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Abstract
Bi-pantographic fabrics are composed of two families of pantographic beams and correspond to a class of architectured
materials that are described in plane as second-gradient 2D continua. On a discrete level, a pantographic beam is a peri-
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polyamide was achieved by additive manufacturing techniques. Starting from a discrete spring system, the deformation
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lines directed along the pantographic beams. Displacement-controlled bias extension tests were performed on rectangu-
lar prototypes for total elastic extension up to 25%. Force–displacement measurements complemented by local digital
image correlation analyses were used to fit the continuum model achieving excellent agreement.
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1. Introduction

Continuum modelling, i.e., spatially continuous formulations [1-5], is routinely exploited to describe at
macro length scales the collective behaviour of (mostly periodic) discrete systems, whose element-by-
element micro-scale description [6-10] can be computationally challenging. Homogenization procedures
[11–15] can be used to pass from a discrete to a continuous description. These procedures involve the
definition of specific micro–macro correspondences [16], which enable precise meanings to be given to
many features of the macro-model in terms of those of the micro-model.

The last few decades have witnessed a high acceleration in the development of additive and subtrac-
tive techniques such as 3D printing [17]. Such techniques allow for micro-structure control at very small
scales, which motivate the renewed interest in homogenization [18–22].

Pantographic structures [23–25] are among the most straightforward examples of micro-structures
whose continuum modelling gives a wealth of non-standard problems in the theory of higher-gradient
[26-28] and micromorphic continua [11, 29-31], also of mathematical interest [32]. Convenient discrete
descriptions of pantographic structures have been obtained in the literature by Hencky-type modelling
[7, 8, 30].

The derivation of a 1D continuum model being capable of describing the finite planar deformation of
a discrete slender pantographic structure, referred to as pantographic beam, was presented in [33]. The
continuum model is deduced from a discrete one by applying a variational asymptotic procedure [11, 20,
34, 35]. Within the homogenization process, the overall dimension of the system is kept fixed, while the
number of the periodically appearing subsystems, called cells, is increased, and the stiffnesses are scaled
appropriately.

In [33], the model of [34, 35] has been generalized to the finite strain regime. Remarkably, the defor-
mation energy density of such a 1D continuum [33] does not only depend on the material curvature but
also on the stretch gradient. In addition to a more pedagogical presentation of such a continuum model,
Barchiesi et al. [36] addressed numerically the evaluation of differences between the micro- and the
macro-model in order to elucidate to what extent the continuum retains the relevant phenomenology of
the discrete system. Special attention has been given to the difference between the deformation energy of
the micro- and the macro-model when the micro length scale tends to zero, i.e. the discrete-continuum
error. This deviation gives a quantitative value to assess the quality of the approximation of the discrete
by its continuous counterpart.

Bi-pantographic fabrics were first introduced by Seppecher et al. [35] as assemblies of discrete panto-
graphic beams leading at macroscopic scale to second gradient materials [37-39]. The corresponding
deformation energy depends upon the rate of change in orientation and stretch of material lines directed
along the pantographic beams. The aims of this work are as followings. First, we want to generalize the
homogenization carried out in [35] in two respects. In particular, extensible elements and arbitrarily
large strains are considered. Second, a possible design of bi-pantographic prototypes is sought, which is
obeying the discrete model. Lastly, the derived results will be validated.

Addressing the above objectives leads to the following organization of the article. In Section 2, the
discrete bi-pantographic structure is introduced followed by a homogenization that is carried out by
exploiting the results obtained for pantographic beams. In Section 3, we establish relations between
quantities for the microscopic and macroscopic models, which go beyond Piola’s micro–macro identifi-
cation used throughout the homogenization. Based on these relations, a non-standard bias extension
test is then introduced for both models. Lastly, the finite element method employed to solve the conti-
nuum model is introduced with a special emphasis on the challenges arising from a weak mixed formu-
lation. In Section 4, the design and manufacturing of a bi-pantographic prototype is reported together
with the description of the experimental setup. The digital image correlation (DIC) technique used to
retrieve discrete displacement measures is also briefly recalled. In Section 5, the fitting of parameters by
means of acquired experimental measures is presented and continuum is compared with experiments.
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2. Heuristic homogenization

The continuum is deduced by applying Piola’s micro–macro identification procedure [11, 40], which can
be considered as a heuristic variational asymptotic procedure. The steps describing such a procedure can
be sketched as follows.

(i) A family of discrete spring systems embedded in the 2D Euclidean vector space E
2, i.e. the

micro-model with micro length scale e . 0, is introduced: generalized coordinates and energy
contributions Ee are defined.

(ii) The kinematic descriptors of the continuum, i.e. the macro-model, are introduced as continu-
ous functions with a closed subset of E2 as their common domain: these functions must be cho-
sen such that their evaluation at particular points can be related to the generalized coordinates
of the micro-model.

(iii) Formulation of the deformation energy of the micro-model Ee using the evaluation of the con-
tinuum descriptors at particular points, followed by a Taylor expansion of the energy with
respect to the micro length scale e.

(iv) Specification of scaling laws for the constitutive parameters in the micro-model followed by a
limit process in which the energy of the continuum E is related to the micro-model by
E= lim

e!0
Ee

2.1. Preliminaries

To ease the presentation, before addressing bi-pantographic structures, some preliminary computations
related to pantographic beams are revisited.

2.1.1. Pantographic beam: discrete model. The assembly and kinematics of a discrete pantographic beam slightly
generalizing that presented in [33, 36] are sketched in Figure 1. In the undeformed configuration, see
Figure 1(a), N cells are arranged upon a straight line along the direction of the unit basis vector ex 2 E

2.
The total length L 2 R of the undeformed pantographic beam accounts for N � 1 cells, as depicted in

(a)

(b)

(c)

Figure 1. Pantographic beam. (a) Undeformed configuration. (b) Generalized coordinates of the ith cell. (c) Deformed
configuration with redundant kinematic quantities. (d) Force elements of a single cell.
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Figure 1(a). The cells are centred at the positions Pi = ieex for i 2 0, 1, . . . ,N � 1f g with e = L=(N � 1).
The basic ith unit cell is formed by four extensional springs hinge-joined together at Pi having length
e=(2 cosg). Rotational springs, which are coloured in blue, red and green in Figure 1(d), are placed between
opposite collinear and adjacent springs belonging to the same cell and between adjacent springs belong-
ing to different cells. Note that extensional springs are rigid with respect to bending such that they can
transmit torques. White-filled circles in Figure 1 depict hinge constraints, requiring the end points of the
corresponding springs to have the same position in space. We note that the assembly considered herein
is a generalization of that studied in [33], as the angle g 2 (0,p) between springs concurring at point Pi

from the right in Figure [33] is generally different from p=4. Moreover, further rotational springs, which
are coloured in green in Figure 1(d), are considered. When not otherwise mentioned, the indices i, m and
n henceforth belong to the sets i 2 f0, 1, . . . ,N � 1g, m 2 f1, 2g and n 2 fD, Sg, respectively.1

The kinematics of the spring system is locally described by finitely many generalized coordinates. The
coordinates are the positions pi 2 E

2 of the points at position Pi in the reference configuration and the
lengths of the oblique deformed springs l

mn
i 2 R. Various other kinematical quantities are considered to

formulate the total potential energy in a most compact form. Applying the law of cosines, the angles umn
i

depicted in Figure 1(c) are determined by the following relationships

u1D
i = cos�1 k pi + 1 � pik2 + (l1D

i )
2 � (l2S

i + 1)
2

2l1D
i k pi + 1 � pi k

" #
,

u1S
i = cos�1 k pi � pi�1k2 + (l1S

i )
2 � (l2D

i�1)
2

2l1S
i k pi � pi�1 k

" #
,

u2D
i = cos�1 k pi + 1 � pik2 + (l2D

i )
2 � (l1S

i + 1)
2

2l2D
i k pi + 1 � pi k

" #
,

u2S
i = cos�1 k pi � pi�1k2 + (l2S

i )
2 � (l1D

i�1)
2

2l2S
i k pi � pi�1 k

" #
,

ð1Þ

while the angles j
m
i depicted in Figure 1(c) are determined by

j1(2)
i = cos�1 (l1(2)D

i
)
2
+ (l2(1)S

i + 1
)
2�kpi + 1�pik2

2l1(2)D
i

l2(1)S
i + 1

� �
: ð2Þ

For a 2 E
2, k a k =

ffiffiffiffiffiffiffiffiffi
a � ap

corresponds to the norm induced by the inner product denoted by the dot.
Note that umS

0 and umD
N�1 cannot be determined by Equations (1) and belong also to the set of general-

ized coordinates. Another restriction is that the choice of generalized coordinates holds only locally, as
long as the angles u1D

i and u2D
i do not change sign. Throughout the derivation of the macro-model, it is

assumed that the angles u1D
i and u2D

i remain in the range (0,p). This entails that j
m
i 2 (0,p). For the

reduced index set i = f1, 2, . . . ,N � 2g, the angle between the two vectors pi � pi�1 and ex is denoted by
qi. Then the angle ui between the vectors pi � pi�1 and pi + 1 � pi reads

ui = qi + 1 � qi = tan�1 (pi + 1 � pi) � ey

(pi + 1 � pi) � ex

� �
� tan�1 (pi � pi�1) � ey

(pi � pi�1) � ex

� �
ð3Þ

Let us set u0 = u1 and uN�1 = uN�2 such that the deviation angles of two adjacent oblique springs from
being collinear are given for the entire index set of i by

b1
i = ui +u1D

i � u1S
i , b2

i = ui +u2S
i � u2D

i : ð4Þ

For the undeformed configuration, see Figure 1(a), the following equalities are satisfied

l
mn
i =

1

2 cos g
e, b1

i = b2
i = 0, k pi � pi�1 k = e: ð5Þ
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Letting the summations for i, m and n range over the above introduced sets f0, . . . ,N � 1g, f1, 2g and
fD, Sg, respectively, the micro-model deformation energy is defined as

