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Abstract A 2D-continuum model describing finite deformations in plane of discrete bi-pantographic fabrics
has been recently obtained by applying an asymptotic procedure based on a set of local generalized coordi-
nates. Rectangular bi-pantographic prototypes were additively manufactured by selective laser sintering using
polyamide as raw material. Displacement-controlled bias extension tests were performed on such specimens
for total elastic deformations up to ca. 25%. Experimental force measurements, complemented by discrete
displacement measurements obtained by local digital image correlation, were used to fit the continuummodel.
In the present paper, a global and minimal set of generalized coordinates, alternative to the one used for the
homogenization, is introduced for the discrete model. The mechanical constitutive parameters appearing in the
discrete model are then found by means of collected experimental data. Finally, a comparison between exper-
iments, the discrete and the continuum model is presented. It is concluded that (a) the discrete model and the
experimental data are in excellent agreement, and that (b) the continuum retains the relevant phenomenology
of the discrete system even for a rather low number of cells.

Keywords Bi-pantographic fabrics · Second gradient continua · Discrete spring models · Additive
manufacturing · Experimental mechanics

1 Introduction

Recently, [1,2] presented the derivation by an asymptotic homogenization procedure [3–6] of a 1D-continuum
model [7–11] being capable of describing finite deformations in plane of a discrete spring [12–19] pantographic
structure [20–27] looking like an expanding barrier, referred to as pantographic beam.

Based on such results, Barchiesi et al. [28,29] generalized to finite deformations the homogenization of bi-
pantographic fabrics, first achieved by Seppecher et al. [6]. Bi-pantographic fabrics are conceived as assemblies
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Fig. 1 Additively manufactured bi-pantographic rectangular specimen

of discrete pantographic beams (see Fig. 1) leading at macroscopic scale to second gradient materials in plane.
(For a representative account of second gradient and generalized continua, the reader is referred to [30–39].)
For such materials, the deformation energy density depends upon the second gradient of the deformation. In
bi-pantographic structures, such a dependence is given through the rate of change in orientation and stretch of
material lines directed along the constituting pantographic beams.

In the spirit of meta-materials [40–42], rectangular bi-pantographic specimens shown in Fig. 1 were
designed and additively manufactured [43–45] by selective laser sintering (SLS) aimed at obeying the theoret-
ical discrete model. Displacement-controlled bias extension tests were performed on these specimens for total
elastic deformations up to ca. 25%. Experimental deformation measurements obtained by local digital image
correlation (DIC) and force–displacement measurements were used to fit the continuum model.

In Sect. 2, we briefly recall the main results regarding the homogenization of the discrete model, includ-
ing micro–macro correspondences needed to compare numerical results obtained for descriptions at different
scales, i.e., discrete at micro-scale and continuum at macro-scale. The bias extension test considered in the
present study is further introduced. Motivated by computational and implementation convenience, we succes-
sively introduce in Sect. 3 a minimal set of generalized coordinates for the discrete model, which is alternative
to the one used for the homogenization. In Sect. 4, we fit the constitutive parameters of the discrete model
by using collected experimental data. We then compare experiments, micro- and macro-modeling. Finally, in
Sect. 5, some conclusions are drawn.

2 Homogenized continuum

In the undeformed configuration (Fig. 2b), the discrete structure is formed by cells arranged upon straight lines
within the reference domain�, in direction of the unit basis vectors ex , ey ∈ E

2, beingE2 the two-dimensional
Euclidean vector space. The set � ⊆ R

2 has boundary ∂� being the disjoint union of N� ∈ N smooth line
sets ∂�k , k ∈ [1; N�], pairwise intersecting in distinct vertices (see Fig. 2a). The quantity pi, j ∈ R

2 (see
Fig. 2b, d) is the current position of the point at position Pi, j in the reference configuration. In Fig. 2c, elastic
elements are colored in black (extensional Hooke elastic springs, stiffness kE), red (rotational Hooke elastic
springs, stiffness kF), blue (rotational Hooke elastic springs, stiffness kF) and green (rotational Hooke elastic
springs, stiffness kS). The homogenization target is a 2D-continuum whose kinematics is characterized by its
placement function χ : � → R

