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A geometric view on the kinematics of finite-dimensional mechanical
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Finite-dimensional mechanical systems can be described in terms of a set of generalized coordinates and their time-derivatives.
In this case, the Lagrange equations of the second kind provide the equations of motion of these systems. The Volterra–Hamel–
Boltzmann equations generalize the Lagrange equations of the second kind in the sense that they allow for more general
velocity parametrizations. In this work, we show in the context of scleronomous finite-dimensional mechanical systems that
both sets of equations can be interpreted as being different chart representations of the intrinsic Euler–Lagrange equations on
the tangent bundle over the configuration manifold of the mechanical system.
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A common geometric approach (see e.g. [1–3]) to deal with the dynamics of scleronomous finite-dimensional mechanical
systems is to consider a smooth parametrized curve

γ : R ⊇ I → Q, t 7→ γ(t) (1)

in an n-dimensional differentiable manifold Q as the motion of the system. For an introduction to differential geometry, we
refer to [4, 5]. The so-called configuration manifold Q is the space of positions of the mechanical system and its dimension n
corresponds to its number of degrees of freedom. The curve (1) induces the curve

η : R ⊇ I → TQ, t 7→ η(t) =
(
γ(t), γ̇(t)

)
(2)

in the tangent bundle TQ of the configuration manifold Q. For fixed values of the parameter t, γ̇(t) ∈ Tγ(t)Q denotes the
tangent vector to the curve γ at the point γ(t) that can be interpreted as the velocity of the mechanical system. For a variable
parameter t, γ̇ is a vector field along the curve γ. The tangent bundle TQ is the space of positions and velocities. Solving
the equations of motions of a mechanical system boils down to finding an integral curve of a second-order (see eq. (8)) vector
field Γ on the tangent bundle TQ such that

η̇(t) = Γ
(
η(t)

)
. (3)

The choice of a local chart (U, φ) of the manifold Q provides us with a set of generalized coordinates

φ : Q ⊇ U → Rn, p 7→ φ(p) = (q1, . . . , qn) = q. (4)

Moreover the chart (4) induces bases on the tangent spaces TpQ with p ∈ U such that a tangent vector vp ∈ TpQ can be
written as

vp = ui
∂

∂qi

∣∣∣∣
p

, (5)

where a summation from 1 to n is understood over repeated indices appearing once as a lower and once as an upper index.
Using (4) and (5), we can define the natural chart (π−1(U),Φ) of the tangent bundle as

Φ: TQ ⊇ π−1(U)→ R2n, (p, vp = ui∂/∂qi) 7→ (φ(p), u1, . . . , un) = (q,u), (6)

where π−1(U) denotes the pre-image of the open neighbourhood U ⊆ Q with the natural projection π : TQ → Q of the
tangent bundle. The chart representation of the curve η from (2) is thus given by

Φ ◦ η(t) = (q1(t), . . . , qn(t), u1(t), . . . , un(t)) (7)

with ui(t) = q̇i(t). Therefore, the vector field Γ needs to have the local form

Γ = ui
∂

∂qi
+Ai(q,u)

∂

∂ui
. (8)
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Vector fields of the form (8) are called second-order fields, because their integral curves are determined by solving second-
order ordinary differential equations.

A Lagrangian L : TQ→ R is a scalar-valued function on the tangent bundle. The Euler–Lagrange equations related to the
principle of Hamilton∫ t1

t0

L(η(t)) dt→ stationary (9)

can be written in the geometric form [1]

LΓθL − dL = 0, with θL =
(
∂L/∂ui

)
dqi. (10)

In eq. (10), LΓ denotes the Lie derivative along the vector field Γ and d denotes the exterior derivative. Cartan’s magic formula,
the use of the natural chart and of eq. (8) allow us to write eq. (10) as(

LΓ

(
∂L
∂ui

)
− ∂L
∂qi

)
dqi = 0. (11)

Evaluating eq. (11) along the curve η(t) and using eq. (3), we obtain the Lagrange equations of the second kind

d

dt

(
∂L ◦ Φ−1

∂ui

)
− ∂L ◦ Φ−1

∂qi
= 0. (12)

Next, we want to use another set of velocity parameters (v1, . . . , vn) instead of (u1, . . . , un). Therefore, we define a set of
basis fields of the tangent spaces TpQ at all points p ∈ U

∂

∂si

∣∣∣∣
p

= Bji (p)
∂

∂qj

∣∣∣∣
p

, such that vp = vi
∂

∂si

∣∣∣∣
p

= Bji (p)v
i ∂

∂qj

∣∣∣∣
p

, (13)

with uj = Bji (p)v
i and where the matrices

(
Bji (p)

)
are assumed to be regular for all p ∈ U . This allows us to define the chart

(π−1(U),Ψ) of the tangent bundle TQ as

Ψ: TQ ⊇ π−1(U)→ R2n, (p, vp = vi∂/∂si) 7→ (φ(p), v1, . . . , vn) = (y,v). (14)

Note that we have used y instead of q to designate the n-tuple φ(p) in order to avoid mixing up the charts (π−1(U),Φ) and
(π−1(U),Ψ) of the tangent bundle TQ. The chart transition map Ψ ◦Φ−1 and the relation between the induced basis vectors
are given by

yi = qi, vi = Aiju
j , (15)

and

∂

∂yi
=

∂

∂qi
+ vk

∂Bjk
∂yi

∂

∂uj
,

∂

∂vi
= Bji

∂

∂uj
, (16)

respectively. It holds that AijB
j
k = δik, where δik is the Kronecker delta that is one if i = k and zero, otherwise. Now, we can

express eqs. (10)–(12) in the chart (π−1(U),Ψ). After some calculations, we obtain that

Aji

(
d

dt

(
∂L ◦Ψ−1

∂vj

)
−Bkj

∂L ◦Ψ−1

∂yk
+BkjB

s
rv
r

(
∂Alk
∂ys

− ∂Als
∂yk

)
∂L ◦Ψ−1

∂vl

)
= 0, (17)

which are the Volterra–Hamel–Boltzmann equations as they can be found in Hamel’s paper from 1904 [6]. Similar equations
can be found in the work of Boltzmann from 1902 [7] and in the one of Volterra from 1898 [8]. In [9], Bremer refers to the
equations as Hamel–Boltzmann equations. We added Volterra to the designation because it seems to us that his contribution
has been missed so far.
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