Ee =
kE

2

X
i

X
m, n

l
mn
i �

1

2 cosg
e

� �2

+
kF

2

X
i

X
m

b
m
ið Þ2 +

kS

2

X
i

X
m

(jm
i � p + 2g)2

=
(4) kE

2

X
i

X
m, n

l
mn
i �

1

2 cosg
e

� �2

+
kF

2

X
i

X
m

ui + �1ð Þm umS
i � umD

i

� �h i2

+
kS

2

XN�2

i = 0

X
m

(jm
i � p + 2g)2,

ð6Þ

where kE . 0 and kF , kS . 0 are the stiffnesses of the extensional and rotational springs, respectively.
Boundedness of the deformation energy, both for the micro-model and for the macro-model is consid-
ered throughout this article. It is worth noting that, in addition to the rigid body modes, the set of admis-
sible configurations defined by

l
mn
i =

1

2 cos g
e, pi = pi�1 + Kex, p0 = P0, for K 2 (0,

1

cos g
e), ð7Þ

also entails null deformation energy when kS = 0, i.e. when removing green springs in Figure 1(d), and is
referred to as extensional floppy mode [34]. Looking at the points pi, one observes uniform extension or
compression.

For the lengths l
mn
i of the oblique springs, the following asymptotic expansion is assumed

l
mn
i =

1

2 cos g
e+ e2~lmn

i + o(e2), ð8Þ

where ~lmn
i 2 R. Inserting assumption (8) into the energy (6) leads to

Ee = kE

2

P
i

P
m, n

e2~lmn
i + o(e2)

	 
2
+ kF

2

P
i

P
m

ui + �1ð Þm(umS
i � umD

i )
h i2

+ kS

2

P
i

P
m

(jm
i � p + 2g)

2
: ð9Þ

2.1.2. Pantographic beam: micro–macro identification. The slenderness of the discrete system makes it reasonable
to aim for a one-dimensional continuum [41] in the limit of vanishing e. The continuum is then parame-
trized by the arclength s 2 ½0, L� of the straight segment of length L connecting all points Pi.

The independent kinematic Lagrangian descriptors of the macro-model are assumed to be the func-
tions x : 0, L½ � ! E

2 and ~lmn : 0, L½ � ! R. The placement function x places the 1D continuum into E
2

and is best suited to describe the points pi 2 E
2 of the discrete system on a macro-level. To take into

account also the effect of changing spring lengths ~lmn
i introduced in Equation (8), the placement function

is augmented by the four micro-strain functions ~lmn. The identification of the discrete system is possible
with a one-dimensional continuum that is classified as a micromorphic continuum [42-45]. It is also con-
venient to introduce the functions r : ½0, L� ! R

+ and q : ½0, L� ! ½0, 2p) in order to rewrite the tangent
vector field x0 to the deformed 1D continuum as

x0(s) = r(s) cosq(s)ex + sinq(s)ey

	 

, ð10Þ

where prime denotes differentiation with respect to the reference arc length s. Thus r corresponds to the
norm of the tangent vector k x0 k and is referred to as stretch. The current curve x(½0,L�) can, in general,

have a length
R L

0
r ds different from L, as s is not an arc-length parametrization for x but for the refer-

ence placement x0(s) = sex. Introducing the normal vector field x0?(s) = r(s) � sinq(s)ex + cosq(s)ey

	 

,

being rotated against x0(s) about 908 in the anti-clockwise direction, the following results are found

r0(s) =
x0(s) � x00(s)

k x0(s) k , q0(s) =
x00(s) � x0?(s)

k x0(s)k2
: ð11Þ
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In the following, r0 and q0 are called the stretch gradient and material curvature, respectively. For
Piola’s micro–macro identification, the generalized coordinates of the discrete system are related to the
functions x and ~lmn evaluated at si = ie as

x(si) = pi, ~lmn(si) =~lmn
i : ð12Þ

For the asymptotic identification, the energy (9) is expanded in e. The expansion of x is given by

x(si61) = x(si)6ex
0
(si) +

e2

2
x
00
(si) + o(e2): ð13Þ

Combining the asymptotic expansion (8) with (12)2 and the expansion ~lmn(si61) =~lmn(si) + o(e0), leads to

l
mn
i61 =

1

2 cos g
e+~lmn(si)e

2 + o(e2): ð14Þ

In order to further expand (9), the terms ui, umS
i � umD

i and j
m
i are expanded up to first order (see

Appendix A). For ui according to Equation (71)

ui = q0(si)e + o(e): ð15Þ

The differences u1(2)S
i � u1(2)D

i are given by Equation (78) as

u1(2)S
i � u1(2)D

i =
4½r2 � (1=2 cos2 g)�(~l1(2)S �~l

1(2)D
) + (1=cosg)(r2)

0
+ (2=cos2 g)(~l

2(1)D �~l
2(1)S

)

4r(1=2 cos g)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

p
�����
s = si

e + o(e): ð16Þ

The angles j
m
i are given by (80) as

j
m
i = cos�1 1� r2

1=2 cos2 g

� �����
s = si

+ o(e0): ð17Þ

Substituting (15), (16) and (17) into (9) together with r(si) = k x0(si) k , the sought expansion of the
micro-model energy Ee as a function of the kinematic descriptors x and ~lmn reads

Ee =
X

i

kEe4

2

X
m, n

(~l
mn

)
2
+ o(e0)

" #
+ kS cos�1 1� r2

1=2 cos2 g

� �
� p + 2g + o(e0)

� �2
( )

s = si

+
X

i

kFe2

2
q
0
+

4½r2 � (1=2 cos2 g)�(~l1S �~l
1D

) + (1=cosg)(r2)
0
+ (2=cos2 g)(~l

2D �~l
2S

)

4r(1=2 cosg)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

p + o(e0)

" #2

s = si

+
X

i

kFe2

2
q
0
+

4½r2 � (1=2 cos2 g)�(~l2S �~l
2D

) + (1=cosg)(r2)
0
+ (2=cos2 g)(~l

1D �~l
1S

)

4r(1=2 cosg)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

p + o(e0)

" #2

s = si

:

ð18Þ

Let the parameters KE,KF ,KS . 0 be constants, which do not depend on e. Then they are related to
the stiffnesses of each discrete system with micro length scale e by a scaling law

kE = KEe�3, kF = KFe�1, kS = KSe: ð19Þ

2.1.3. Pantographic beam: macro-model. The continuum limit is now obtained by letting e! 0. The deforma-
tion energy for the homogenized macro-model becomes
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E=

Z L

0

KS cos�1 1� r2

1=2 cos2 g

� �
� p + 2g

� �2

+
KE

2

X
mn

(~l
mn

)
2

( )
ds

+

Z L

0

KF

2
q
0
+

4½r2 � (1=2 cos2 g)�(~l1S �~l
1D

) + (1=cosg)(r2)
0
+ (2=cos2 g)(~l

2D �~l
2S

)

4r(1=2 cosg)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

p
" #2

ds

+

Z L

0

KF

2
q
0
+

4½r2 � (1=2 cos2 g)�(~l2S �~l
2D

) + (1=cosg)(r2)
0
+ (2=cos2 g)(~l

1D �~l
1S

)

4r(1=2 cosg)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

p
" #2

ds:

ð20Þ

The basic properties of the energy are preserved during the asymptotic process. Both the energy of the
micro- and the macro-model (6) and (20), respectively, are invariant under superimposed rigid body
motions. In addition, the extensional floppy mode of the discrete model, see (7), transfers to the conti-
nuum. Namely, if r0= q0=~lmn = 0 and r(s) = 1, then the deformation energy vanishes. When KS = 0, if
r0= q0=~lmn = 0, a constant stretch r(s) = K 2 (0, 1=cosg) can still be present without causing the defor-
mation energy to be different from zero.

Let us now define the deformation energy density C as the integrand of (20). For the energy to be
stationary, the necessary conditions are obtained by equating to zero the variation of the deformation
energy functional (20) with respect to admissible variations in the independent kinematic descriptors. At
this stage, only the variation with respect to ~lmn is carried out. This results in a linear system of four
algebraic equations given by ∂C=∂~lmn = 0 in which ~lmn are the unknowns. Introducing the abbreviations

C1 =
KF

2KFr2 � 1=4 cos2 g KEr2 + 8KFð Þ , C2 =
KF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=cos2 g � r2

p
KE(1=4 cos2 g)r2 � 2KFr2 � 4KE(1=16 cos4 g)

, ð21Þ

necessary conditions for equilibrium are that

~lmD =
1

2 cos g
r r0C1 + (� 1)m�1q

0
C2

h i
, ~lmS =

1

2 cos g
r �r0C1 + (� 1)mq

0
C2

h i
: ð22Þ

By substituting the results (22) into (20), a kinematic reduction is performed resulting in the deforma-
tion energy functional of the pantographic beam

E=

Z L

0

(
KEKF

"
r2 cos2 g � 1

r2 cos2 g KE � 8KF cos2 gð Þ � KE

q
02

+
r2 cos2 g

1� r2 cos2 gð Þ 8KF + r2 KE � 8KF cos2 gð Þ½ � r
02

#
+ KS cos�1 1� r2

1=2 cos2 g

� �
� p + 2g

� �2
)
ds,

ð23Þ

which merely depends on the placement function x. The energy (23) is positive definite for
0\r\1= cos g and the complete second gradient x

00
of x contributes to the deformation energy. In

addition to the term (x
0

? � x
00
) being related to the material curvature q0 by means of (11)1, the term

(x
0 � x00) also appears, which in turn is related to the stretch gradient r0 given by (23)2. It is also worth

noting that, if r(x) = 1= cos g, then the term multiplying q0 in (23) vanishes. Consequently, at point
s = s0 the beam undergoes a beam-to-cable transition, being curvature no more energetically penalized.
At the same time, if r(s0) = 1= cos g, then the term multiplying r0 in (23) diverges. Therefore, bounded-
ness of energy requires r0(s0) = 0.