2, or, equivalently, by its displacement function u : � → E
2 such that

u(x, y) = χ(x, y)− x ex − y ey , where x and y denote the coordinates of the undeformed configuration given
in the basis {ex , ey}. For the sake of conciseness, we introduce the index α ranging within the set {x, y}. We
also introduce the maps ρα : � → R

+ and ϑα : � → [0, 2π) aimed at rewriting the tangent vector field ∂χ
∂α

to deformed material lines directed along eα in the reference configuration as

∂χ

∂x
(x, y) = ρx (x, y)

{
[cosϑx (x, y)] ex + [sin ϑx (x, y)] ey

}
,

∂χ

∂y
(x, y) = ρy(x, y)

{[
cosϑy(x, y)

]
ey + [

sin ϑy(x, y)
]
ex

}
.

(1)

Hence, the quantity ρα , henceforth referred to as α-stretch, is the length of the vector ‖∂χ/∂α‖ tangent to the
deformedmaterial lines directed along eα in the reference configuration. Letting ε → 0 in Fig. 2bwhile keeping
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(a) (b)

(c)

(d)

Fig. 2 Bi-pantographic fabrics. a Domain �, b undeformed configuration of (i, j)th cell (including neighboring elements), c
force elements of a single cell, d deformed configuration of (i, j)th cell (including neighboring elements)

fixed the overall dimension of the system, and suitably scaling the force elements’ stiffnesses, Barchiesi et al.
[29] have shown that the deformation energy for the homogenized macro-model reads as

E =
∫

�

∑

α

{
KS

[

cos−1

(

1 − ρ2
α
1

2 cos2 γ

)

− π + 2γ

]2

+ KEKF

[
ρ2

α cos
2 γ − 1

ρ2
α cos2 γ

(
KE − 8KF cos2 γ

) − KE

(
∂ϑα

∂α

)2

+ ρ2
α cos

2 γ
(
1 − ρ2

α cos2 γ
) [
8KF + ρ2

α

(
KE − 8KF cos2 γ

)]
(

∂ρα

∂α

)2 ]}
dA

(2)

being KS, KE and KF the scaled macro-stiffnesses corresponding to the micro-stiffnesses kS, kE and kF,
respectively. It is worth recalling [46] that for the above continuum deformation energy we can prescribe
conditions at the smooth boundaries on (a) the normal placement gradient, (b) the placement function, and
conditions on the placement function at vertices, i.e., singular points of the boundary.

To compare the numerical results of the micro- and macro-model, beyond the micro–macro identification
of independent kinematic descriptors

χ(xi , y j ) = pi, j , (3)

the followingmicro–macro correspondences, obtained by neglecting non-leading ε-terms in Taylor expansions
of corresponding continuum quantities evaluated at discrete points, are considered

ρx (xi , yi ) ↔ ‖pi+1, j − pi, j‖
ε

, ρy
(
xi , y j

) ↔ ‖pi, j+1 − pi, j‖
ε

. (4)

For the shearing angle (see Fig. 3), we can identify the micro–macro correspondence
[
π/2 − arccos

( ∇χ ex · ∇χ ey
‖∇χ ex‖‖∇χ ey‖

)]

(x,y)=(xi ,y j )

↔ π/2 − arccos

(
(pi+1, j − pi, j ) · (pi, j+1 − pi, j )
‖pi+1, j − pi, j‖‖pi, j+1 − pi, j‖

)
.

(5)
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Fig. 3 Angle arccos
(

(pi+1, j−pi, j )·(pi, j+1−pi, j )
‖pi+1, j−pi, j ‖‖pi, j+1−pi, j ‖

)
for the undeformed (left) and deformed (right) configurations

Fig. 4 Schematics of the reference domain � considered in the boundary value problem for the macro-model. Point A in the
picture is at the center of the square having as side the (left) shortest side of the domain. Point B is at the center of the domain

Introducing for the discrete system the nodal displacements ui, j ∈ E
2 such that ui, j = pi, j − Pi, j , by the

micro–macro identification (3), we have u(xi , y j ) = ui, j . Therefore, we can define the followingmicro–macro
correspondences at the boundaries (cf. Fig. 4)

∂u
∂x

(xi , y j ) ↔ ui+1, j − ui, j
ε

and
∂u
∂y

(xi , y j ) ↔ ui, j+1 − ui, j
ε

for all (xi , y j ) ∈ ∂�1 ,

∂u
∂x

(xi , y j ) ↔ ui, j − ui−1, j

ε
and

∂u
∂y

(xi , y j ) ↔ ui, j − ui, j−1

ε
for all (xi , y j ) ∈ ∂�3 .

