i D

A
α ) + δF iAB(ταi D

A
αD

B
α ) ,

δϑα,α = δF iA(−ρ−1
α ϑα,ατ

α
i D

A
α − ρ−2

α ρα,αν
α
i D

A
α ) + δF iAB(ρ−1

α ναi D
A
αD

B
α ) .

The Piola–Lagrange stress for the strain energy function of the form (2) is now easily obtained as

PAi =

2∑
α=1

(
∂W

∂ρα

∂ρα
∂F iA

+
∂W

∂ρα,α

∂ρα,α
∂F iA

+
∂W

∂ϑα,α

∂ϑα,α
∂F iA

)

=

2∑
α=1

([
∂W

∂ρα
− ∂W

∂ϑα,α
ρ−1
α ϑα,α

]
ταi D

A
α +

[
∂W

∂ρα,α
ϑα,α −

∂W

∂ϑα,α
ρ−2
α ρα,α

]
ναi D

A
α

)
.

(3)

The Piola–Lagrange double stress and its divergence can be expressed as

PABi =

2∑
α=1

(
∂W

∂ρα,α

∂ρα,α
∂F iAB

+
∂W

∂ϑα,α

∂ϑα,α
∂F iAB

)
=

2∑
α=1

(
∂W

∂ρα,α
ταi D

A
αD

B
α +

∂W

∂ϑα,α
ρ−1
α ναi D

A
αD

B
α

)
,

∂PABi
∂XB

=

2∑
α=1

([(
∂W

∂ρα,α

)
,α
− ∂W

∂ϑα,α
ρ−1
α ϑα,α

]
ταi D

A
α+

[
∂W

∂ρα,α
ϑα,α+ρ−1

α

(
∂W

∂ϑα,α

)
,α
− ∂W

∂ϑα,α
ρ−2
α ρα,α

]
ναi D

A
α

)
.

(4)

Note that we have applied several times the definition of the fiber derivative as well as the identities ναi = −ϑα,αταi and
ταi = ϑα,αν

α
i . Finally, inserting the last equalities of (3) and (4) into (1), we obtain the equilibrium conditions for the

bi-pantograph as
2∑

α=1

{
ταi

([
∂W

∂ρα
−
(
∂W

∂ρα,α

)
,α

]
,α

+

(
∂W

∂ϑα,α

)
,α
ρ−1
α ϑα,α

)
+ ναi

([
∂W

∂ρα
−
(
∂W

∂ρα,α

)
,α

]
ϑα,α − ρ−1

α

(
∂W

∂ϑα,α

)
,αα

+

(
∂W

∂ϑα,α

)
,α
ρ−2
α ρα,α

)}
+ FΩ

i = 0 .
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