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Abstract We present a finite element discrete model for pantographic lattices,
based on a continuous Euler-Bernoulli beam for modeling the fibers composing
the pantographic sheet. This model takes into account large displacements, rota-
tions and deformations; the Euler-Bernoulli beam is described by using non-linear
interpolation functions, a Green-Lagrange strain for elongation and a curvature
depending on elongation. On the basis of the introduced discrete model of a pan-
tographic lattice, we perform some numerical simulations. We then compare the
obtained results to an experimental BIAS extension test on a pantograph printed
with polyamide PA2200. The pantographic structures involved in the numerical
as well as in the experimental investigations are not proper fabrics: they are com-
posed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli
beam theory in the description of the fibers. We compare the experiments to nu-
merical simulations in which we allow the fibers to elastically slide one respect to
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the other in correspondence of the interconnecting pivot. We present as result a
very good agreement between the numerical simulation, based on the introduced
model, and the experimental measures.

Keywords pantographic structures · non-linear Euler-Bernoulli beam · Ritz
method · finite element method

1 Introduction

In this paper we want to present a numerical model to predict the global be-
haviour under deformation of pantographic structures which are composed by
some fibers, arranged in a particular way we will precisely describe, modeled as
non-linear Euler-Bernoulli beams. In this paper we consider the deformations of a
pantograph as the one in Fig. 1. The pantographic structure we want to model

Fig. 1 Specimen in the reference configuration.

Properties of the sample
Material Polyamide PA2200

` 0.07m
L 0.21m

Pivot height 3mm
Pivot radius 0.5mm

Table 1 Properties of the sample used in the experiment

corresponds to a real 3D printed rectangular specimen (of dimensions ` and L, see
Fig. 1) consisting in a planar grid constituted by two families of continuous fibers
orthogonally intersecting and connecting each other in nodes which we call pivots
(the pivots do not interrupt the continuity of the fibers). Each fiber belonging to
one, say “A”, of the two arrays is connected by the pivots to the fibers belonging
to the other array, say “B”. Notice that each fiber is continuous throughout all its
length. The two families of fibers intersect the sides of the rectangular shape at
an angle of ±45o in the initial configuration. The real pivots are cylinders whose
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torsion and flexion are a priori non negligeable. The total number of pivots (say,
nodes) is Np and the toat number of segments (say, elements or members) com-
prised between two pivots is M . The experimental values of the properties of the
sample are reported in Tab. 1.

The model we use consists in a sort of “meso-model” between the discrete
mass-spring model used as a reference in [1] (see [2] for applications in case of dy-
namical regimes) and the homogenised one (see again [1]). Some useful properties
of non-linear elastic systems, as stability and particular typologies of deforma-
tion (buckling, etc...), are reported in [3]. We consider here the non-linear Euler-
Bernoulli beam theory, which takes into account large displacements, rotations
and deformations. To perform the numerical calculation and obtain the solution
we use a Ritz approach discretization, by considering as finite element the part of
beam between two consecutive pivots of a same beam. We lastly model the pivot
itself via a torsional spring and an extensional spring which allows the sliding of a
fiber respect another of the other family in correspondence of the interconnecting
pivot.

