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Time finite element based Moreau-type integrators
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SUMMARY

With the postulation of the principle of virtual action, we propose in this paper a variational framework
for describing the dynamics of finite dimensional mechanical systems which contain frictional contact
interactions. Together with the contact and impact laws formulated as normal cone inclusions, the principle
of virtual action directly leads to the measure differential inclusions commonly used in the dynamics of
nonsmooth mechanical systems. The discretization of the principle of virtual action in its strong and weak
variational form by local finite elements in time provides a structured way to derive various time-stepping
schemes. The constitutive laws for the impulsive and non-impulsive contact forces, i.e. the contact and
impact laws, are treated on velocity-level by using a discrete contact law for the percussion increments
in the sense of Moreau. Using linear shape functions and different quadrature rules, we obtain three
different stepping schemes. Besides the well established Moreau time-stepping scheme, we can present two
alternative integrators referred to as symmetric and variational Moreau-type stepping schemes. A suitable
benchmark example shows the superiority of the newly proposed integrators in terms of energy conservation
properties, accuracy and convergence.
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1. INTRODUCTION

This work is concerned with the numerical time-integration of the dynamical behavior of finite
dimensional mechanical systems which contain frictional contact interactions. If such contact
interactions are described by set-valued force laws, cf. [1], as for instance by unilateral constraints,
the motion of such systems can be expected to not behave smoothly. In fact, an exact realization of
such contact laws will lead to velocity jumps and undefined accelerations at collision time instants.
As a consequence, the equations of motion, which require defined accelerations, fail to describe the
motion at this very time instants. To obtain notwithstanding a well-defined description of the system,
the equations of motion can be augmented by impact equations together with impact laws. Similarly
to the contact laws, the impact laws have to be understood as constitutive laws and can be described
by set-valued force laws. Typically, the equations of motion and the impact equations are combined
into equality of measures. Together with the formulation of the contact and impact laws as set-valued
force laws, this leads to a description of the dynamics of the nonsmooth mechanical system in the
form of measure differential inclusions. Among the first to use this approach was J. J. Moreau, who
also devised a numerical scheme to solve these measure differential inclusions [2]. We refer to this
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2 G. CAPOBIANCO ET AL.

well established scheme as Moreau’s time-stepping scheme. Other discretizations of the measure
differential inclusions have been developed, such as the modified Θ-method of Jean [3], the scheme
of Paoli and Schatzman [4, 5] and the schemes of Stewart, Anitescu, Potra and Trinkle [6, 7, 8, 9].
We refer to [10, 11] for a more detailed overview of existing methods. Moreau’s time-stepping
scheme has many advantages. As an event-capturing algorithm, which does not solve for every
single impact, it is well suited for many contact problems such as the simulation of granular media
[12, 13, 14, 15, 16]. Furthermore, it can also overcome accumulation points, which are characterized
as sequences of infinitely many impacts appearing in a finite time interval. In contrast, Moreau’s
scheme shows poor longterm energy behavior, is of low order and allows for contact penetration.
These drawbacks have been addressed in several works. Using the concept of discrete derivatives by
Gonzalez [17], Möller [18] presents a scheme which is similar to the one of Moreau but conserves
the energy. Acary [19] and Studer [10] use various techniques to arrive at higher order schemes. The
problem of contact penetration is addressed in [20, 21, 22, 13].

The discretization of a variational principle, such as Hamilton’s law of varying action [23], with
finite elements in time has proven to be an effective and structured way to derive integration schemes
for smooth mechanical systems. The so derived schemes often exhibit good longterm energy
behavior, see for example [24, 25]. As shown by Marsden and West [26], the time finite element
discretization of Hamilton’s law of varying action leads to the realm of discrete mechanics and
variational integrators. These integrators are known to be symplectic and to show a good longterm
energy behavior, cf. [26, 27]. The framework of discrete mechanics is used in [28] and [29] to
derive integration schemes for nonsmooth mechanical systems. This is done by the use of a space-
time formalism, where the action functional of Hamilton is also varied with respect to time allowing
to impose a jump condition on the energy, which for the case of a mechanical system with only
one contact corresponds to the choice of an impact law . While the algorithm of [28] belongs to the
class of event-driven algorithms, [29] proposes an approach allowing for discontinuous trajectories.
The same discontinuous behavior of the trajectories is assumed in [30], where the discretization of a
variational formulation of the equality of measures with a discontinuous Galerkin approach in time
is discussed. This leads then to Moreau’s time-stepping scheme together with some higher order
schemes.