2.2. Bi-pantographic fabrics: discrete model

The assembly of a discrete bi-pantographic fabric is sketched in Figure 2(b). The kinematics (and
employed notation thereof) of discrete bi-pantographic fabrics is given by generalizing that of panto-
graphic beams once the bi-pantographic structure is regarded as an assembly of two identical
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orthogonal families of parallel equispaced pantographic beams hinge-joined at their intersection points.
Thus, aimed at avoiding unwieldy pictures, we omit to show it in Figure 2.

In the undeformed configuration, see Figure 2(a), cells are arranged within the reference domain O
upon straight lines in direction of the unit basis vectors ex, ey 2 E

2. The set O � R
2 is in general a non-

simple reference domain with boundary ∂O being the disjoint union of NO 2 N smooth line sets ∂Ok,
k 2 ½1; NO�, pairwise intersecting in distinct vertices belonging to the set ½∂∂O�. A discussion on smooth-
ness requirements for O is beyond the scope of this article. For such a discussion the reader is referred to
[46]. The cells are centred at the positions Pi, j = ieex + jeey: see Figure 2(b). The basic (i, j)th unit cell (see
Figure 2(c)) is formed by eight extensional springs hinge-joined together at Pi, j having length e=(2 cosg).
Rotational springs, which are coloured in blue, red, and green in Figure 2(c), are placed between oppo-
site collinear adjacent springs belonging to the same cell and between adjacent springs belonging to dif-
ferent cells.

The kinematics of the spring system is locally described by finitely many generalized coordinates. The
coordinates are the positions pi, j 2 E

2 of the points at position Pi, j in the reference configuration
(equivalently one can consider the nodal displacements ui, j 2 R

2 such that ui, j = pi, j � Pi, j) and the
lengths of the oblique deformed springs l

mn

(i, j),a 2 R, a 2 x, y. The index a will be henceforth employed
to distinguish quantities related to pantographic beams directed along ex (a = x) and ey (a = y). Various
other kinematical quantities are introduced to formulate the total potential energy in a most compact
form. Applying the law of cosines, the angles umn

(i, j),a are determined by

u1D
(i, j), x = cos�1

k pi + 1, j � pi, jk2 + (l1D
(i, j), x)

2 � (l2S
(i + 1, j), x)

2

2l1D
(i, j), x k pi + 1, j � pi, j k

" #
,

u1S
(i, j), x = cos�1

k pi, j � pi�1, jk2 + (l1S
(i, j), x)

2 � (l2D
(i�1, j), x)

2

2l1S
(i, j), x k pi, j � pi�1, j k

" #
,

u2D
(i, j), x = cos�1

k pi + 1, j � pi, jk2 + (l2D
(i, j), x)

2 � (l1S
(i + 1, j), x)

2

2l2D
(i, j), x k pi + 1, j � pi, j k

" #
,

u2S
(i, j), x = cos�1

k pi, j � pi�1, jk2 + (l2S
(i, j), x)

2 � (l1D
(i�1, j), x)

2

2l2S
(i, j), x k pi, j � pi�1, j k

" #
,

ð24Þ

(a) (b)

(c)

Figure 2. Bi-pantographic fabrics. (a) Domain O. (b) Undeformed configuration of the (i, j)th cell (including neighbouring elements).
(c) Force elements of a single cell. (d) Deformed configuration of the (i, j)th cell (including neighbouring elements).
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and

u1D
(i, j), y = cos�1

k pi, j + 1 � pi, jk2 + (l1D
(i, j), y)

2 � (l2S
(i, j + 1), y)

2

2l1D
(i, j), y k pi, j + 1 � pi, j k

" #
,

u1S
(i, j), y = cos�1

k pi, j � pi, j�1k2 + (l1S
(i, j), y)

2 � (l2D
(i, j�1), y)

2

2l1S
(i, j), y k pi, j � pi, j�1 k

" #
,

u2D
(i, j), y = cos�1

k pi, j + 1 � pi, jk2 + (l2D
(i, j), y)

2 � (l1S
(i, j + 1), y)

2

2l2D
(i, j), y k pi, j + 1 � pi, j k

" #
,

u2S
(i, j), y = cos�1

k pi, j � pi, j�1k2 + (l2S
(i, j), y)

2 � (l1D
(i, j�1), x)

2

2l2S
(i, j), y k pi, j � pi, j�1 k

" #
,

ð25Þ

while the angles j
m

(i, j),a become

j1(2)
(i, j), x = cos�1

(l1(2)D
(i, j), x)

2
+ (l2(1)S

(i + 1, j), x)
2� k pi + 1, j � pi, jk2

2l1(2)D
(i, j), xl2(1)S

(i + 1, j), x

2
4

3
5,

j1(2)
(i, j), y = cos�1

(l1(2)D
(i, j), y)

2
+ (l2(1)S

(i, j + 1), y)
2� k pi, j + 1 � pi, jk2

2l1(2)D
(i, j), yl2(1)S

(i, j + 1), y

2
4

3
5:

ð26Þ

Having used the law of cosines to determine umn
(i, j),a, the choice of generalized coordinates holds only

locally as long as the angles u1D
(i, j),a and u2D

(i, j),a do not change sign. Throughout the derivation of the

macro-model, it is assumed that the angles u1D
(i, j),a and u2D

(i, j),a remain in the range (0,p). This entails that

j
m

(i, j),a 2 (0,p). The angle between the two vectors pi, j � pi�1, j and ex is denoted by q(i, j), x, while the

angle between the two vectors pi, j � pi, j�1 and ey is denoted by q(i, j), y. Then the angle u(i, j), x between the
vectors pi, j � pi�1, j and pi + 1, j � pi, j becomes

u(i, j), x = q(i + 1, j), x � q(i, j), x = tan�1 (pi + 1, j � pi, j) � ey

(pi + 1, j � pi, j) � ex

� �
� tan�1 (pi, j � pi�1, j) � ey

(pi, j � pi�1, j) � ex

� �
, ð27Þ

while the angle u(i, j), y between the vectors pi, j � pi, j�1 and pi, j + 1 � pi, j reads

u(i, j), y = q(i, j + 1), y � q(i, j), y = tan�1 (pi, j + 1 � pi, j) � ey

(pi, j + 1 � pi, j) � ex

� �
� tan�1 (pi, j � pi, j�1) � ey

(pi, j � pi, j�1) � ex

� �
: ð28Þ

The following relations hold true

b1
(i, j),a = u(i, j),a +u1D

(i, j),a � u1S
(i, j),a, b2

(i, j),a = u(i, j),a +u2S
(i, j),a � u2D

(i, j),a: ð29Þ

Letting the summations for m, n and a range over the sets f1, 2g, fD, Sg and fx, yg, respectively, and
those for (i, j) over a set such that all energy contributions due to elastic elements in O are included in
the subsequent formula, the micro-model deformation energy is defined as

Barchiesi et al. 747



Ee =
kE

2

X
i, j

X
a

X
m, n

l
mn
(i, j),a �

1

2 cosg
e

� �2

+
kF

2

X
m

b
m
(i, j),a

� �2

+
kS

2

X
m

(jm
(i, j),a � p + 2g)

2

" #

=
(29) kE

2

X
i, j

X
a

(X
m, n

l
mn
(i, j),a �

1

2 cosg
e

� �2

+
kF

2

X
m

u(i, j),a + �1ð Þm umS
(i, j),a � umD

(i, j),a

� �h i2

+
kS

2

X
m

(jm
(i, j),a � p + 2g)2

)
,

ð30Þ

with kE . 0 and kF , kS . 0 being the stiffnesses of the extensional and rotational springs, respectively.
The summand in (6) for the sum over (i, j) will be henceforth denoted by Ci, j.

It is worth noting that, when kS = 0, in addition to the rigid body modes also the set of admissible
configurations obtained as all possible combinations of (1) uniform shear, i.e. the angle between the cen-
trelines of the two families of pantographic beams is uniform and ranging from 08 to 1808 (pantographic
beams are transformed rigidly and, hence, this gives an infinite family of floppy modes parametrized on
a single parameter that is the above-mentioned angle; when a bias rectangular specimen is considered,
i.e. fibers form 6458 with the sides, this deformation mode corresponds to uniform extension/compres-
sion of the rectangle) and (2) extensional floppy mode of constituting pantographic beams entails null
deformation energy. For more details on floppy modes in bi-pantographic structures the reader is
referred to [35]. While each pantographic beam, as well as pantographic fabrics (whose only non-rigid
zero energy deformation mode is given by uniform macroscopic shear; pantographic beams are replaced
by (extensible) Elasticae that cannot extend with zero energy), admits an infinite family of extensional
floppy modes parametrized over a single parameter (see Equation (7)), the bi-pantographic structure
admits an infinite family of floppy modes parametrized over four parameters, see Figure 11 in [35].