A review on models for pantographic fabrics is presented in [4]. A second gra-
dient formulation for a 2D fabric sheet with inextensible fibres is also possible, as
shown in [5–7]. Preliminary studies about pantographic 2D lattices with internal
pivots can be found in the pioneering work [8]. A discrete spring model for exten-
sible beams is considered and a heuristic homogenization technique is proposed to
formulate a continuum fully nonlinear beam model in [1,9]. In [10], a system con-
stituted by a large number of beams interconnected via ideal hinges is considered,
and some numerical simulations concerning the static and dynamic analysis of the
system are presented and discussed as the number of beams increases. In [11] it
was considered a bi-dimensional sheet consisting of two orthogonal families of in-
extensible fibres, and numerically simulated a standard bias extension test on the
sheet, solving a non-linear constrained optimization problem. Several first and sec-
ond gradient deformation energy models were considered, depending on the shear
angle between the fibres and on its gradient, and the results obtained were com-
pared. In [12] it was presented a novel numerical code implementing directly the
discrete Hencky-type model which is robust enough to solve the problem of the de-
termination of equilibrium congurations in the large deformation and displacement
regimes. The fact that the pivots interconnecting the two arrays of beams may store
elastic energy was efficiently modeled introducing suitable “torsional” springs. The
problem of determining equilibrium congurations is successively solved by impos-
ing the stationarity of total potential energy of the system. The first available ex-
perimental evidence obtained for sheared pantographic specimens is shown in [13]
where how effective and predictive is the aforementioned code [12] is also shown.
Subsequently, a simple fiber rupture mechanism is postulated and added to the
initially elastic model. In [14] it has been studied how the mechanical properties of
pantographic structures are affected by statistically distributed defects. The rele-
vance of the treated problem is more cogent as the technological tools now available
allow for the construction of more and more miniaturised fabrics constituted by
beam lattices. In [15] it has been approached a study about buckling patterns in
pantographic sheets, regarded as two-dimensional continua consisting of lattices
of continuously distributed fibers. The fibers are modeled as beams endowed with
elastic resistance to stretching, shearing, bending and twist. Included in the theory
is a non-standard elasticity due to geodesic bending of the fibers relative to the
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lattice surface. It is possible to model such structures at a suitably small length
scale (resolving in detail the interconnecting pivots/cylinders) using a microscopic
model which is a quadratic isotropic Saint-Venant first gradient continuum in-
cluding geometric nonlinearities and characterized by two Lamè parameters. The
introduced macroscopic two-dimensional model for pantographic sheets is charac-
terized by a deformation energy quadratic both in the first and second gradient
of placement. Moreover, it is needed that the second gradient stiffness depends
on the first gradient of placement if large deformations and large displacements
configurations must be described. The numerical identification procedure consists
in fitting the macro-constitutive parameters using several numerical simulations
performed with the micro-model.

In the same family of the previous cited microstructured (meta-)materials it
is possible to introduce also different kind of microstructures (see for example
[16–19]) which can be enriched by using some homogenisation procedure, as in
[20, 21], also performed by numerical tools [21]. Via homogenisation procedures
one in general obtains higher gradient continua [22, 23]: in some particular cases
the more specific second gradient continua are obtained, as in [24–28], where the
properties of second gradient material are produced by the specific microstructure
(in [27], for example, the authors start from a linear elastic truss, which is an
interesting case if compared to pantographic structures, studied in the present
paper).

The aim of this paper is to find a predictive model for global deformations of
pantographic structures. The interest in these meta-materials was increased by the
possibilities opened by the diffusion of technology of three-dimensional printing.

The system considered herein was first investigated in [8,29], where simulations
about linearized behavior were shown. The proposed numerical simulations will be
helpful in designing a systematic experimental campaign aimed at characterizing
the internal energy for physical realizations of the ideal pantographic structure
presented in this paper.

In section 2 we present the real physical system and the model we use to de-
scribe it. In section 3 a short introduction on the non-linear Euler-Bernoulli beam
theory is given. In section 4 we write the total potential energy of a pantographic
structure modeled by using the non-linear Euler-Bernoulli beam theory and its
discretization via a Ritz approach is given in section 5. Section 6 introduces a
first application of the code developed by using the results presented in the pre-
vious sections. Here we consider the simplest structures possible: the modules X
and XX. In section 7 we present numerical simulations relative to an extension
test we also performed on a real 3D printed pantograph. In this section we also
compare the numerical results with the experiments. In section 8 we discuss about
some qualitative results we can derive from numerical simulations. Section 9 briefly
concludes.

2 The model

The real system we described is analysed via a mechanical model, whose reference
configuration C∗ is graphically represented in Fig. 2. The fibers, divided in the
two families “A” and “B”, are contained in a rectangle whose dimensions in C∗
are ` and L, which are in a proportionality relation L = g`. For the numerical
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System
Np number of pivots 109
Nf number of fibers 30

M number of finite elements 96
Cross-section area 144 · 10−8m2

Cross-section inertia moment 9.72 · 10−14m4

Youngs modulus 1600 · 106 Pa

Table 2 Geometrical properties

values one can refer to Tabs. 1-2. Each member of length Li comprised between
two nodes is modeled as a Euler-Bernoulli beam and therefore is endowed with a
stretching energy W i

s and a bending energy W i
b , respectively related to axial strain

ε at centroid axis and bending strain κ of a shear undeformable beam, as it will
be shown in the following.

Fig. 2 Graphical representation of the reference configuration and model of the pivot.