(6)

The bias extension test1 is commonly used in textile mechanics as a standard experiment to measure the
in-plane combined shearing and tensile response of materials made up of two families of fibers. Such a mono-
axial extension test is performed on rectangle-shaped specimens having long sides aligned with the loading
direction. Constituting fibers—pantographic ones in the present study—are initially oriented at ± 45-degrees
to the loading direction. In the present study, the test is modeled by a domain having the shape of a rectangle
(with sides 187 mm × 119 mm and γ in Fig. 2b equal to π/6, see Fig. 4) and being subjected to the following
essential boundary conditions:

u(x, y) = 0 at (x, y) ∈ ∂�1 , u(x, y) = ūeζ at (x, y) ∈ ∂�3, ū ∈ R ,

[∇u(x, y)]eζ (x, y) = 0 at (x, y) ∈ ∂�1 , [∇u(x, y)]eζ (x, y) = 0 at (x, y) ∈ ∂�3 .
(7)

Shearing angles at points B and A in Fig. 4 are connected to the transverse contraction of the specimen (hence
shearing stiffness) and fiber bending (hence effective fiber bending stiffness), respectively. Indeed, shearing
deformation is maximum in B and, since the gray dashed triangle adjacent to the (left) shortest side behaves
quasi-rigidly, fiber bending is maximum in A. Fiber extension is maximum at specimen corners—close to
corners in the present study—and, therefore, effective fiber extensional stiffness is strongly related to fiber
extension at specimen corners. For the discrete system, we have ε=12.02 mm, see Fig. 6. The correspondence

1 An account of the use of the wording bias in the field of fibered materials can be found at the link https://simple.wikipedia.
org/wiki/Bias_(textile).

https://simple.wikipedia.org/wiki/Bias_(textile)
https://simple.wikipedia.org/wiki/Bias_(textile)
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Table 1 Boundary conditions for micro- and macro-model

Micro-model Macro-model

ui, j = 0 for all (i, j) s.t. (xi , y j ) ∈ ∂�1 u(x, y) = 0 for all (x, y) ∈ ∂�1
ui, j = ūeζ for all (i, j) s.t. (xi , y j ) ∈ ∂�3 u(x, y) = ūeζ for all (x, y) ∈ ∂�3
ui+1, j = ui, j for all (i, j) s.t. (xi , y j ) ∈ ∂�1 [∇u(x, y)]eζ (x, y) = 0 for all (x, y) ∈ ∂�1
ui, j+1 = ui, j for all (i, j) s.t. (xi , y j ) ∈ ∂�1 [∇u(x, y)]eζ (x, y) = 0 for all (x, y) ∈ ∂�3
ui−1, j = ui, j for all (i, j) s.t. (xi , y j ) ∈ ∂�3
ui, j−1 = ui, j for all (i, j) s.t. (xi , y j ) ∈ ∂�3

between boundary conditions (7) for the continuum model and those for the discrete model are schematized
in Table 1.

3 Micro-model revisited

For solving the discrete micro-model directly and without making any of the hypotheses assumed for the
derivation of the continuum model, it is much more convenient to introduce an alternative global, minimal
set of generalized coordinates than the one used for the homogenization, i.e., the kinematics of the discrete
system is entirely described by the coordinates of the nodal points. The bi-pantographic fabric is modeled as a
discrete elastic spring system that is embedded in the two-dimensional Euclidean vector space E2. The static
equilibrium conditions are obtained by the principle of virtual work, which in the case of our elastic system
coincides with the principle of stationary total potential energy. Consequently, only the system’s potential
energy and its corresponding variation have to be formulated. The system is composed of extensional and
rotational springs only. First, we introduce the potential energies of a standard extensional and rotational
spring element. Subsequently, we explain the kinematics of the bi-pantographic fabric, which includes some
cumbersome but necessary bookkeeping of the relevant degrees of freedom for each spring contribution. Lastly,
we state the principle of virtual work for the constrained discrete system subjected to kinematic boundary
conditions.