For the lengths l
mn

(i, j),a of the oblique springs, the following asymptotic expansion is assumed

l
mn
(i, j),a =

1

2 cos g
e+ e2~lmn

(i, j),a + o(e2), ð31Þ

where ~lmn

(i, j),a 2 R. Inserting assumption (31) into the energy (30) leads to

Ee =
X

a

X
i, j

(
kE

2

X
m, n

e2~lmn
(i, j),a + o(e2)

h i2

+
kF

2

X
m

u(i, j),a + �1ð Þm(umS
(i, j),a � umD

(i, j),a)
h i2

+
kS

2

X
m

(jm
(i, j),a � p + 2g)

2

)
:

ð32Þ

2.3. Bi-pantographic fabrics: micro–macro identification

The two-dimensional extension of the discrete system makes it reasonable to aim for a two-dimensional
continuum in the limit of vanishing e. The independent kinematic Lagrangian descriptors of the macro-
model are assumed to be the functions x : O! E

2 and ~lmn
a : O! R. The placement function x places

the 2D continuum into E
2 and is best suited to describe the points pi, j 2 E

2 of the discrete system on the
macro-level. To take into account the effect of changing spring lengths ~lmn

(i, j),a introduced in (8), the pla-
cement function is augmented by the eight micro-strain functions ~lmn

a . The identification of the discrete
system with a 2D continuum is also classified as a micromorphic continuum [42-45].

It is also convenient to introduce the functions ra : O! R
+ and qa : O! ½0, 2p) in order to rewrite

the tangent vector field ∂x

∂a
to deformed material lines oriented along ea in the reference configuration as

∂x

∂x
(x, y) = rx(x, y) cosqx(x, y)½ �ex + sinqx(x, y)½ �ey

� 
,

∂x

∂y
(x, y) = ry(x, y) cosqy(x, y)

	 

ey + sinqy(x, y)

	 

ex

� 
:

ð33Þ
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Thus, ra corresponds to the norm of the tangent vector k ∂x=∂a k to the deformed material lines directed
along ea in the reference configuration, and it is referred to as a-stretch. Introducing the normal vector
fields to deformed material lines directed, respectively, along ex and ey in the reference configuration

∂x

∂x

� �
?

(x, y) = rx(x, y) � sinqx(x, y)½ �ex + cosqx(x, y)½ �ey

� 
,

∂x

∂y

� �
?

(x, y) = ry(x, y) � sinqy(x, y)
	 


ey + cosqy(x, y)
	 


ex

� 
,

ð34Þ

being respectively rotated against ∂x=∂x and ∂x=∂y about 908 in the anti-clockwise direction, it is found that

∂rx

∂x
(x, y) =

∂x

∂x
(x, y) � ∂

2x

∂x2 (x, y)

k ∂x

∂x
(x, y) k

,
∂qx

∂x
(x, y) =

∂2x

∂x2 (x, y) � ∂x

∂x

� �
?(x, y)

k ∂x

∂x
(x, y)k2

,

∂ry

∂y
(x, y) =

∂x

∂y
(x, y) � ∂

2x

∂y2 (x, y)

k ∂x

∂y
(x, y) k

,
∂qy

∂y
(x, y) =

∂2x

∂y2 (x, y) � ∂x

∂y

� �
?

(x, y)

k ∂x

∂y
(x, y)k2

:

ð35Þ

In the following ∂ra=∂a and ∂qa=∂a are called a-stretch a-derivative and material a-curvature, respectively.
For Piola’s micro–macro identification the generalized coordinates of the discrete system are related to
the functions x and ~lmn

a evaluated at (xi, yj) = (ie, je) as

x(xi, yj) = pi, j, ~lmn
a (xi, yj) =~lmn

(i, j),a: ð36Þ

For the asymptotic identification, the energy (32) needs to be expanded in e. The expansion of x is given
by

x(xi61, yj) = x(xi, yj)6e
∂x

∂x
(xi, yj) +

e2

2

∂2x

∂x2
(xi, yj) + o(e2),

x(xi, yj61) = x(xi, yj)6e
∂x

∂y
(xi, yj) +

e2

2

∂2x

∂y2
(xi, yj) + o(e2):

ð37Þ

Combining the asymptotic expansion (31) with (36)2, ~lmn
x (xi61, yj) =~lmn

x (xi, yj) + o(e0) and
~lmn

y (xi, yj61) =~lmn
y (xi, yj) + o(e0), yields

l
mn
(i61, j), x = 1

2 cosg
e +~lmn

x (xi, yj)e2 + o(e2),

l
mn
(i, j61), y = 1

2 cosg
e +~lmn

y (xi, yj)e2 + o(e2):
ð38Þ

In order to further expand (32), the terms u(i, j),a, umS
(i, j),a � umD

(i, j),a and j
m

(i, j),a need to be expanded up to

first order (see Appendix 6). For u(i, j),a according to (71)

u(i, j),a = e
∂q(i, j),a

∂a
(xi, yj) + o(e): ð39Þ

The differences u1(2)S
(i, j),a � u1(2)D

(i, j),a are given by (78) as

u1(2)S
(i, j),a � u1(2)D

(i, j),a =
4½r2

a � (1=2 cos2 g)�(~l1(2)S
a �~l1(2)D

a ) + (1=cos g
∂(r2

a)
∂a

) + (2=cos2 g)(~l2(1)D
a �~l2(1)S

a )

4ra(1=2 cosg)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

a

p
�����

(x, y) = (xi, yj)

e + o(e):

ð40Þ

The angles j
m

(i, j),a are given by (80) as
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j
m
(i, j),a = cos�1 1� r2

a

1=2 cos2 g

� �����
(x, y) = (xi, yj)

+ o(e0): ð41Þ

Substituting (39), (40) and (41) into (32) together with ra(xi, yj) = k ∂x

∂a
k , the desired expansion of the

micro-model energy Ee is derived as a function of the kinematic descriptors x and ~lmn
a as

Ee =
X

i, j

X
a

kEe4

2

X
m, n

(~lmn
a )

2
+ o(e0)

" #
+ kS cos�1 1� r2

a

1=2 cos2 g

� �
� p + 2g + o(e0)

� �2
( )

(x, y) = (xi, yj)

+
X

i, j

X
a

kFe2

2

∂q

∂a
+

4½r2
a � (1=2 cos2 g)�(~l1S

a �~l1D
a ) + (1=cos g)

∂(r2
a)

∂a
+ (2=cos2 g)(~l2D

a �~l2S
a )

4ra(1=2 cos g)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

a

p + o(e0)

" #2

(x, y) = (xi, yj)

+
X

i, j

X
a

kFe2

2

∂q

∂a
+

4½r2
a � (1=2 cos2 g)�(~l2S

a �~l2D
a ) + (1=cos g)

∂(r2
a)

∂a
+ (2=cos2 g)(~l1D

a �~l1S
a )

4ra(1=2 cos g)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

a

p + o(e0)

" #2

(x, y) = (xi, yj)

:

ð42Þ

Let the parameters KE,KF ,KS . 0 be constants, which do not depend on e. Then these constants are
related to the stiffnesses of each discrete system with micro length scale e by a scaling law

kE = KEe�2, kF = KF , kS = KSe
2: ð43Þ

2.4. Bi-pantographic fabrics: macro-model

The continuum limit is now obtained by letting e! 0 and considering the sum to turn into an integral
according to

P
i, j f (xi, yj)e2 !e!0 R

O f d A, where f is a real-valued function defined on O. Using (42)
together with the scaling law (43), the deformation energy for the homogenized macro-model becomes

E=

Z
O

X
a

KE

2

X
m, n

(~lmn
a )

2

" #
+ KS cos�1 1� r2

a

1=2 cos2 g

� �
� p + 2g

� �2
( )

dA

+

Z
O

X
a

KF

2

∂qa

∂a
+

4½r2
a � (1=2 cos2 g)�(~l1S

a �~l1D
a ) + (1=cosg)

∂(r2
a)

∂a
+ (2=cos2 g)(~l2D

a �~l2S
a )

4ra(1=2 cosg)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

a

p
" #2

dA

+

Z
O

X
a

KF

2

∂qa

∂a
+

4½r2
a � (1=2 cos2 g)�(~l2S

a �~l2D
a ) + (1=cosg)

∂(r2
a)

∂a
+ (2=cos2 g)(~l1D

a �~l1S
a )

4ra(1=2 cosg)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

a

p
" #2

dA:

ð44Þ

Considerations on the above-derived continuum limit analogous to those made in the previous subsec-
tion dealing with preliminary computations can be invoked. The above deformation energy is objective
and discrete floppy modes transfer to the continuum after homogenization. The above deformation
energy is vanishing for x(x, y) = ½x + (ay + b)x�ex + ½y + (cy + d)x�ey (see [35]) when KS = 0. When
a = c = d = 0, then x represents uniform extension, while when a = c = 0 it describes uniform shear
deformation, which is the only non-rigid zero energy deformation mode for pantographic fabrics [11].
The derived continuum limit, as for pantographic fabrics, inherits its orthotropicity from its fibred struc-
ture at the micro-scale, i.e. it can be regarded as made by assembling two identical orthogonal families
of (equispaced) parallel discrete pantographic beams. Let us now define the deformation energy density
C as the integrand of (44). For the energy to be stationary, the necessary conditions are obtained by
equating to zero the variation of the deformation energy functional (44) with respect to admissible varia-
tions in the independent kinematic descriptors. First, only the variation with respect to ~lmn

a is studied,
and results in a linear system of eight algebraic equations given by ∂C=∂~lmn

a = 0 in which ~lmn
a are the

unknowns. Introducing the notation
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Ca
1 =