For describing a real pantographic sheet we are obliged to introduce an ener-
getic term related to the torsion of the pivots (at the micro-level, while, at the
macro-homogenized-level, it has to be related to the shear in the pantographic
sheet, as in [1]). Following the ansatz presented in [30], we add a term in order to
take into account the possibility that fibers of different families slide one respect
to the other in correspondence of a pivot (which in a micro description of the
problem can be interpreted as the energy relative to the flexion or the shear of the
pivot, Fig. 3). In the following sections we will need to identify the pivots and the
finite elements composing the single Euler-Bernoulli beams: for this aim we refer
to Fig. 4 for the numbering.
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Fig. 3 Image of real pivots (a) and computer representation (b).

Fig. 4 Description of numbering process for family A. We identify the pivots by a couple of
numbers (as if the pivots were disposed as the elements of a matrix) and the finite elements
by just one number. A similar description can be done for the family B.

3 Potential energy of the pantographic structure

The modeling procedure is to be completed by defining the deformation energy.
The problem of determining equilibrium configurations is successively solved by
imposing the stationarity of total potential energy. Consider the energy for a single
member i, whose length is Li (i = 1, . . . ,M): each beam stores elastically an
energy which depends quadratically on variations of its length, Eq. (42), (stretching
energy)

Ws =
M∑
i=1

1

2

∫ Li

0

EAε2 dx (1)

and curvature, Eq. (46), (bending energy)

Wb =
M∑
i=1

1

2

∫ Li

0

EIκ2 dx (2)

for the system composed by all the members, whose total number is M .
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Fig. 5 Representation of pivot energetic terms.

By referring to Fig. 5.a we write pivot torsion energy as follows

Wp =

Np∑
i=1

1

2
kp

(
π

2
−∆αi

)2
(3)

∆αi is the angle change between the current chord ic − jr with respect to the
reference chord ic − jt (Fig. 6).

A last energetic contribution has to be added. By referring to Fig. 5.b, we write
the interaction energy as

Wf =

Np∑
i=1

1

2
kf (λ2i + k3λ

3
i + . . . ) (4)

where λ =
√

[(XA + UA)− (XB + UB))]
2 + [(YA + VA)− (YB + VB))]

2, with (XA, YA)

and (XB , YB) the coordinates of the points of the two families corresponding to a
same pivot in the reference system of the undeformed configuration and UA, UB ,
VA and VB the nodal displacements. In general we can have a nth order polynomial
in λ. In the following we will use only the λ2 and λ3 terms, which allow together
to fit both the force-displacement experimental plot and the deformed shape of
the pantograph.

Then we have
W = Ws +Wb +Wp +Wf (5)

for the total energy W of the structure. We postulate the axiome of minimum of
potential energy to get the equilibrium condition

δW = 0 (6)

which has to hold for all admissible virtual displacements compatible with the
specified boundary conditions.

4 Discretization by a Ritz approach

We cannot solve analytically the presented problem. For this reason, we propose
a Ritz approach by distretizing the energy and by introducing some shape func-
tions to describe the displacements. The beam segment comprised between two
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nodes will be referred to in the following as “local beam” or simply “element” or
“member”; the total number of (free, fixed, actioned) nodes is Np and the total
number of elements is M . The k-th element is shown in Fig. 6, where i and j are
the end nodes of the element, X − Y is the fixed global reference system, Xi, Yi
are the coordinates of the node i in the fixed reference X − Y , x − y is the mov-
ing local reference system; in the finite element grid formulation, the latter one is
rigidly bounded to the line segment i − j in the initial configuration and to the
line segment ic− jc in the current configuration. If the element displaces as a rigid
body, the local reference axes are carried with it and no element deformations
are induced. Relative to this reference system, the element can be visualized as a

Fig. 6 Global and local reference systems and rigid-body motions of the single grid element.

simply supported beam with a pin at nodes i and ic, and with a roller at nodes j,
jt and jr. This virtual supporting system simply allows to suppress the rigid body
modes. The kinematics of this generic element moving from its initial (reference)
to current configuration is described by its nodal displacements in the fixed global
reference system (X-Y), Fig. 6, in accord to the work [31]. These nodal generalized
displacements are: Ui, U

′
i , Vi, Φi, Uj , U

′
j ,Vj , Φj , where Ui, Vi, Uj , Vj are transla-

tions of nodes i and j respectively in the fixed reference system X − Y , Φi, Φj

total rotations and U ′i , U
′
j first derivatives of axial displacement. As shown in Fig.

