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A robot inspired by a non-smooth point mass model of a worm
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A non-smooth point mass model which mimics the locomotion of an earthworm is presented. The planar model consists
of a chain with five elements on a rough ground. The distance between each pair of neighbouring elements is restricted by
unilateral constraints. The contacts between the elements and the ground are subjected to anisotropic Coulomb friction. First,
the equations of motion governing the impact-free motion are derived. Then, the impact equations are formulated which,
together with the generalized Newton’s impact law, describe the dynamics at instantaneous impacts.
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1 Introduction

The locomotion of an earthworm is generated by waves of muscular contractions which alternately shorten and lengthen the
body of the worm. The shortened part of the body is anchored to the ground by tiny claw-like bristles. The worm’s locomo-
tion can be roughly approximated by dividing the worm into identical segments which are either contracted or lengthened.
Therefore, we have considered a planar model of a chain with five point masses on a rough ground as shown in Fig. 2. An
actuator is placed between each pair of neighbouring elements in order to change the gap distance between them, which is
limited by unilateral constraints. The effect of the worm’s bristles are approximated by anisotropic Coulomb friction. The
resulting non-smooth point mass model is able to mimic the locomotion of an earthworm in simulation. Based on the model,
we have built the robot shown in Fig. 1.

Fig. 1: Prototype of the worm robot consisting of rigid blocks which are actuated by four electromagnets.

2 Mechanical Model

For an introduction to non-smooth mechanics, we refer to [1]. The model consists of five elements (point masses) with mass
m on a rough horizontal ground in the gravitational field g. The positions of the elements are represented by the generalized
coordinates q = (q1, q2, q3, q4, q5)T. The velocities of the elements are given by the time derivative of the generalized
coordinates, i.e. by q̇ = (q̇1, q̇2, q̇3, q̇4, q̇5)T. The pre- and post-impact velocities are denoted by q̇− =

(
q−1 , q

−
2 , q

−
3 , q

−
4 , q

−
5

)T
and q̇+ =

(
q+1 , q

+
2 , q

+
3 , q

+
4 , q

+
5

)T, respectively. These are needed for the description of velocity jumps due to instantaneous
impacts. The latter occur, for example, if two elements collide with a non-zero relative velocity.

Fig. 2: Model of the worm robot consisting of five elements of mass m. Fig. 3: Geometry of an element.

There are four actuators designated by A, B, C and D. Each of them is composed of an electromagnet together with a
linear spring. The core of the electromagnet comes with a head which prevents it from being pulled out of the actuator. This
limit stop and the fact that two neighbouring elements may not penetrate another are modelled by unilateral constraints. For
each actuator I with I ∈ {A,B,C,D}, we introduce two gap functions gI1 and gI2. The function gI1 describes the gap distance
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Fig. 4: Free-body diagram of the worm robot.

between the two neighbouring elements of the I-th actuator, while gI2 measures the position of its core. The resulting eight gap
functions can be gathered in a vector g as

g =
(
gA1 gA2 gB1 g

B
2 g

C
1 gC2 gD1 gD2

)T
, where


gA1
gB1
gC1
gD1

 =


q1−q2−L
q2−q3−L
q3−q4−L
q4−q5−L

 and


gA2
gB2
gC2
gD2

 =


q2−q1+L+a
q3−q2+L+a
q4−q3+L+a
q5−q4+L+a

 . (1)

The lengths L and a are introduced in Fig. 3. The contact velocities are given by γ := ġ =
(
γA1 γA2 γB1 γB2 γC1 γC2 γD1 γD2

)T
from which we can deduce the generalized force directions W as

γ = ġ =
∂g

∂q
q̇ = WTq̇, with WT :=

∂g

∂q
. (2)

As before, the pre- and post-impact contact velocities are denoted by γ− = WTq̇− and γ+ = WTq̇+, respectively.
A free-body diagram of the worm robot is shown in Fig. 4. The generalized contact forces which can be written in vector

form as λ =
(
λA1 , λ

A
2 , λ

B
1 , λ

B
2 , λ

C
1 , λ

C
2 , λ

D
1 , λ

D
2

)T obey the Signorini condition

0 ≤ λ ⊥ g ≥ 0 ⇔ λIj ≥ 0, gIj ≥ 0, and λIjg
I
j = 0, (3)

for all I ∈ {A,B,C,D} and j ∈ {1, 2}. The friction between element k ∈ {1, 2, 3, 4, 5} and the ground is modelled as
anisotropic Coulomb friction depending on the two friction coefficients µFw and µBw, s.t.

−λFrk ∈
µFw + µBw

2
λNSgn(q̇k)+

µFw − µBw

2
λN , with λN = mg, and Sgn(v) :=


−1 if v < 0,

[−1, 1] if v = 0,

1 if v > 0.

(4)

The friction forces can be written in vector notation as λFr =
(
λFr1 , λ

Fr
2 , λ

Fr
3 , λ

Fr
4 , λ

Fr
5

)T. The electromagnetic force of actuator
I ∈ {A,B,C,D} is modelled as F I

M = fI
(
gI2(q), t

)
where fI is defined by the characteristic curve of the electromagnet and

by its switching sequence. The forces exerted by the linear springs are given by F I
S = kI(g

I
2(q) − l0) where kI denotes the

spring stiffness, l0 its unstressed length and I ∈ {A,B,C,D}. The impact-free dynamics is then given by

Mq̈−h(q, q̇, t) = WFr λ
Fr+Wλ with M = mI5,5, h(q, q̇, t) =


FA
S (q)+FA

M(q, t)

−FA
S (q)−FA

M(q, t)+FB
S (q)+FB

M(q, t)

−FB
S (q)−FB

M(q, t)+FC
S (q)+FC

M(q, t)

−FC
S (q)−FC

M(q, t)+FD
S (q)+FD

M(q, t)

−FD
S (q)−FD

M(q, t)

 , (5)

where I5,5 denotes a five-by-five identity matrix, WFr = I5,5 and W is given by (2). The impact dynamics is described by
the impact equations together with the generalized Newton’s impact law [2] with restitution coefficient ε ∈ [0, 1], i.e.

M(q̇+ − q̇−) = WΛ and 0 ≤ Λ ⊥ (γ+ + εγ−) ≥ 0, (6)

with Λ =
(
ΛA
1 ,Λ

A
2 ,Λ

B
1 ,Λ

B
2 ,Λ

C
1 ,Λ

C
2 ,Λ

D
1 ,Λ
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2

)T. We have implemented the model for numerical simulation using Moreau
time-stepping [1].
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