KF

2KFr2
a � 1=4 cos2 g KEr2

a + 8KF

� � , Ca
2 =

KF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=cos2 g � r2

a

p
KE(1=4 cos2 g)r2

a � 2KFr2
a � 4KE(1=16 cos4 g)

, ð45Þ

necessary conditions for equilibrium are that

~lmD
a =

1

2 cosg
ra

∂ra

∂a
Ca

1 + (� 1)m�1 ∂qa

∂a
Ca

2

� �
, ~lmS

a =
1

2 cos g
ra �

∂ra

∂a
Ca

1 + (� 1)m ∂qa

∂a
Ca

2

� �
: ð46Þ

By substituting the results (46) into (44), a kinematic reduction is performed and results in the deforma-
tion energy functional of the bi-pantographic structure

E=

Z
O

X
a

(
KEKF

"
r2

a cos
2 g � 1

r2
a cos

2 g KE � 8KF cos2 gð Þ � KE

∂qa

∂a

� �2

+
r2

a cos
2 g

1� r2
a cos

2 g
� �

8KF + r2
a KE � 8KF cos2 gð Þ

	 
 ∂ra

∂a

� �2
#

+ KS cos�1 1� r2
a

1=2 cos2 g

� �
� p + 2g

� �2
)
dA

ð47Þ

which depends on the placement function x only. Note that, in addition to the term ∂x

∂a

� �
? �

∂2x

∂a2 being

related to the material a-curvature ∂qa

∂a
by means of (35), also the term ∂x

∂a
� ∂

2x

∂a2 appears, which, in turn, is

related to the a-stretch a-derivative ∂ra

∂a
given by Equation (35).

A detailed derivation of Euler–Lagrange equations, essential and natural boundary conditions (BCs)
as deduced from stationarity condition for energy functionals of the form

R
O W (rx,rrx)dA, as that in

(47), is beyond the scope of this article, and the reader is referred to [46]. However, it is worth recalling
that in such a case non-classical essential normal placement gradient BCs, i.e. prescribing
rx(x, y) � n(x, y) = f (x, y), can be given at boundaries ∂Ok, n being the outwards pointing unit normal,
and essential placement BC’s, i.e. prescribing x(x, y) = g(x, y), can be given at vertices belonging to
½∂∂O�, in addition to classical essential placement BCs at boundaries ∂Ok .

2.5. Bi-pantographic fabrics: linearization of deformation energy

Let the vector-valued displacement field u be defined by u(x, y) = x(x, y)� xex � yey. Then by the Piola’s
identification (36) and by the definition of nodal displacements ui, j we have u(xi, yj) = ui, j. From Taylor
expansions it follows that

qx = tan�1 ∂u

∂x
� ey= 1 +

∂u

∂x
� ex

� �� �
=

∂u

∂x
� ey + o

∂u

∂x

����
����

����
����

� �
= o

∂u

∂x

����
����

����
����
0

 !
,

qy = tan�1 ∂u

∂y
� ex= 1 +

∂u

∂y
� ey

� �� �
=

∂u

∂y
� ex + o

∂u

∂y

����
����

����
����

� �
= o

∂u

∂y

����
����

����
����
0

 !
,

ð48Þ

and, therefore,

∂qx

∂x
=

∂2u

∂x2
� ey + o

∂u

∂x

����
����

����
����0

� �
,

∂qy

∂y
=

∂2u

∂y2
� ex + o

∂u

∂y

����
����

����
����
0

 !
: ð49Þ

Moreover,

rx = 1 +
∂u

∂x
� ex

� �2

+
∂u

∂x
� ey

� �2
" #1

2

= 1 +
∂u

∂x
� ex + o

∂u

∂x

����
����

����
����

� �
= 1 + o

∂u

∂x

����
����

����
����
0

 !
,

ry = 1 +
∂u

∂y
� ey

� �2

+
∂u

∂y
� ex

� �2
" #1

2

= 1 +
∂u

∂y
� ey + o

∂u

∂y

����
����

����
����

� �
= 1 + o

∂u

∂y

����
����

����
����
0

 !
,

ð50Þ
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and, thus,

∂ra

∂a
=

∂2u

∂a2
� ea + o

∂u

∂a

����
����

����
����
0

 !
: ð51Þ

Hence, the energy (47) rewrites as (see Equation (85) in Appendix A)

E=

Z
O

KEKF cos2 g

1� cos2 gð Þ 8KF + KE � 8KF cos2 g½ �

� �
∂2u

∂x2
� ex

� �2

+
∂2u

∂y2
� ey

� �2
" #( )

dA

+

Z
O

KEKF( cos2 g � 1)

cos2 g(KE � 8KF cos2 g)� KE

� �
∂2u

∂x2
� ey

� �2

+
∂2u

∂y2
� ex

� �2
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 !( )
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ð52Þ

For the small strain hypothesis the remainder o( k ∂u=∂ak2) in Equation (52) can be neglected.

3. Computational aspects

In this section, the problem to be solved is introduced and solution methodologies employed for the
macro- and micro-model are briefly recalled.

3.1. Boundary value problem (non-standard bias extension test)

A rectangular specimen, i.e. NO = 4, with sides L = 187 mm × ‘= 119 mm and e= 12:02 mm is consid-
ered, see Figure 3. The geometric parameter g is assumed to be equal to p=6. The following essential
BCs are considered

u(x, y) = 0 at (x, y) 2 ∂O1, u(x, y) = �uez at (x, y) 2 ∂O3, �u 2 R

½ru(x, y)�n(x, y) = 0 at (x, y) 2 ∂O1, ½ru(x, y)�n(x, y) = 0 at (x, y) 2 ∂O3

ð53Þ

which do not entail a floppy deformation mode. As the displacement field u(x, y) is enforced to be con-
stant along the boundaries ∂O1 and ∂O3, then ½ru(x, y)�n?(x, y) is also vanishing along those boundaries.
This, together with (53)2, implies that

ru(x, y) = 0 at (x, y) 2 ∂O1 [ ∂O3 ð54Þ

Figure 3. Schematic drawing of the reference domain O considered in the boundary value problem for the macro-model.
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Equation (54) is equivalent to

ra(x, y) = 1 at (x, y) 2 ∂O1 [ ∂O3, qa(x, y) = 0 at (x, y) 2 ∂O1 [ ∂O3: ð55Þ

To compare the micro- and macro-model, beyond the micro–macro identification (12), the following
micro–macro correspondences, based on neglecting non-leading e-terms in Taylor expansions of conti-
nuum quantities evaluated at discrete points, shall be taken into account. For stretches and orientations
of pantographic beams

rx xi, yið Þ $ k pi + 1, j � pi, j k
e

, qx xi, yj

� �
$ qi, j = tan�1 (pi, j � pi�1, j) � ey

(pi, j � pi�1, j) � ex

� �

ry xi, yj

� �
$ k pi, j + 1 � pi, j k

e
, qy xi, yj

� �
$ qi, j = tan�1 (pi, j � pi, j�1) � ex

(pi, j � pi, j�1) � ey

� �
:

ð56Þ

In addition, the micro-strains ~lmn
a are related by

~lmn
a (xi, yj)$

l
mn
(i, j),a

e
: ð57Þ

The deformation energy density C(x, y), which is the integrand of (47), is compared by the following
relation

C(xi, yj)$ Ci, j: ð58Þ

The shear angle is compared by the following relation

p=2� arccos
rx ex � rx ey

k rx ex kk rx ey k

� �� �
(x, y) = (xi, yj)

$ p=2� arccos
(pi + 1, j � pi, j) � (pi, j + 1 � pi, j)

k pi + 1, j � pi, j kk pi, j + 1 � pi, j k

� �
:

ð59Þ

Last, in an analogous fashion the following micro–macro correspondences are defined on boundaries

∂u

∂x
(xi, yj)$

ui + 1, j � ui, j

e
and

∂u

∂y
(xi, yj)$

ui, j + 1 � ui, j

e
for all (xi, yj) 2 ∂O1

∂u

∂x
(xi, yj)$

ui, j � ui�1, j

e
and

∂u

∂y
(xi, yj)$

ui, j � ui, j�1

e
for all (xi, yj) 2 ∂O3

ð60Þ

which, together with Piola’s micro–macro identification (36), are used to establish a correspondence
between BCs (53) for the continuum model and those for the discrete one. Such a correspondence is
reported in Table 1.

3.2. Macro-model: finite element formulation

A mixed finite element formulation is adopted for the solution of the macro-model. Let us define the fol-
lowing augmented energy functional

Table 1. BCs for the micro- and macro-model.