7 the basic element deformations are defined as displacements relative to the local
reference axes x− y. In sum, the nodes i and j represent the initial configuration,
the nodes ic and jt, jr rigid body motions (translation, ic, jt, and rotation, jr,
respectively), the nodes ic and jc deformations (extension and flexure). Let the
rectilinear line segment connecting nodes ic and jc be defined “current chord”; the
element deformations of this basic system are defined as: (1) the relative displace-
ment δk of the node jc with respect to the node jr along the current chord; (2)
the rotation ϕi of the tangent line at node ic and (3) the rotation ϕj of the tan-
gent line at node jc relative to the current chord. Thus, these three basic element
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Fig. 7 Kinematics and deformations of the single grid element.

deformations are defined as

δk = Lk − Lk0 (7)

ϕi = Φi − (αk − αk0) = Φi −∆αk (8)

ϕj = Φj − (αk − αk0) = Φj −∆αk (9)

where Lk0 and Lk are the initial and current lengths of k-th element reference
(i− j) and current (ic-jc) chords, respectively and are computed as

Lk0 =
√

(Xj −Xi)2 + (Yj − Yi)2 (10)

Lk =

√
[(Xj + Uj)− (Xi + Ui)]

2 + [(Yj + Vj)− (Xi + Vi)]
2 (11)

in terms of the initial X−Y coordinates and nodal displacements U , V in the fixed
reference X − Y .

The angles αk0 and αk denote the orientations of initial i−j and current ic−jc
element chords in the global system, respectively, and are expressed as

αk0 = arctan

(
Yj − Yi
Xj −Xi

)
(12)

αk = arctan

{
[(Yj + Vj)− (Yi + Vi)]

[(Xj + Uj)− (Xi + Ui)]

}
(13)

∆αk denotes the rigid body rotation of the element reference i− j to the current
ic − jc chord

∆αk = αk − αk0 (14)

The continuity condition in the i node common to two connected beam elements,
say k and k + 1, belonging to the same family, states that

Uk,j = Uk+1,i (15)

Vk,j = Vk+1,i (16)

Φk,j = Φk+1,i (17)
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Due to the order of the derivatives appearing in Eqs. (44-47), the axial displace-
ment u and transverse displacement v require, at least, functions with continuity
C2. Therefore, in the local reference system x − y (see Fig. 6) the generalized
displacements (u, v) inside the element are interpolated from the (nodal) local
displacements using the expressions

u = H3δ +H2u
′
i +H4u

′
j (18)

v = H2ϕi +H4ϕj (19)

where H1, H2, H3 and H4 are the Hermite cubic polynomials [32]. In the range of
0 ≤ x ≤ Lk0, these functions are defined as

H1 = 1− 3
x2

L2
+ 2

x3

L3
(20)

H2 = x− 2
x2

L
+
x2

L2
(21)

H3 = 3
x2

L2
− 2

x3

L3
(22)

H4 = −x
2

L
+
x3

L2
(23)

With referring to the energy introduced in Sec. 3, we can write down the
discretized form of the energy by calculating the single contribution due to every
finite element and every pivot constituting the structure and by summing them.
So we have for the stretching energy

whs =
1

2

∫ Lh

0

EA ε2 dx h ∈ {1,M} (24)

and for the bending energy

whb =
1

2

∫ Lh

0

EI κ2 dx h ∈ {1,M} (25)

while the pivot torsion energy is

whp =
1

2
kp

(
π

2
−∆αh

)2
h ∈ {1, Np − 4} (26)

and lastly the interaction energy is

whf =
1

2
kf (λ2h + k3λ

3
h + . . . ) h ∈ {1, Np − 4} (27)

The strain energy defined for each beam element of the pantographic sheet
allows us to easily define the total strain energy by simply summing each contri-
bution

Ws =
M∑
h=1

whs (28)

for the stretching energy Us of the structure,

Wb =
M∑
h=1

whb (29)
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for the bending energy Ub of the structure, and similarly for the two terms related
to deformations of pivots

Wp =

Np−4∑
h=1

whp , Wf =

Np−4∑
h=1

whf (30)

