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In a coordinate-free description of time-independent finite-dimensional mechanical systems the configuration manifold plays
a central role. In the case of time-dependent mechanical systems, time needs to be included in the space on which the related
physical theory is formulated. In this respect, we show that a so-called Galilean manifold not only provides a ‘generalized
space-time’ but that it allows the coordinate-free presentation of a physical theory for time-dependent finite-dimensional
mechanical systems. The motion of a mechanical system is interpreted as an integral curve of a second-order vector field
on the state space related to the Galilean manifold of the system. Second-order vector fields, which are the coordinate-
free equivalent of second-order differential equations, are in one-to-one correspondence with the action forms introduced by
Loos [4, 5]. Because of this bijective relation, the kinetic part of the theory can be formulated by postulating the action form
governing the motion of a finite-dimensional mechanical system.
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In this work, we show that the concept of a Galilean manifold introduced by [2] is a suitable space to formulate a theory
for the description of time-dependent finite-dimensional mechanical systems in the language of contemporary differential
geometry (see [3]). For a mechanical system with n degrees of freedom, we consider an (n+1)-dimensional smooth manifold
M . We say that a closed, non-vanishing differential one-form ϑ endows the manifold M with a time structure. Let (U,ψ) be
a chart of M such that

ψ : M ⊇ U → Rn+1, p 7→ (x0, . . . , xn). (1)

Following [4], we say that a chart is adapted to a time structure ϑ if ϑ = dx0 holds. The existence of such charts around any
point p ∈M is guaranteed by the Poincaré lemma and the fact that ϑ does not vanish. We will often use the letter t instead of
x0 to denote the first coordinate of an adapted chart.

Let vp ∈ TpM be a tangent vector to a smooth manifold M with time structure ϑ. If ϑp(vp) = 0, then vp is called a
spacelike vector. If ϑp(vp) = 1, the tangent vector vp is said to be time-normalized. We denote the sets of spacelike and of
time-normalized vectors at a point p ∈M by

A0
pM :=

{
vp ∈ TpM | ϑp(vp) = 0

}
and A1

pM :=
{
vp ∈ TpM | ϑp(vp) = 1

}
, (2)

respectively. While the set of spacelike vectorsA0
pM is a vector subspace of the tangent space TpM , the set of time-normalized

vectors A1
pM is an affine subspace of TpM . The unions

A0M :=
⋃

p∈M
{p} ×A0

pM and A1M :=
⋃

p∈M
{p} ×A1

pM (3)

assemble the spaces of spacelike and of time-normalized vectors to the manifoldM , respectively. As a vector subbundle of the
tangent bundle TM , the bundle A0M is integrable because ϑ is closed, i.e., dϑ = 0. Each leaf of the related foliation consists
of synchronous events. A Galilean metric on (M,ϑ) is a positive definite fibre metric on the bundle A0M and the triple
(M,ϑ, g) is called a Galilean manifold. The Galilean metric models the mass of the mechanical system, i.e., its expression in
the local coordinates provided by a chart of M provides the mass matrix of the system. Let

γ : R ⊃ I →M, τ 7→ γ(τ) (4)

be a curve in a manifold with time structure (M,ϑ). The motion of a mechanical system can be seen as a time-parametrized
curve (4) that satisfies ϑ(γ̇) = 1, where γ̇ denotes the tangent field along γ.

The bundle A1M , which we refer to as state space, is an affine subbundle of TM . By its definition (3), the affine bundle
A1M comes with a natural projection π : A1M → M , (p, vp) 7→ p. The time structure ϑ of M induces the time structure
ϑ̂ := π∗(ϑ) on A1M by its pullback with the natural projection. An adapted chart (U,ψ) of M induces the natural chart on
A1M that is given by

Ψ: A1M ⊇ π−1(U)→ R2n+1,
(
p, vp = ∂

∂t

∣∣
p

+ ui ∂
∂xi

∣∣
p

)
7→ (t, x1, . . . , xn, u1, . . . , un), (5)
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where π−1(U) denotes the preimage of the neighbourhood U with the natural projection π. Moreover, we have adopted
Einstein’s summation convention in (5) which says that a summation from 1 to n is understood over a repeated index that
appears once as an upper and once as a lower index.

The tangent field γ̇ along a motion γ is a curve in the state space A1M . We regard this curve as being an integral curve of
a vector field Z. In general, a curve β : R ⊇ I → A1M , τ 7→ β(τ) is the integral curve of a vector field X on A1M if

β̇(τ) = X
(
β(τ)

)
, or locally



ṫ(τ)
ẋ(τ)
u̇(τ)


 =



a(t(τ),x(τ),u(τ))
A(t(τ),x(τ),u(τ))
B(t(τ),x(τ),u(τ))


 , (6)

where the coordinates (t,x,u) = (t, x1, . . . , xn, u1, . . . , un) are provided by the natural chart (5) and the coefficient functions
from the local representation of the vector field X as

X = a
∂

∂t
+Ai ∂

∂xi
+Bi ∂

∂ui
(7)

are gathered as (a,A,B) = (a,A1, . . . , An, B1, . . . , Bn). Seen as a curve in A1M , the motion of a mechanical system is a
particular type of curve. In order to describe the motion of a mechanical system, the curve β needs to be time-parametrized
and to be the tangent field along its projection to M such that

ϑ̂(β̇) = 1 and β = (π ◦ β)̇. (8)

A curve β which satisfies (8) is referred to as second-order curve. The integral curve β from (6) is a second-order curve if and
only if the vector field X satisfies the restrictions

ϑ̂(X) = 1 and Dπ ◦X = idW , (9)

where Dπ : T (A1M)→ TM denotes the differential of the natural projection π and idW : M ⊇W →W is the identity map
on the neighbourhood W ⊆ A1M on which the vector field X is defined. A vector field X that satisfies (9) is said to be a
second-order field because by (6) it represents a second-order differential equation



ṫ(τ)
ẋ(τ)
u̇(τ)


 =




1
u

B(t(τ),x(τ),u(τ))


 , i.e., X =

∂

∂t
+ ui

∂

∂xi
+Bi ∂

∂ui
. (10)

The action form of a second-order field Z = ∂
∂t +ui ∂

∂xi +Zi ∂
∂ui onA1M defined by Loos in [4,5], is the differential two-form

Ω locally given by

Ω = gij

(
dui − 1

2

∂Zi

∂uk
(
dxk − ukdt

)
− Zidt

)
∧
(
dxj − ujdt

)
, (11)

where gij = gij(t,x) denote the coefficient functions of the Galilean metric g = gijdxi⊗dxj . It can be easily seen from the
local expressions (7) and (11) that the requirements

ϑ̂(X) = 1 and Ω(X, ·) = 0

imply that X = Z and, thereby, uniquely define the vector field X . For a coordinate-free definition of action forms and a
mathematically rigorous establishment of the one-to-one correspondence between second-order fields and action forms the
reader is referred to [4,5]. This bijective relation between second-order fields and actions forms can be exploited to formulate
a physical theory for the description of finite-dimensional mechanical systems by postulating an action form governing the
dynamics of the system. For a rough overview, the reader is referred to the related PAMM contribution ‘Dynamics of finite-
dimensional mechanical systems on Galilean manifolds’. One important consequence of the presented approach is that a
definition of force can be given.
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