The springs are formulated between nodal points, which are depicted as white filled circles, see Fig. 5. The
position r = ζeζ + ςeς ∈ E

2 of a typical nodal point is commonly addressed by its Cartesian coordinates
x = (ζ, ς) ∈ R

2 with respect to the orthonormal basis vectors eζ , eς ∈ E
2. If not stated otherwise, R f -

tuples are considered in the sense of matrix multiplication as R f ×1-matrices, i.e., as “column vectors”. Let
qe = (ζ1, ς1, ζ2, ς2) ∈ R

4 be the coordinates of two points interconnected by an extensional spring as depicted
in Fig. 5a. Introducing the abbreviations�ζ = ζ2 − ζ1 and�ς = ς2 −ς1, the distance between the two points
is

l(qe) =
√

�ζ 2 + �ς2 =
√

(ζ2 − ζ1)2 + (ς2 − ς1)2 . (8)

The derivative with respect to qe is the “row vector”

∂l

∂qe
(qe) = 1

l(qe)
(−�ζ,−�ς,�ζ,�ς) ∈ R

1×4 . (9)

The potential of an extensional spring with stiffness ke > 0 and undeformed length l0 > 0 is the function

Ee(ke, l0,qe) = 1

2
ke[l(qe) − l0]2 . (10)

The derivative of the potential (10) with respect to qe is the function

feT(ke, l0,qe) = ∂Ee

∂qe
(ke, l0,qe) = ke[l(qe) − l0] ∂l

∂qe
(qe) ∈ R

1×4 . (11)

Rotational springs are interactions between three nodal points. Let qr = (ζ1, ς1, ζ2, ς2, ζ3, ς3) ∈ R
6 be

the Cartesian coordinates of three nodal points as depicted in Fig. 5b. With the abbreviations �ζ1 = ζ2 − ζ1,
�ζ2 = ζ3 − ζ2, �ς1 = ς2 − ς1 and �ς2 = ς3 − ς2, the distances between the respective points are

l1(qr) =
√

�ζ 2
1 + �ς2

1 , l2(qr) =
√

�ζ 2
2 + �ς2

2 , (12)
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(a) (b)

Fig. 5 a Kinematics of an extensional spring. b Kinematics of a rotational spring

Fig. 6 Reference configuration of the discrete model. The (i, j)th vertex and the (i, j)th cell are highlighted by a red dot and a
red square, respectively. A close up shows the arrangement of the nodal points in the undeformed reference configuration

with the corresponding derivatives

∂l1
∂qr

(qr) = 1

l1(qr)
(−�x1, −�ς1, �x1,�ς1, 0, 0) ∈ R

1×6 ,

∂l2
∂qr

(qr) = 1

l2(qr)
(0, 0,−�x2,−�ς2, �x2, �ς2) ∈ R

1×6 .

(13)

The angles between the eζ -axis and the vectors�ζ1eζ +�ς1eς and�ζ2eζ +�ς2eς , respectively, are introduced
by the relations

φ1(qr) = tan−1
(

�ς1

�ζ1

)
, φ2(qr) = tan−1

(
�ς2

�ζ2

)
(14)

with the corresponding derivatives

∂φ1

∂qr
(qr) = 1

l1(qr)2
(�ς1, −�ζ1, −�ς1,�ζ1, 0, 0) ∈ R

1×6 ,

∂φ2

∂qr
(qr) = 1

l2(qr)2
(0, 0, �ς2, −�ζ2, −�ς2, �ζ2) ∈ R

1×6 .