Then we have

W = Ws +Wb +Wp +Wf (31)

for the total energy W of the structure.
In order to have a complete solution of the considered equilibrium problem,

displacements of nodes and forces exerted by each beam element on each other, a
step-by-step optimization procedure was implemented to reconstruct the complete
equilibrium path of the pantographic sheet, as it will be described in detail in the
following. The generalized displacements of the grid nodes are collected in the
vector D =

{
U i,U

′
i,V i,Φi

}
, where i = {A,B} for the two families of beams, in

order to write the total energy of the pantographic structure in the form [12]

Π(D) = W − Lext (32)

where

U i =
{
Ui1, Ui2, . . . , UiNp

}
(33)

U ′i =
{
U ′i1, U

′
i2, . . . , U

′
iNp

}
(34)

V i =
{
Vi1, Vi2, . . . , ViNp

}
(35)

Φi =
{
Φi1, Φi2, . . . , ΦiNp

}
(36)

where Lext is the work of the external loads and all quantities on the RHS depend
on the variable D. The displacements of a sub-set of nodes are imposed and exter-
nal conservative forces are applied to the remaining sub-set of nodes. Thus, vector
D can be decomposed into the pair of two sub-vectors: the imposed displacements
Da and the free displacements Df

D = {Da,Df}

Obviously, Lext is the work done by the external forces possibly applied to free
degrees of freedom Df of structural nodes. In particular, it is possible to impose
the displacement directly and not an external force: in this case, as the one here
analysed, we do not include Lext in the optimization procedure. Moreover, the
specification of suitable boundary conditions is needed where displacements are
imposed, leading to the further decomposition of the sub-vector Da

Da = {Dfix,Dact} = {0,Dact} (37)

in the sub-vector Dfix of fixed nodes and in the sub-vector of nodes, where a
quasi-static loading condition

Dact = D̄ (38)

consists of monotonically increasing displacements up to the maximum value D̄
applied to the actioned nodes.
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5 Continuous non-linear Euler-Bernoulli beam theory

When the transition from the initial configuration C∗ to the deformed Ct (stretched
and deflected) configuration is characterized by finite displacements and rotations
(Fig. 8) it is convenient to establish two abscissas, one of the undeformed configu-
ration (x) and one of the deformed configuration (s), whereas dξ is the infinitesimal
length of the rectilinear element connecting the ends of the curvilinear element in
the deformed configuration. Also the angle θ(x) measures the rotation of the tan-
gent line in any point (of abscissa x in the undeformed configuration) of the beam
axis when the transition from undeformed to deformed shape takes place, Fig. 8.

Fig. 8 Infinitesimal description of the beam in the actual configuration.

The infinitesimal length dξ of the current rectilinear element in the deformed
beam is given by, Fig. 8,

dξ2 = (dx+ du)2 + dv2 = [(1 + u′)dx]2 + dv2 (39)

dξ =
√

[(1 + u′)dx]2 + dv2 (40)

dξ

dx
=
√

(1 + u′)2 + (v′)2 (41)

where the convention d(·)
dx =′ was adopted to indicate the derivation with respect

to the x abscissa; u and v are the components of the displacement of the generic
point of the beam axis, identified by the abscissa x. Therefore, the axial elongation
is

ε =
ds− dx
dx

' dξ − dx
dx

=
√

(1 + u′)2 + (v′)2 − 1 (42)

According to [33], the curvature is defined as shown in Fig. 8

1

ρ
= κ :=

dθ

ds
' dθ

dξ
(43)

θ being defined as the angle which identifies the tangent

ψ = tan θ =
dv

dx+ du
=

v′

1 + u′
(44)
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The rotation of the tangent line to the beam axis is

θ = arctanψ (45)

According to the equations (43) and (45), the curvature is given as

κ =
dθ

dξ
=
dθ

dx
· dx
dξ

= (arctanψ)′
dx

dξ
(46)

Moreover, equation (41) gives

dx

dξ
=

1√
(1 + u′)2 + (v′)2

(47)

Finally, observing that the derivative of the arctangent function is resolved as a
noticeable derivative as

dθ

dx
=

d

dx
arctanψ =

ψ′

1 + ψ2
(48)

yields the curvature with respect to the undeformed configuration

κ =
ψ′

1 + ψ2
· 1

1 + ε
(49)

where the definition of axial elongation of Eq. (42) has been used. The choice of
this form of the curvature allows to account for stiffening due to positive stretching
(length increment) of the beam axis. With the previous definitions we can derive
the stretching energy for a beam of length L

Ws =
1

2

∫ L

0

EAε2 dx (50)

and its bending energy.