Micro-model Macro-model

ui, j = 0 for all (i, j) s.t. (xi, yj) 2 ∂O1 u(x, y) = 0 for all (x, y) 2 ∂O1

ui, j = �uez for all (i, j) s.t. (xi, yj) 2 ∂O3 u(x, y) = �uez for all (x, y) 2 ∂O3

ui + 1, j = ui, j for all (i, j) s.t. (xi, yj) 2 ∂O1 ½ru(x, y)�n(x, y) = 0 for all (x, y) 2 ∂O1 [ O3

ui, j + 1 = ui, j for all (i, j) s.t. (xi, yj) 2 ∂O1

ui�1, j = ui, j for all (i, j) s.t. (xi, yj) 2 ∂O3

ui, j�1 = ui, j for all (i, j) s.t. (xi, yj) 2 ∂O3
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a

fma � ru�Mð Þn?½ �gdA +
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O
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fla � Mea �
∂u

∂a

� �

+ KEKF ½
(r2

a cos
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r2
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(h � ½ru�n)dl +

Z
∂O1

g � uð Þdl +

Z
∂O3

y � (u� �uez)½ �dl:

ð61Þ

where M is an independent auxiliary field that is weakly enforced by Lagrange multipliers ma and la to
be equal to ru [47], and

kx(M) =
∂(Mex)
∂x
� ½(1 + ∂u

∂x
� ex,

∂u
∂x
� ey)T�?

k (1 + ∂u
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� ex,
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� ey)
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� ey)
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T k
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∂y
� ex)T�

?

k (1 + ∂u
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ð62Þ

are a-curvature (ka) and a-stretch a-derivative (ia) expressed in terms of only the first spatial derivatives
of the independent fields u and M . In such a way, the deformation energy (47) can be transformed into
an augmented energy functional written in terms of first spatial derivatives of the independent kinematic
quantities. The discretization of these quantities by the finite element method to solve the stationarity
condition of such augmented energy functional does not require C1-continuous shape functions such as
those needed to solve the stationarity condition for the energy (47) in terms of the only unknown field u.
Let ~C be the argument of integration over O in (61). Let ~Ck be the argument of integration over ∂Ok in
(61). From the stationarity condition for the energy (61) is determined the weak form

0 =
X

a

XNO

k = 1

Z
∂Ok

∂ ~Ck

∂ ∂u=∂að Þ � d
∂u
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� �
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� d(Mea) +
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∂ma

� dma

" #
dl

+
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a

Z
O

∂ ~C

∂ ∂u=∂að Þ � d
∂u

∂a

� �
+

∂ ~C

∂(Mea)
� d(Mea) +

∂ ~C
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� dla

" #
dA

+
XNO
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∂ ~Ck

∂h
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∂ ~Ck

∂g
� dg +

∂ ~Ck

∂y
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" #
dl,

ð63Þ

where d( � ) denotes the kinematically admissible variation of ( � ), which can then be solved numerically
by a finite element code. The weak form package of the software COMSOL Multiphysics, which imple-
ments standard finite element techniques [48, 49], was used for the discretization and the subsequent
solution procedure. Essential BCs in Equation (53) were not encoded within the basis functions but
enforced by additional Lagrange multipliers (i.e. ha, g and y in Equation (61)). In such a mixed formu-
lation, normal displacement gradient line BCs (53)2 are enforced in terms of the auxiliary field M , while
displacement line BCs (53)1 are enforced in terms of the field u. Quadratic Lagrangian polynomials were
used as basis functions for the fields x and M . All Lagrange multiplier fields were discretized by linear
Lagrange polynomials. The mesh was Delaunay tessellated with maximum diameter size equal to 8.45
mm (see Figure 3). Energy convergence of the solutions was successfully checked for the mesh-size tend-
ing to zero. The solution of each step, i.e. for each �u, was initialized by the solution of the previous one,
considering for �u a constant step-size D�u equal to 1 mm.
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4. Materials and methods

4.1. Manufacturing

Specimens were 3D printed using a selective laser sintering (SLS) procedure. Polyamide powder was
used as raw material. Possible use of metallic powders is to be investigated [50-52]. A picture obtained
by optical microscopy showing the granularity of the printed polyamide is presented in Figure 4.
Modelling at lower scales taking into account such a granular structure [53-56] might be considered in
future investigations.

All specimens were designed in SolidWorks computer-aided design (CAD) software by sketching 2D
profiles and then using methods such as extruding and lofting in order to produce solid shapes, see the
technical drawings in Figures 5, 6 and 10 (right). A full top-view of the manufactured specimen is shown

Figure 4. Micrograph of a monolithic slender element of the prototype showing granularity of printed polyamide.

Figure 5. Technical drawing of the designed bi-pantographic prototypes. Top-view (top) and profile view (bottom). All lengths are
expressed in millimetres.

Barchiesi et al. 755



in Figure 7. The blue/red rotational springs in Figure 2(c) and the adjacent extensional ones are fabri-
cated as a whole by means of monolithic slender elements that are meant to predominantly bend (rota-
tional spring) and (to a lesser extent) extend (extensional springs) in plane. Such elements are combined
at extreme points by cylinders, which are meant to reproduce the green rotational springs of Figure 2(c)
by mainly twisting, and at middle points by hinge connections. They are shown in Figure 8 (actual man-
ufacturing on the left (a) and CAD modelling on the right (b)). As assumed above, the angle g is equal
to p=6, see Figure 10 (right).

Each pantographic beam is made of two families of monolithic slender elements forming an angle 2g
and lying onto two different parallel planes. The two families of pantographic beams (whose centrelines
form an angle of 908) lying on two different planes are hinge connected at intersection points, which is at
the mid-point of the monolithic slender elements. The structure is then doubled in the out-of-plane direc-
tion by reflection to avoid noticeable out-of-plane movements, making it symmetric with respect to its
middle plane, see Figure 5 (bottom). Hinge axes are monolithic elements running through the full out-
of-plane length of the structure.

Hard-device conditions given in rows three and six of Table 1 are obtained by connecting the adjacent
hinge axes in proximity of the gripping areas, see Figure 9, with stocky rhomboidal elements, meant to
be rigid with respect to other elements of the specimen for the considered load range.

4.2. Testing and data acquisition

An MTS Tytron 250 testing device was used for the experiments. The total reaction force was measured
by a device own load cell, which is able to record axial forces in a range of 6250 N with an accuracy of
0.2%. Increasing displacements were prescribed horizontally on the right side of the specimen with a
loading rate of 15 mm/min. The cross-head displacement was measured and monitored by a device own
encoder unit. Almost frictionless movement of the machine shaft was achieved by using an air-film bear-
ing. External vibrations were avoided by placing the system on a massive concrete substructure. Pictures

Figure 6. Section A–A indicated in Figure 5 (bottom). All lengths are expresses in millimetres.

Figure 7. Full top-view of bi-pantographic prototype manufactured according to the technical drawings in Figures 5, 6 and 10 (right).
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of the surface during deformations were taken (0.5 pictures/second) by means of a Canon EOS 600D
camera with a definition of 4272× 2848 pixels. Each picture was synchronized with the recorded force–
displacement data in real time. Regarding frictional dissipation due to PA2200 powder stuck in hinges,
four loading–unloading cycles were performed for maximum prescribed displacements equal to 10 mm,
20 mm, 30 mm, 40 mm, and 50 mm, respectively. No out-of-plane movements of the specimen was
observed. For all cycles, residual (negative compression) total reaction force following unloading was
less than 2% of the total reaction force peak. Figure 10(a) shows a picture of the deformed specimen.

4.3. DIC

The kinematic results described in the following were obtained via DIC. DIC consists of measuring dis-
placement fields by registering pictures acquired during mechanical tests [57-59]. Various approaches
have been introduced, namely, local (i.e. subset-based) analyses [60-62], and global (e.g. finite-element-
based) techniques [63-65]. When dealing with pantographic structures, finite-element-based analyses
have recently been performed at macroscopic [66] and mesoscopic scales [67]. In the present case, the
sought kinematics corresponds to the in-plane displacements of the hinges at positions pi, j of the bi-
pantographic structure. The analysis of the displacement of these discrete points is performed via local
DIC, i.e. using zones of interest (ZOIs) [68] centred on each hinge. The simplest approach seeks the rigid
body translation of each considered ZOI, as originally performed in particle image velocimetry [69-73].
Let f and g be the initial and current grey level images, respectively. For each ZOI, the correlation
product

Figure 8. Manufactured specimen (a) and CAD design (b). Enlarged view of: 1. monolithic slender elements corresponding, by
means of bending and extension, to blue/red rotational springs and to the adjacent extensional springs of Figure 2(c) (black arrows);
2. cylinders materializing, by means of torsion, the green rotational springs of Figure 2(c) (green arrow); and 3. hinges connecting
monolithic slender elements at middle points (red arrow).

Figure 9. Realization of BCs listed in Table 1. Manufactured specimen (a) and enlarged view of its CAD design (b).
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T(u) =Argmaxy

X
ZOI

f (x, y)g(x + y � ex, y + y � ey) ð64Þ

is maximized with respect to the rigid body translations y 2 R
2. The computation of the correlation

product can be performed in Fourier space (thanks to the shift/modulation property) via fast Fourier
transforms (FFTs) to speed up the calculations [74]. No subpixel resolution [68] was sought in the pres-
ent case because the expected displacements were very large when expressed in terms of pixels. Further,
to account for the local angular variations between the beams connected by the hinges, the DIC calcula-
tions were performed incrementally, namely, for a series of pictures, the deformed picture of the nth reg-
istration step becomes the reference picture of the n + 1th step, and the corresponding displacement
increment is cumulated with the previous ones to provide a Lagrangian estimation of the hinge displace-
ments. Last, for each analysis, two passes were performed. The first used a rather large ZOI size (i.e.
100× 100 pixels) to obtain a robust first estimate. The second one utilized a smaller size (i.e. 50× 50
pixels) to focus on the kinematic analysis about each hinge.