(15)

Note, numerically tan−1 is implemented by an atan2-function with a range (−π, +π] ⊂ R. The potential
energy of a rotational spring with stiffness kr > 0 and undeformed angle −π < φ0 ≤ π is

E r(kr, φ0,qr) = 1

2
kr[φ2(qr) − φ1(qr) − φ0]2 . (16)

Straightforwardly, the derivative with respect to qr leads to the R1×6 matrix

f rT(kr, φ0,qr) = ∂E r

∂qr
(kr, φ0,qr) = kr[φ2(qr) − φ1(qr) − φ0]

(
∂φ2

∂qr
(qr) − ∂φ1

∂qr
(qr)

)
. (17)

The bi-pantographic fabric is characterized by a periodic substructure, which is captured in the discrete
model by identical cells composed of extensional and rotational springs. The cells themselves do interact with
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Fig. 7 Deformed configuration of the discrete model. The (i, j)th vertex and the (i, j)th cell are highlighted by a red dot and
a red quadrilateral, respectively. A close up shows the arrangement of the nodal points in the deformed configuration and their
interaction by extensional and rotational springs

Table 2 Assignments of coordinates of nodal points to spring coordinates within cell (i, j)

Spring coordinates Assignment of nodal points

qe(i, j)k = (xp
(i, j), x

q
(i, j)) {p, q} ∈ k=0{0, 5}, k=1{0, 6}, k=2{5, 4}, k=3{6, 4}, k=4{4, 7}, k=5{4, 8}, k=6{7, 1},

k=7{8, 1}, k=8{4, 9}, k=9{4, 10}, k=10{9, 2}, k=11{10, 2}, k=12{4, 11},
k=13{4, 12}, k=14{11, 3}, k=15{12, 3}

qr1(i, j)l = (xp
(i, j), x

q
(i, j), x

s
(i, j)) {p, q, s} ∈ l=0{0, 6, 4}, l=1{0, 5, 4}, l=2{4, 7, 1}, l=3{4, 8, 1}, l=4{4, 9, 2},

l=5{4, 10, 2}, l=6{3, 12, 4}, l=7{3, 11, 4}
qr2(i, j)m = (xp

(i, j), x
q
(i, j), x

s
(i, j)) {p, q, s} ∈ m=0{5, 4, 9}, m=1{6, 4, 10}, m=2{12, 4, 8}, m=3{11, 4, 7}

each other by sharing nodal points with adjacent cells and by additional rotational springs. In the undeformed
reference configuration, the cells are quadratic with width

√
2ε, see Fig. 6. Each cell has 4 nodal points as

vertices, which are globally addressed by the row-column indices (i, j) within the range i = {0, 1, . . . , N }
and j = {0, 1, . . . , M}. Consequently, the fabric consists of N · M cells with (N + 1)(M + 1) cell vertices.
Besides the 4 vertices, in each cell, there are 9 additional nodal points required to capture the complex behavior
of the bi-pantographic fabric. In the reference configuration, these nodal points are arranged symmetrically as
depicted in Fig. 6.

In the deformed configuration, the Cartesian coordinates of the cell vertices are denoted x(i, j) =
(ζ(i, j), ς(i, j)) ∈ R

2. As depicted in Fig. 7, the Cartesian coordinates of the kth nodal point within cell (i, j) are
xk(i, j) = (ζ k

(i, j), ς
k
(i, j)) ∈ R

2. Note that the coordinates of the cell vertices have different denotations depending
on their respective application on cell or fabric level. Thus, the f = 2[(N + 1)(M + 1)+ 9N · M] generalized
coordinates of the discrete system are the Cartesian coordinates of all nodal points of the fabric

q = (x(0,0), . . . , x(M,N ), x4(0,0), . . . , x
12
(0,0), . . . , x

4
(M−1,N−1), . . . , x

12
(M−1,N−1)) ∈ R

f . (18)

For a compact formulation of the total potential energy of the system, it is convenient to introduce spring
coordinates, i.e., sets of coordinates that involve only the coordinates of the relevant nodal points for each
spring. We begin with the interactions in each cell (i, j) by considering Fig. 7 together with Table 2, where
the explicit assignments of the nodal coordinates to the spring coordinates are specified. The axial stiffnesses
of the fibers in the fabric are modeled by 16 extensional springs each with stiffness ke and undeformed

length l0 =
√
3
3 ε. The coordinates required for the kth spring are given by qe(i, j)k ∈ R