Wb =
1

2

∫ L

0

EIκ2 dx (51)

Throughout this paper, only material linearity is of interest. Thus, the sectional
deformations are related to their conjugate-work sectional forces as follows:

N(x) = EAε (52)

M(x) = EIκ (53)

S(x) =
dM

dx
· 1

1 + ε
=

M ′

1 + ε
(54)

where A, I are section’s area and inertia moment, respectively, E is the Young’s
modulus, EA and EI are the axial and flexural rigidities, respectively, and N(x),
M(x) and S(x) are the section axial force, bending moment and shear force, re-
spectively.
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6 Basic modules

We now present two preliminary results obtained by using the algorithm previously
described. The code needs as input the geometry of the pantograph (we give it
by assigning the short side length ` and a parameter which is defined by the
ratio with the long side L, g = L/`), the material characteristics and the loading
conditions. For simplicity’s sake, the interaction between the beams of the two
orders occurs only by means of perfect internal hinges. The sample modules have
X- and XX-shape, respectively.

The analysis of the two sample models and the presentation of the related
results are important for demonstrating the validity of the modeling and the pro-
cedure proposed in this paper, as they allow (i) to evaluate in detail the capacity
of the proposed method to take into account at the local level of element of the
large displacements, rotations and deformations of the single beams and (ii) to
make the operation of the procedure to be appreciate in terms of exchange be-
tween the two stretching and bending energy components. In fact, if on one hand
the example with many degrees of freedom studied later in section 7 allows com-
paring the numerical results with the experimental ones under various aspects, it
does not however make it easy, given its complexity, to consider local aspects of
deformations and stress-resultants in the individual beam elements.

6.1 Basic grid X-module

As first example we consider the most simple pantographic structure, in which
there are only two beams and one pivot in the intersection of the beams. This
example was chosen to be able to observe in detail the behavior of the elemental
grid mesh, a behavior that influences the overall behavior of the much more com-
plex example studied in section 7. Table 3 shows the geometric, material and load
data used in this example; Figure 9a shows the initial (undeformed) and final (de-
formed) configurations, as well as the numbering adopted for the nodes and for the
elements. Figure 9b shows the progress of the two stretching and flexural energy
components as the intensity of the applied external action increases, consisting in
horizontal displacements impressed at the nodes 3 and 6. It is interesting to note
the exchange point between the two components, where the stretching component
exceeds the bending component, when the initially oblique fibers are aligning in
the direction of the applied action.

Figure 10 shows the local deformation and stress characteristics in some par-
ticularly significant elements and nodes, as the intensity of the applied external
action increases. In particular, Figure 10a shows the curvatures of the beams 3
and 4, Figure 10b shows the axial force and the shear force in the node 4 of the
beam 3, Figure 10c shows the bending moment in the node 5 of the beam 3.

6.2 XX-module

In this subsection an intermediate example is studied between the basic example
(X-module) analyzed in the previous section and the complex example studied in
section 7. It consists of a double elemental mesh (XX-module). It has been chosen
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System two beams, four elements
Geometry

` 0.007m
g 1

Sectional and material properties
Cross-section area 144 · 10−8m2

Cross-section inertia moment 12 · 10−16m4

Youngs modulus 1600 · 106 Pa
Displacement boundary conditions Nodes 1 and 4 fixed

Loading condition Nodes 3 and 6 actioned
horizontal displacement
20 steps

Increment 1 · 10−4m

Table 3 Input for the basic grid X-module

Fig. 9 (a) Basic module: referential form (dashed line), current form (solid line). (b) Strain
energy.

because it allows us to verify the interactions in terms of deformation character-
istics and stress-resultants between two elemental meshes at local level of nodes
and elements, aspects which on the one hand can not obviously be highlighted by
the isolated basic example and on the other do not stand out in the foreground in
the example of section 7, veiled by its complexity.

Table 4 shows the geometric, material and load data used in this example;
Figure 11 shows the initial (undeformed) and final (deformed) configurations, as
well as the numbering adopted for the nodes and for the elements. Figure 12a shows
the progress of the two stretching and flexural energy components as the intensity
of the applied external action increases, consisting in horizontal displacements
impressed at the nodes 1, 6, 7 and 12. It is also interesting to note also in this
case the occurrence of the exchange point between the two components, where the
stretching component exceeds the bending component, when the initially oblique
fibers are aligning in the direction of the applied action.

