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In a coordinate-free description of time-independent finite-dimensional mechanical systems the configuration manifold plays
a central role. In the case of time-dependent mechanical systems, time needs to be included in the space on which the related
physical theory is formulated. In this respect, we show that a so-called Galilean manifold not only provides a ‘generalized
space-time’ but that it allows the coordinate-free presentation of a physical theory for time-dependent finite-dimensional
mechanical systems. The motion of a mechanical system is interpreted as an integral curve of a second-order vector field
on the state space related to the Galilean manifold of the system. Second-order vector fields, which are the coordinate-
free equivalent of second-order differential equations, are in one-to-one correspondence with the action forms introduced by
Loos [4,5]. Because of this bijective relation, the kinetic part of the theory can be formulated by postulating the action form
governing the motion of a finite-dimensional mechanical system.
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In this work, we show that the concept of a Galilean manifold introduced by [2] is a suitable space to formulate a theory
for the description of time-dependent finite-dimensional mechanical systems in the language of contemporary differential
geometry (see [3]). For a mechanical system with n degrees of freedom, we consider an (n + 1)-dimensional smooth manifold
M. We say that a closed, non-vanishing differential one-form ¢ endows the manifold M with a time structure. Let (U, 1)) be
a chart of M such that

v MDOU =R ps (20, 2™). (D

Following [4], we say that a chart is adapted to a time structure 9 if 1) = d2 holds. The existence of such charts around any
point p € M is guaranteed by the Poincaré lemma and the fact that 1 does not vanish. We will often use the letter ¢ instead of
20 to denote the first coordinate of an adapted chart.

Let v, € T,M be a tangent vector to a smooth manifold M with time structure 9. If 9,(v,) = 0, then v, is called a
spacelike vector. If ¥, (v,) = 1, the tangent vector v, is said to be time-normalized. We denote the sets of spacelike and of
time-normalized vectors at a point p € M by

AOM = {v, € T,M | 9p(vp) =0} and A M = {v, € T,M | 9,(v,) =1}, )

respectively. While the set of spacelike vectors AS,M is a vector subspace of the tangent space T}, M, the set of time-normalized
vectors All,M is an affine subspace of T,, /. The unions

AM = | J{p} x A)M and A'M = | ] {p} x A\M 3)
peEM peM

assemble the spaces of spacelike and of time-normalized vectors to the manifold M, respectively. As a vector subbundle of the
tangent bundle 7'M, the bundle A°M is integrable because 1 is closed, i.e., di = 0. Each leaf of the related foliation consists
of synchronous events. A Galilean metric on (M, 1) is a positive definite fibre metric on the bundle A°M and the triple
(M, 9, g) is called a Galilean manifold. The Galilean metric models the mass of the mechanical system, i.e., its expression in
the local coordinates provided by a chart of M provides the mass matrix of the system. Let

vy:RDOIT = M, 7 ~(71) )

be a curve in a manifold with time structure (M, ). The motion of a mechanical system can be seen as a time-parametrized
curve (4) that satisfies ¥(§) = 1, where 74 denotes the tangent field along ~.

The bundle A'M, which we refer to as state space, is an affine subbundle of T M. By its definition (3), the affine bundle
A'™M comes with a natural projection w: A'M — M, (p,v,) — p. The time structure ¥ of M induces the time structure
U := 7* () on A'M by its pullback with the natural projection. An adapted chart (U, ) of M induces the natural chart on
AM that is given by

. 1 -1 2n+1 _ 0 i 0 1 n 1 n
UV:AMDODa (U)—=R 7(10’“17_&’19"'“011 p)»—>(t7x,...,m,u,...7u), 5)
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20f2 Section 1: Multi-body dynamics

where 7=1(U) denotes the preimage of the neighbourhood U with the natural projection 7. Moreover, we have adopted
Einstein’s summation convention in (5) which says that a summation from 1 to n is understood over a repeated index that
appears once as an upper and once as a lower index.

The tangent field 4 along a motion + is a curve in the state space A'M. We regard this curve as being an integral curve of
a vector field Z. In general, acurve 5: RO [ — AWM, T 8 (7) is the integral curve of a vector field X on AWM if

t(r) a(t(r), (1), u(r))

B(r) = X(B(r)), orlocally |x(r)| = |A(t(r),x(r),u(r))| ©6)
u(7) B(t(7),x(7),u(r))
where the coordinates (¢,x,u) = (¢,z!,..., 2™, u!,..., u™) are provided by the natural chart (5) and the coefficient functions
from the local representation of the vector field X as
0 .0 .0
X=a—+A"—+B"— 7
9t T ow T au @
are gathered as (a, A,B) = (a, A',..., A", B!,..., B"™). Seen as a curve in A*M, the motion of a mechanical system is a

particular type of curve. In order to describe the motion of a mechanical system, the curve [ needs to be time-parametrized
and to be the tangent field along its projection to M such that

9B)=1 and B=(wof). ®)

A curve 8 which satisfies (8) is referred to as second-order curve. The integral curve 3 from (6) is a second-order curve if and
only if the vector field X satisfies the restrictions

J(X)=1 and DmoX =idy, )

where Dr: T(A'M) — T'M denotes the differential of the natural projection 7 and idy: M 2 W — W is the identity map
on the neighbourhood W C A'M on which the vector field X is defined. A vector field X that satisfies (9) is said to be a
second-order field because by (6) it represents a second-order differential equation

t(7) 1
X(T) = u y i.e.,
u(7) B(t(7),x(7),u(r))

The action form of a second-order field Z = % +ul ai);i + 70 6‘?” on A'M defined by Loos in [4,5], is the differential two-form
Q locally given by

o ;0 .0
X= o tulas +Biom (10)

, 1077

where g;; = ¢, (¢, x) denote the coefficient functions of the Galilean metric g = g;; dz’®daz?. It can be easily seen from the
local expressions (7) and (11) that the requirements

(da® — whdt) - Z'at) A (do? — w'dt), an

J(X)=1 and Q(X,-)=0

imply that X = Z and, thereby, uniquely define the vector field X. For a coordinate-free definition of action forms and a
mathematically rigorous establishment of the one-to-one correspondence between second-order fields and action forms the
reader is referred to [4,5]. This bijective relation between second-order fields and actions forms can be exploited to formulate
a physical theory for the description of finite-dimensional mechanical systems by postulating an action form governing the
dynamics of the system. For a rough overview, the reader is referred to the related PAMM contribution ‘Dynamics of finite-
dimensional mechanical systems on Galilean manifolds’. One important consequence of the presented approach is that a
definition of force can be given.
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