4. The resistance of
the pins with respect to torsion is captured by 8 rotational springs, depicted in Fig. 7 by green arcs, with
stiffness kr1. The energy of the lth rotational spring is formulated with qr1(i, j)l ∈ R

6 and the undeformed angle

φ0 = (−1)lπ/3. The bending stiffness of the fibers within each cell is included by 4 rotational springs with
stiffness kr2 influencing the coordinates qr2(i, j)m ∈ R

6. The cells interact with each other by sharing nodal points
with adjacent cells. However, we also have to account for the bending stiffness of the fibers at each cell vertex
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Fig. 8 Assignments of coordinates of nodal points to spring coordinates for interaction between cells

for i = 1, . . . , N − 1 and j = 1, . . . , M − 1. These bending stiffnesses are realized by rotational springs
with stiffness kr3 = kr2 and corresponding spring coordinates qr3(i, j)m ∈ R

6, which are specified in Fig. 8.
To extract the spring coordinates from the generalized coordinates (18), the Boolean connectivity matrices
Ce

(i, j)k ∈ R
4× f and Cr1

(i, j)l ,C
r2
(i, j)m,Cr3

(i, j)m ∈ R
6× f are defined by the relations

qe(i, j)k = Ce
(i, j)kq , qr1(i, j)l = Cr1

(i, j)lq , qr2(i, j)m = Cr2
(i, j)mq , qr3(i, j)m = Cr3

(i, j)mq . (19)

Using the spring coordinates of Table 2 and Fig. 8 together with the potential energies (10) and (16), the
total potential energy of the discrete bi-pantographic fabric is

E(q) =
N−1∑

i=0

M−1∑

j=0

(
15∑

k=0

Ee(ke, l0,Ce
(i, j)kq) +

7∑

l=0

E r(kr1, (−1)l π
3 ,Cr1

(i, j)lq)

+
3∑

m=0

E r(kr2, 0,Cr2
(i, j)mq)

)

+
N−1∑

i=1

M−1∑

j=1

3∑

m=0

E r(kr3, 0,Cr3
(i, j)mq) .

(20)

Let q̂(ε) be a function of ε that includes the actual coordinates q for static equilibrium in the case of ε = 0,
i.e., q̂(0) = q. Then, the variation of the total potential energy E induced by q̂ is

δE(q) = ∂E
∂q

(q)
dq̂
dε

(0) = fT(q)δq , (21)

where δq = dq̂
dε (0) are the virtual displacements, f(q) = (∂E/∂q)T(q) are the internal generalized forces and

the transposed of a matrix is indicated by (·)T. Using (11) and (17) together with the total potential energy
(20), the internal generalized forces of the bi-pantographic fabric are obtained by

fT(q) = ∂E
∂q

(q)

=
N−1∑

i=0

M−1∑

j=0

(
15∑

k=0

fe(ke, l0,Ce
(i, j)kq)Ce

(i, j),k +
7∑

l=0

f r(kr1, (−1)l π
3 ,Cr1

(i, j)lq)Cr1
(i, j)l

+
3∑

m=0

f r(kr2, 0,Cr2
(i, j)mq)Cr2

(i, j)m

)

+
N−1∑

i=0

M−1∑

j=0

3∑

m=0

f r(kr3, 0,Cr3
(i, j)mq)Cr3

(i, j)m .

(22)

Kinematic boundary conditions are imposed by perfect bilateral constraints 0 = g(q) ∈ R
m with a virtual

work contribution δW c = δgTλ = δqTW(q)λ, where W(q)T = ∂g
∂q (q) ∈ R

m× f is the matrix of generalized
force directions and λ ∈ R

m the vector of constraint forces. The discrete system is now in static equilibrium
if and only if the total virtual work of internal generalized forces and constraint forces vanishes for all virtual
displacements, i.e.,

δqT(f(q) + W(q)λ) = 0 ∀δq ∈ R
f (23)
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Fig. 9 Total reaction force with changed sign (N) versus prescribed displacement ū (mm) along the direction eζ (left), shearing
angle at point A (◦) versus prescribed displacement ū (mm) along the direction eζ (center), and shearing angle (◦) at point B
versus prescribed displacement ū (mm) along the direction eζ (right)

Table 3 Parameters’ value for discrete and continuum models as found by way of fitting

Micro-model Macro-model

kF = 46.2 J KF = 0.9 J
kE = 335 Nm−1 KE = 0.33 J
kS = 9.36 J KS = 34 Nm−1

and the constraint equations g(q) = 0 are satisfied. Thus, the equilibrium configuration is determined by the
set of nonlinear equations [

f(q) + W(q)λ
g(q)

]
= 0 (24)

which can be solved, at least locally, by a Newton–Raphson iteration scheme.