Event-capturing algorithms coming from the discretization of the equality of measures perform
robustly for many-contact problems and can overcome accumulation points. Furthermore, the
discretization of variational principles leads to a well-structured way to derive integration schemes
which often exhibit good longterm simulation behavior. In the present work, we want to show how
to combine these advantages by applying continuous shape functions for the approximation of the
systems trajectories. In Section 2, we propose with the principle of virtual action a variational
principle which, for forces belonging to the class of special functions with locally bounded
variations, contains the equality of measures. Furthermore, the contact and impact laws for frictional
contacts are formulated as normal cone inclusions. Section 3 shows the discretization of the principle
of virtual action, in its strong and weak variational form, with piecewise linear shape functions
in time. Together with a certain choice of quadrature rules three different time-stepping schemes
are obtained. The schemes are completed by the discretization of the contact and impact laws in
accordance with Moreau’s time-stepping scheme. The three schemes are summarized in Section 4
and evaluated in Section 5 for certain benchmark examples. Finally, conclusions are drawn in
Section 6.

2. NONSMOOTH MECHANICAL SYSTEMS

In this section, we introduce the principle of virtual action for finite dimensional mechanical
systems, which serves as starting point for the derivation of the integrators. Furthermore, we show
that the principle of virtual action implies the equality of measures or, equivalently, the equations
of motion and the impact equations. Finally, the constitutive laws describing the contacts are
introduced.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



TIME FINITE ELEMENT BASED MOREAU-TYPE INTEGRATORS 3

Consider a finite dimensional mechanical system S, whose configuration can be described by
a finite set of generalized coordinates q ∈ Rn. A motion of the system S is a map q : I →
Rn, t 7→ q(t), which associates to every time instant t in the time interval I = [ts, tf ] ⊆ R a set
of generalized coordinates. The time instants ts and tf indicate the starting and the final time of
the considered motion. Wherever defined, the velocity and acceleration of the system at t are q̇(t)

and q̈(t) respectively, where ˙(•) = d
dt (•) denotes the derivative with respect to time. The velocities

q̇ ∈ SLBV(R;Rn) are assumed to be special functions of locally bounded variation. The space
SLBV(R;Rn) is defined in [31] as the subspace of the space of functions with locally bounded
variation LBV(R;Rn) which do not have a Cantor part, i.e. which have at most countably infinitely
many jump discontinuities. Thus, the differential measure dq̇ can be decomposed into the sum of
an absolutely continuous and a singular measure with respect to the Lebesgue measure dt, cf. [32].
In order to explicitly write the decomposition of dq̇, we define the atomic measure as a finite sum
of Dirac point measures δtk by introducing

dη =
∑
k

dδtk , where

∫
I

dδtk =

{
1 if tk ∈ I
0 if tk /∈ I

, (1)

which by definition is singular with respect to dt. This allows to write the differential measure of
any special function with locally bounded variation s ∈ SLBV(R;Rn) as

ds = ṡ(t) dt+ [s(t+)− s(t−)]dη , (2)

where the evaluation of s at t− and t+ denotes the left and right limit of s at t. In particular, we can
write

dq̇ = q̈(t) dt+ [q̇(t+)− q̇(t−)] dη . (3)

A variational family of the motion is a parametrization of motions q̂(t, ε) which is smooth with
respect to the parameter ε ∈ R and contains the actual motion for ε = ε0, i.e. q(t) = q̂(t, ε0). The
virtual displacement of the system S at time t is then defined as

δq(t) =
∂q̂

∂ε

∣∣∣∣
(t,ε0)

. (4)

As a function of time, we assume δq to be smooth. The time derivative (δq)̇ = d(δq)
dt of the

virtual displacement corresponds to the variation of the velocity wherever the latter is defined†,
i.e. (δq)̇ = δ(q̇) holds almost everywhere. While the inertia of the system S is given by the kinetic
energy T (q, q̇, t), all remaining forces acting on S are introduced by the vector measure dF. As
fundamental equation in dynamics, we postulate the principle of virtual action which demands the
virtual action of all forces acting on the mechanical system S to vanish for all virtual displacements
δq, i.e.