5. Results

The focus of this section is to present results obtained by the continuum model, and discuss how much
they deviate from the experimental data. Owing to symmetry arguments (i.e. D4 [3] symmetry with
respect to pantographic beam directions, symmetry of the specimen and BCs with respect to specimen’s
axes), it is concluded that the following symmetries should be fulfilled by the continuum solution (analo-
gous statements can be done for the discrete one) with the notation g(z, §) standing for g½x(z, §), y(z, §)�

qy(z, §) = qx(z, ‘� §), ry(z, §) = rx(L� z, §)

ry(z, §) = rx(z, ‘� §), qy(z, §) = qx(L� z, §)
ð65Þ

and

qy(z, §) = qy(L� z, ‘� §), ry(z, §) = qy(L� z, ‘� §) ð66Þ

As in the considered problem either 0\qx(x, y)\p=2 and �p=2\qy(x, y)\0 or 0\qy(x, y)\p=2 and
�p=2\qx(x, y)\0, this can be seen a posteriori by looking at Figure 14), then the shear angle, which is
null in the undeformed configuration and objective, is written in an easier way as p=2� jqxj � jqyj. An
analogous observation holds for the micro-model.

The maximum prescribed displacement �u directed along z is equal to 50 mm. Parameters for the conti-
nuum (KF , KE and KS) were found by fitting three curves (see Figure 11 and cf. also [11] where the same
quantities, although defined for pantographic fabrics, were used for fitting). The first (Figure 11 (left)) is
the total reaction force along the direction z (determined by the load cell of the testing machine) versus �u
(determined by the machine encoder unit). The second (Figure 11 (centre)) is the shear angle at point A
(determined by DIC, see Figure 3) versus �u. Finally, the third (Figure 11 (right)) is the shear angle at

Figure 10. Deformed specimen (a) and enlarged view (b) of the top-left corner of Figure 5 (top).
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point B (determined by DIC, see Figure 3) versus �u. The total reaction force acting on O3 has been found
for the continuum model by means of Castigliano’s theorem.

In order to check that computed Lagrange multipliers were consistent with the reaction force found
by such a theorem, i.e. with energy conservation, one can compute the total reaction force acting on O3

with the Lagrange multipliers as

�
Z
O3

y � z dl ð67Þ

This fact holds true for the numerical solution. Figure 12 compares the total reaction force along the
direction z, as computed by the continuum model using Lagrange multipliers and Castigliano’s theorem,
versus �u. The forward finite difference approximation of ∂E=∂�u was computed with a step size for �u equal
to D�u = 1 mm. It is concluded that, up to finite difference discretization errors, the results obtained with
the two methodologies are consistent. Owing to symmetry arguments, the total reaction force along the
direction § as computed with Lagrange multipliers should be cancelling out. In addition, this fact holds
true for the numerical solution.

Figure 11. Total reaction force along the direction z with changed sign (N) versus prescribed displacement �u (mm) along the
direction ez (left), shear angle at point A (8) versus prescribed displacement �u (mm) along the direction ez (centre), and shear angle
(8) at point B versus prescribed displacement �u (mm) along the direction ez (right).

Figure 12. Total reaction force along the direction z with changed sign (N) versus �u (mm) as computed by the continuum model
using Lagrange multipliers and Castigliano’s theorem. The forward finite difference approximation of ∂E=∂�u has been computed with
a step size for �u equal to D�u = 1 mm.
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The fitted values of the parameters for the continuum model are KF = 0:9 J, KE = 0:33 J, KS = 34
N�m�1. Hence, the continuum model is capable of describing the considered experimental curves with
only three constitutive parameters. The computed deformed configuration, i.e. x(xi, yj), is compared for
different prescribed �u levels with experimentally measured data in Figure 13. It is seen that experimental
measurements by DIC and the continuum model agree very well. Experimental data, unlike the conti-
nuum model, exhibit a non-symmetry which is especially evident for �u = 40 mm and �u = 50 mm on the
left. It is worth noting that only the use of homogenization starting from a discrete model, with a target
model not chosen a priori, allows such complex deformation energy to be recovered. The underlying
family of discrete systems does not only lead to the deformation energy but also allows for a clear inter-
pretation of non-standard BCs that appear in this formulation.

Contour plots of the y-stretch ry are shown in Figure 14 for the continuum model.Figure 14 shows
that the stretch is remarkably non-localized. This is due to pantographic beams being complete second
gradient continua.

Let us quantify the sensitivity of the numerical simulation with respect to the application of non-
standard zero normal displacement gradient BC ½ru(x, y)�n(x, y) = 0 on O1 [ O3. In Figure 15, the quan-
tities ry and qy are plotted as functions of the local abscissa F of the boundary O1 for the continuum
model in both cases when zero normal displacement gradient BCs are enforced and when they are not
(�u = 50 mm). In particular, in the vicinity of vertices of the domain O, the solution is strongly sensitive
to the application of non-standard BCs.

6. Conclusion and outlook

Bi-pantographic fabrics proved to have an extremely wide elastic range. This is possible because in such
structures the total deformation is much greater than single-elastic-element deformations. Compatibly

Figure 13. The deformed configuration as computed by the continuum model, i.e. x(xi, yj), is compared for different applied �u with
experimental measurements. Abscissas and ordinates are expressed in millimeters.
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with BCs and internal connection constraints, the elements arrange so as to minimize the total deforma-
tion energy by mimicking the wide variety of mechanisms corresponding to floppy modes.

Some future outlooks of the present work are:

� designing, experimenting and analysing a bi-pantographic system obeying the discrete model with
kS = 0, which would mean that all cylinders connecting slender monolithic elements would be
replaced by hinges, giving a purely second gradient material at the macro-scale;

� studying the dynamics of bi-pantographic fabrics, which could be done by exploiting the results
already obtained for pantographic beams [75];

� studying out-of-plane deformations [76] of such metamaterials.
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[12] Babuška, I. Homogenization approach in engineering. In Computing methods in applied sciences and engineering. Berlin:

Springer, 1976, pp. 137–153.
[13] Allaire, G. Homogenization and two-scale convergence. SIAM J Math Anal 1992; 23(6): 1482–1518.
[14] Tartar, L. The General Theory of Homogenization: A Personalized Introduction, Vol. 7. Springer Science & Business Media,

2009.
[15] Yu, W, and Tang, T. Variational asymptotic method for unit cell homogenization. In Advances in Mathematical Modeling

and Experimental Methods for Materials and Structures. Berlin: Springer, 2009, pp. 117–130.
[16] dell’Isola, F, Maier, G, Perego, U, et al. The Complete Works of Gabrio Piola, Vol. I. Cham, Switzerland: Springer, 2014.
[17] Golaszewski, M, Grygoruk, R, Giorgio, I, et al. Metamaterials with relative displacements in their microstructure:

Technological challenges in 3D printing, experiments and numerical predictions. Continuum Mech Thermodyn 2018; 31(4):

1015–1034.
[18] Milton, G, Briane, M, and Harutyunyan, D. On the possible effective elasticity tensors of 2-dimensional and 3-

dimensional printed materials. Math Mech Complex Syst 2017; 5(1): 41–94.
[19] Milton, G, Harutyunyan, D, and Briane, M. Towards a complete characterization of the effective elasticity tensors of

mixtures of an elastic phase and an almost rigid phase. Math Mech Complex Syst 2017; 5(1): 95–113.
[20] Abdoul-Anziz, H, and Seppecher, P. Strain gradient and generalized continua obtained by homogenizing frame lattices.

Math Mech Complex Syst 2018; 6(3): 213–250.
[21] Barchiesi, E, Spagnuolo, M, and Placidi, L. Mechanical metamaterials: A state of the art. Math Mech Solids 2019; 24(1):

212–234.
[22] Di Cosmo, F, Laudato, M, and Spagnuolo, M. Acoustic metamaterials based on local resonances: Homogenization,

optimization and applications. In Generalized Models and Non-classical Approaches in Complex Materials 1. Berlin:

Springer, 2018, pp. 247–274.
[23] dell’Isola, F, Lekszycki, T, Pawlikowski, M, et al. Designing a light fabric metamaterial being highly macroscopically

tough under directional extension: First experimental evidence. Z angew Math Phys 2015; 66: 3473–3498.
[24] Giorgio, I, Della Corte, A, dell’Isola, F, et al. Buckling modes in pantographic lattices. C R Mecanique 2016; 344(7):

487–501.
[25] Giorgio, I, Della Corte, A, and dell’Isola, F. Dynamics of 1D nonlinear pantographic continua. Nonlinear Dynamics 2017;

88(1): 21–31.
[26] Placidi, L, Barchiesi, E, Turco, E, et al. A review on 2D models for the description of pantographic fabrics. Z angew Math

Phys 2016; 67(5): 121.
[27] Placidi, L, Andreaus, U, and Giorgio, I. Identification of two-dimensional pantographic structure via a linear d4

orthotropic second gradient elastic model. J Eng Math 2017; 103(1) 1–21.
[28] Giorgio, I. Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for

planar pantographic structures. Z angew Math Phys 2016; 67(4): 95.
[29] Cuomo, M, dell’Isola, F, and Greco, L. Simplified analysis of a generalized bias test for fabrics with two families of

inextensible fibres. Z angew Math Phys 2016; 67(3): 61.