4 Results

Specimens were 3D-printed using selective laser sintering (SLS). Polyamide powder PA2200 was used as
raw material. A top view of the manufactured specimen, with a zoom on relevant details, is shown in Fig. 1.
The micro-model’s kinematics prescriptions in the third and sixth rows of Table 1 are realized by connecting
adjacent hinge axes in the vicinity of gripping areas, see Fig. 1. Stocky rhomboidal elements are used to this
end, which can be assumed to be rigid for the studied load cases.

An increasing displacement was prescribed horizontally on the right side of the specimen with a loading
rate of 15 mm/min meant to be quasi-static in relation to the weight of the specimen. Kinematic experimental
acquisition was achieved by non-stereo digital image correlation (DIC). Pictures of the surface during defor-
mation were acquired (0.5 fps, i.e., nominally for 1 mm displacement increments) by means of a Canon EOS
600D camera with a definition of 4272 × 2848 pixels and an 8-bit dynamic range. The sought kinematics
is given by the in-plane displacements of the hinges at positions pi, j ’s of the bi-pantographic structure. The
displacements of these (discrete) points are retrieved via local DIC (i.e., using zones of interest or ZOIs [47]
centered on each hinge). The simplest approach seeks the rigid body translation of each considered ZOI, as
originally performed in particle image velocimetry [48,49]. An in-depth illustration of the application of the
above-mentioned DIC techniques to the present study is beyond the scopes of this article. Therefore, it is omit-
ted. For more details on the design, manufacturing and experimental testing of bi-pantographic specimens, we
refer to [29].

Parameters for the discrete (kF, kE and kS) model and the continuum (KF, KE and KS) one were indepen-
dently found by fitting the three curves (see Fig. 9). The first one (Fig. 9 (left)) is the total reaction force versus
ū. The second one (Fig. 9 (center)) is the shearing angle at point A (cf. Fig. 4) versus ū. Finally, the third one
(Fig. 9 (right)) is the shearing angle at point B, which is strongly related to the transverse contraction of the
specimen, against ū.

Parameters’ value for discrete and continuum models as found by way of the fitting procedure described
above is reported in Table 3. Deformed configurations as predicted by modeling, i.e., pi, j ’s for the discrete
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Fig. 10 Deformed configurations as predicted by the discrete and continuum models, i.e., pi, j ’s for the discrete model and
χ(xi , y j ) for the continuum one, for different ū’s are compared with experimentally measured ones. Abscissas and ordinates are
expressed in mm

model and χ(xi , y j ) for the continuum model, are compared for different ū’s with experimental data, and are
plotted in Fig. 10. Discrete and continuummodeling substantially overlap, and the agreement with experiments
is remarkably good. It is worth noticing that experimental data are noticeably not-completely symmetric, which
might be a point to address in future. A contour plot of the y-stretch ρy is shown in Fig. 11 for discrete and
continuum models. Again, micro–macro agreement is very good even for such a rather small number of cells.

5 Conclusion

In the present article, we performed a preliminary comparison between discrete and homogenized continuum
modeling in the finite deformation regime analysis of a recently designed specimen with bi-pantographic
micro-structure. From obtained evidences, we conclude that the metamaterials synthesis problem has been
successfully accomplished and that the agreement between homogenized continuumand discrete system is very
good already for low numbers of cells. Possible outlooks include the investigation of lower-scale approaches
based on granular micro-mechanics [50–52], the use of semi-discrete descriptions in which continuous beam
elements replacing assemblies like those in Fig. 2d are solved by iso-geometric analyses [53–59] and the study
of different boundary prescriptions [60].
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Fig. 11 y-stretch ρy for discrete and continuum models. Abscissas and ordinates are expressed in mm
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