Figure 12 shows the local deformation and stress characteristics in some par-
ticularly significant elements and nodes, as the intensity of the applied external
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Fig. 10 (a) Beam curvature (elements 3 and 4). (b) Axial and shear forces (element 3, node
4). (c) Bending moment (element 3, node 5).

System four beams, eight elements
Geometry

` 70mm
g 3

Sectional and material properties
Cross-section area 144 · 10−8m2

Cross-section inertia moment 12 · 10−16m4

Youngs modulus 1600 · 106 Pa
Displacement boundary conditions Nodes 1, 6, 7 and 12 vertically fixed

Loading condition Nodes 1, 6, 7 and 12 actioned
horizontal displacement
18 steps

Increment 1 · 10−4m

Table 4 Input for the XX-module

action increases. In particular, Figure 12b shows the curvatures of the beams 3
and 4, Figure 12c shows the axial force and the shear force in the node 3 of the
beam 2, Figure 12d shows the bending moment in the node 2 of the beam 2.

7 Numerical simulations and comparison with experimental measures

We now can study the experimental problem, which is represented by the panto-
graphic structure in Fig. 1. All the experimental relevant properties of the sample
are given in Tab. 5
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Fig. 11 XX structure: referential form (dashed line), current form (solid line).

Fig. 12 (a) Strain energy. (b) Beam curvature (elements 3 and 4). (c) Axial and shear forces
(element 2, node 3). (d) Bending moment (element 2, node 2).

The input data used for numerical simulation are reported in Tab. 6

By comparing the experimental force-displacement curve to the numerical one
and the deformed shapes of the real sample to the ones obtained using the code
we have identified the unknown rigidities kp, kf and k3 in terms of a parameter ε,
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Properties of the sample
Material Polyamide PA2200

` 70mm
g 3

Pivot height 3mm
Pivot radius 0.5mm

ε 1.53 · 10−4

Unknown rigidities
kp 30ε2N/m
kf 8 · 106ε2N/m
k3 1.8 · 105ε2N/m2

Table 5 Properties of the sample used in the experiment

System 30 beams, 96 elements
Geometry

` 70mm
g 3

Sectional and material properties
Cross-section area 144 · 10−8m2

Cross-section inertia moment 9.72 · 10−14m4

Youngs modulus 1600 · 106 Pa
Displacement boundary conditions Nodes of the right side vertically fixed

Loading condition Nodes of the right side actioned
horizontal displacement
20 steps

Increment 2.85 · 10−3m

Table 6 Input for the simulation of the experimental problem

that is related to the geometrical properties of the considered pantograph. Their
numerical values are also listed in Tab. 5.

The first result we obtain is the energy in function of the imposed displacement
(see Fig. 13); in particular, we can see the total energy and the simple contributions
(stretching, bending, pivot torsion, interaction). From the Castigliano’s Theorem,
via a process of discrete derivation, we obtain a force-displacement relation. This
relation is plotted in Fig. 14, in which we can see a comparison with the experi-
mental data, represented by the continue line (which consists of an interpolation of
the experimental points through third order polynomials). The dashed lines give
an error band, which was obtained by considering the experimental noise (more
bigger than the sensibility of the instrument of measure, which is ≈ 1N).

Lastly we can compare the deformed shape of the pantograph obtained by the
numerical minimization to the experimental one (see Fig.15). We also compare the
measured values of the angles defined in Fig. 1 with their computed values (see Fig.
16). In Fig. 15 we can see four different shapes for four different displacement steps:
in Fig. 15.a ∆U = 0.014m, in Fig. 15.b ∆U = 0.037m, in Fig. 15.c ∆U = 0.048m
and in Fig. 15.d ∆U = 0.054m, which corresponds to the maximum displacement
reached before the first breakage.

In Tab. 7 we give the reaction forces exerted on the pivots of the right short
side (see Fig. 17) for the maximum imposed displacement ∆U = 0.057m (the
corresponding deformed shape is shown in Fig. 15.d). As it is well depicted both
in table 7 and in figure 17, we have that the y-component of the reaction force is
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Fig. 13 Energy in function of the displacement.