762 Mathematics and Mechanics of Solids 25(3)



[30] Turco, E, Misra, A, Pawlikowski, M, et al. Enhanced Piola–Hencky discrete models for pantographic sheets with pivots

without deformation energy: Numerics and experiments. Int J Solids Structures 2018; 147: 94–109.
[31] Misra, A, Lekszycki, T, Giorgio, I, et al. Pantographic metamaterials show atypical poynting effect reversal. Mech Res

Commun 2018; 89: 6–10.
[32] Eremeyev, VA, dell’Isola, F, Boutin, C, et al. Linear pantographic sheets: existence and uniqueness of weak solutions. J

Elasticity 2018; 132(2): 175–196.
[33] Barchiesi, E, dell’Isola, F, Laudato, M, et al. A 1D continuum model for beams with pantographic microstructure:

Asymptotic micro–macro identification and numerical results. In: Advances in Mechanics of Microstructured Media and

Structures. Berlin: Springer, 2018, pp. 43–74.
[34] Alibert, JJ, Seppecher, P, and dell’Isola, F. Truss modular beams with deformation energy depending on higher

displacement gradients. Math Mech Solids 2003; 8(1): 51–73.
[35] Seppecher, P, Alibert, JJ, and dell’Isola, F. Linear elastic trusses leading to continua with exotic mechanical interactions.

In J Phys Conf Ser 319: 012018.

[36] Barchiesi, E, Eugster, SR, Placidi, L, et al. Pantographic beam: A complete second gradient 1D-continuum in plane. Z

angew Math Phys 2019; 70(5): 135.
[37] dell’Isola, F, Seppecher, P, and Della Corte, A. The postulations á la d’Alembert and á la Cauchy for higher gradient
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Appendix A

The terms ui and umS
i � umD

i are expanded up to first order by using the definitions (1) and (3) together
with the expansions (13) and (14). According to (12) and (13) the vectors between two adjacent points pi

are

pi + 1 � pi = e x0(si) +
e
2

x00(si) + o(e)
h i

, pi � pi�1 = e x0(si)�
e
2

x00(si) + o(e)
h i

: ð68Þ

The arguments of tan�1 in (3) are written as functions of e

hi + 1(e) =
(pi + 1 � pi) � ey

(pi + 1 � pi) � ex

=
(68)1

x0(si) � ey + e
2

x00(si) � ey + o(e)

x0(si) � ex + e
2

x00(si) � ex + o(e)
,

hi(e) =
(pi � pi�1) � ey

(pi � pi�1) � ex

=
(68)2

x0(si) � ey � e
2

x00(si) � ey + o(e)

x0(si) � ex � e
2

x00(si) � ex + o(e)
:

ð69Þ

It is noted that hi(0) = hi + 1(0) = x0(si) � ey

	 

= x0(si) � ex½ �. Moreover,

hi + 1
0(0) = � h0i(0) =

1

2½x0 � ex�2
(x00 � ey)(x0 � ex)� (x00 � ex)(x0 � ey)
	 
�����

s = si

=
1

2½x0 � ex�2
x00 � (ey � ex � ex � ey) � x0

�����
s = si

=
x00(si) � x0?(si)

2 x0(si) � ex½ �2
:

ð70Þ
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For a real-valued function h(e), tan�1 (h(e)) = tan�1 (h(0)) + h0(0)
1 + h(0)2 e+ o(e). As hi(0) = hi + 1(0), the first

terms in the Taylor series of both tan�1 expressions in (3) coincide

ui =
1

1 + hi + 1(0)2
hi + 1

0(0)� 1

1 + hi(0)2
hi
0(0)

� �
e + o(e)

=
(70) 1

1 +
x0(si)�ey

x0(si)�ex

h i2

x00(si) � x0?(si)

x0(si) � ex½ �2
e+ o(e)

=
x00(si) � x0?(si)

k x0(si)k2
e + o(e) =

(11)
q0(si)e+ o(e):

ð71Þ

For the expansion (1), it is required to perform the expansion of the norm of a vector-valued function

a(e), i.e. k a(e) k = k a(0) k + a(0)�a0(0)
ka(0)k e + o(e). Taking a(e) to be the expansions appearing in the

squared brackets of (68) and considering that r(s) = k x0(s) k,

k pi61 � pi k = e k x0(si) k 6
x0(si) � x00(si)

k x0(si) k
e
2

+ o(e)

� �
= e r(si)6r0(si)

e
2

+ o(e)
h i

: ð72Þ

Consequently, the expansion of the squared expression of (72) reads

k pi61 � pik2 = e2 k x0k26(x0 � x00)e+ o(e)
	 


s = si
= e2 r26rr0e+ o(e)

	 

s = si

: ð73Þ

Using (14), (72) and (73) in the argument of cos�1 of (1)1, 2,

h1D(S)(e) =
e2 r2 � rr0e + e(1=cosg)(~l

1D(S) �~l
2S(D)

) + o(e)
h i

2e2 1=2 cosg +~l
1D(S)

e+ o(e)
h i

½r � r0e=2 + o(e)�

������
s = si

=
r2 + e (1=cosg)(~l

1D(S) �~l
2S(D)

)� rr0
h i

+ o(e)

(1=cosg)r + e 2~l
1D(S)

r � (1=2 cosg)r0
h i

+ o(e)

������
s = si

:

ð74Þ

Similarly, the expansions of the arguments of cos�1 appearing in (1)3, 4 read

h2S(D)(e) =
r2 + e (1=cosg)(~l

2S(D) �~l
1D(S)

)� rr0
h i

+ o(e)

(1=cosg)r + e 2~l
2S(D)

r � (1=2 cos g)r0
h i

+ o(e)

������
s = si

: ð75Þ

All functions are of the form hmn(e) = a + ebmn + o(e)½ �= c + edmn + o(e)½ � with hmn(0) = a=c and
(hmn)0(0) = (bmnc� dmna)=c2. The angles umn

i are, thus, expanded as

umn
i = cos�1 hmn(0)½ � � effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� hmn(0)2
p (hmn)0(0) + o(e): ð76Þ

Expanding umS
i � umD

i with the help of (76), the first term thereof cancels. Inserting the derivative with
respect to e evaluated at e = 0 of (74) and (75)1,
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u1S
i � u1D

i =
r2(~l

1S �~l
1D

) + (1=2 cosg)rr
0 � (1=2 cos2 g)(~l

1S �~l
1D

+~l
2S �~l

2D
)

r(1=2 cosg)
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1=cos2 g)�r2

2

q
�������
s = si

e + o(e)

=
r½r2 � (1=2 cos2 g)�(~l1S �~l

1D
) + (1=2 cosg)r2r

0
+ r(1=2 cos2 g)(~l

2D �~l
2S

)

r2(1=2 cosg)
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1=cos2 g)�r2

2

q
�������
s = si

e + o(e):

ð77Þ

In the same manner the expansion for the difference in angles of the oblique springs indexed by m = 2
is obtained. Moreover, the previous expressions are simplified to give

u1(2)S
i � u1(2)D

i =
4½r2 � (1=2 cos2 g)�(~l1(2)S �~l

1(2)D
) + (1=cosg)(r2)

0
+ (2=cos2 g)(~l

2(1)D �~l
2(1)S

)

4r(1=2 cosg)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=cos2 g)� r2

p
�����
s = si

e + o(e),

ð78Þ

which, for g = p=6, becomes

u1(2)S
i � u1(2)D

i =

ffiffiffi
3
p

(r2 � 2=3)(~l
1(2)S �~l

1(2)D
) + rr

0
+ 2= ffiffi3p (~l

2(1)D �~l
2(1)S

)

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=3� r2

p
�����
s = si

e + o(e): ð79Þ

Using (14), (72) and (73) in the argument of cos�1 of (2), we can compute

h1(2)(e) =
(l1(2)D

i )
2
+ (l2(1)S

i + 1 )
2� k pi + 1 � pik2

2l1(2)D
i l2(1)S

i + 1

=
e2 1=2 cos2 g � r2 + rr0e+ e(1=cosg)(~l

1(2)D
+~l

2(1)S
) + o(e)

h i
2e2 1=2 cos g +~l

1(2)D
e + o(e)

h i
½1=2 cosg +~l

2(1)S
e + o(e)�

������
s = si

=

1=2 cos2 g � r2 + e rr0+ (1=cosg)(~l
1(2)D

+~l
2(1)S

)
h i

+ o(e)

1=2 cos2 g + e(1=cosg)(~l
1(2)D

+~l
2(1)S

) + o(e)

������
s = si

:

ð80Þ

The angles j1 and j2 are, thus, expanded as

j
m
i = cos�1 hm(0)½ �+ o(e0) = cos�1 1� r2

1=2 cos2 g

� �����
s = si

+ o(e0): ð81Þ

Thus, for g = p
6
,

j
m
i = cos�1 1� 3

2
r2

� �����
s = si

+ o(e0): ð82Þ

For the expansion of

KS cos�1 1� r2
a

1=2 cos2 g

� �
� p + 2g

� �2

ð83Þ

766 Mathematics and Mechanics of Solids 25(3)



in (47) with respect to ru required to obtain Equation (52), Equation (50) is inserted into the following

afcos�1 1� (x + 1)2

1=2 cos2 b

� �
+ 2b� pg2 = ½4a cot b�x2 + o(x2) ð84Þ

with a, b 2 R to obtain

KS cos�1 1� r2
a

1=2 cos2 g

� �
� p + 2g

� �2

= ½4KS cotg� ∂u

∂a
� ea

� �2

+ o k ∂u

∂a
k2

� �
: ð85Þ
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