Fig. 14 Force-displacement curve. In grey the experimental data and in red the numerical
simulation.

x component of reaction y component of reaction
R1x 9.04N R1y 9.13N
R2x 1.66N R2y 0.47N
R3x 0.12N R3y 0.00
R4x 0.96N R4y −0.51N
R5x 9.12N R5y −9.17N

Table 7 Reaction forces exerted on the pivots of the right short side

emisymmetric distribution at null average, while the x-component is distributed
in a parabolic-like way.
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Fig. 15 Superposition of experimental (gray) and numerical (blue) shapes for four different
displacements: (a) 0.014m, (b) 0.037m, (c) 0.048m, (d) 0.054m.

8 Discussion

The possibility given to the beams to slide one respect to the other in correspon-
dence of the pivots theoretically allows us to qualitatively forecast the arising of
fracture in the pantographic sheet.

As it is well known from the previous literature [34–39], fracture was observed
predominantly in one of the corners of the sheet, because of the elongation energy
stored in the angular beam. In [30] was firstly attempted to explain some phe-
nomena of fracture in aluminum printed pantographs on the basis of the relative
motion between the beams of the two different families.
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Fig. 16 Angles ψC and ψL. In red the experimental data with error bar given by the measure
procedure and in blue the numerical simulation.

Fig. 17 Force reactions for every pivot in the side at which the displacement has been applied.

The algorithm here developed is able to forecast the onset of fracture, if the
mechanism responsible for it is based on a threshold of the relative displacement.
In Fig. 18 it is possible to see the relative displacement between beams as a 3D
bar graph, plotted on the shape of the pantographic sheet: as it is clear from the
figure, there are two maxima (an interesting aspect related to the introduction
of the cubic factor in the sliding energetic term is the breaking of symmetry in
the plot of relative displacement), which correspond to two precise pivots. One of
them will undergo the first rupture, due to a flexural/shear stress. This is proven
in Fig. 19, where a well explicative sequence showing the load step when the earlier
fracture occurs is presented: the broken pivot is precisely the one forecasted by
the model.
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Fig. 18 Plot of the relative displacement on the shape of the pantographic sheet.

Fig. 19 A well explicative sequence which shows the moment of the first fracture, in the pivot
forecasted by the model.

Some useful tools in modelling damage and fracture can be found in [40, 41].
From the information about the relative displacement we can forecast the onset
of fracture, i.e. we can give a scheme of the weakest zones in the shape of the
pantographic sheet: it could be useful, as it as been done in [42, 43], to consider
the possibility of a shape/topology optimisation to obtain a stronger structure.
The damage growth path can also be experimentally followed via some novel and
very precise techniques of measure, as shown in [44,45]. The model of elastic-plastic
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planar frames and the incremental solution procedure presented in [46–49] can be
considered as precursors of the above mentioned failure analysis of pantograph
structures.

9 Conclusion

The advancement of 3D printing technologies allowed to realise relatively small
structures constituted by beams and some elastic constraints [50,51]. If homogenised
[52–55], these structures may lead to non-standard generalised continua. As usually
remarked along the history of science, the feed-back from technological advance-
ment opens new scientific perspectives and produces novel theoretical frameworks
by changing paradigms [56–60]. This paper can be placed in the described scientific
framework.

We have presented a computationally efficient and predictive model for a global
analysis of the behaviour under deformation of pantographic structures. We have
validated our model via comparison to some experimental measures. As an exten-
sion of the model presented in [1], aimed by some ideas studied in [61–65] and first
applied in [30], we added a new energetic term to the potential energy owned by
the pantographic structure and deriving from the possibility given to the beams of
the two different families to slide one respect to the other in correspondence of the
interconnecting pivot. From this new term, as we have shown in Sec. 8, we are able
to forecast the onset of fracture when the fundamental mechanism responsible for
it, as in our case, is based on a threshold of the relative displacement. Of course
we can improve the efficiency of the here developed numerical tool: some possible
improvements can be realised for example by using more performing methods, as
isogeometrical analysis or conjugate gradient methods [66,67].

The method here developed can be in future works generalised to treat some
different structures, constituted for example by plates and shells [68,69], or differ-
ent beam theories [70] or eventually deformation tests (e.g. shear test as in [71]).
In case a dynamical study need to be performed (we imagine, for example, the
possibility to observe travelling waves around a pantographic sheet), useful tools
about non-linear dynamics in fibres can be found in [72].
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