δA =

∫
I

[
δT (q, q̇, t) dt+ δqTdF

]
= 0 ∀δq , (5)

where δT = ∂T
∂q δq + ∂T

∂q̇ (δq)̇. Due to the preceding discussion that (δq)̇ = δ(q̇) holds almost
everywhere (a.e.), the difference between δT used in (5) and the variation of the kinetic energy,
given by ∂T

∂q δq + ∂T
∂q̇ δ(q̇), is Lebesgue negligible. Accordingly, this difference does not change the

value of the definite integral in (5) and we will henceforth refer to δT as the variation of the kinetic
energy.

As Lagrange did in the first place, we formulate the mechanical principle in the form of the
necessary condition for an extremum of a functional in the context of the calculus of variations.

†Since the velocity q̇ ∈ SLBV(R;Rn), also the time derivative of q̂ are defined almost everywhere with respect to
the Lebesgue measure dt. Therefore we have q̇ = ∂q̂

∂t

∣∣
ε=ε0

a.e., which implies that ∂q̂
∂t

is a variational family for

the velocity. Hence by Schwarz’ Theorem, the relation δ(q̇) = ∂
∂ε

(
∂q̂
∂t

)∣∣
ε=ε0

= ∂
∂t

(
∂q̂
∂ε

∣∣
ε=ε0

)
= (δq)̇ holds almost

everywhere.
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4 G. CAPOBIANCO ET AL.

Hellinger [33]‡ emphasizes the importance of the mechanical principle being only of the form of,
and not acutally, a necessary condition of an extremum of a functional. Whether a functional exists,
such that the principle of virtual action is the respective necessary condition, depends not only on
the forces acting on the system but also on the boundary conditions. If the occurring forces can be
deduced from a potential V (q, t) by δqTdF = −δV (q, t) dt and the initial and final configurations
of the system are known, i.e. the virtual displacements vanish on the boundary of I, such a functional
does exist. It is the very action functional A =

∫
I(T − V ) dt introduced by Hamilton [35]. The

principle of virtual action then takes the form of Hamilton’s principle [36, p. 98; 23, p. 124]. One
could consider the principle of virtual action (5) also as the principle of virtual work formulated in
space-time. However, as virtual work is a settled term, which denotes the virtual work formulated
in space only, and (5) has a strong resemblance to Hamilton’s law of varying action [35, p. 307;
37; 23, p. 124], the term “principle of virtual action” seems to be more appropriate. From a purely
mathematical point of view, we accept with the principle of virtual action the idea of considering
forces as distributions in the sense of L. Schwartz [38], which naturally includes impulsive forces.
In this context, the principle of virtual action can be seen as the extension of Lagrange’s equations
of the second kind, where the time derivative of ∂T

∂q̇ is formulated as a weak time derivative. This
allows for a bigger class of solution functions, which contains also the nonsmooth behavior of a
system.

We assume that the system S is restricted by nc rheonomic geometric unilateral constraints,
which are represented by the inequalities gi(q, t) ≥ 0 for i = 1, . . . , nc. For the ith contact, the
gap function gi is zero in case of contact, positive in case of separation and negative in case of
penetration. In addition to the gap functions, for i = 1, . . . , nc, the normal and tangential contact
velocities γNi = ġi a.e. and γTi ∈ R2, respectively, are introduced in order to fully describe the
kinematics of each contact. For mechanical systems, these contact velocities are of the form

γNi(q, q̇, t) = wNi(q, t)Tq̇ + ηNi(q, t), and γTi(q, q̇, t) = WTi(q, t)Tq̇ + ηTi(q, t) , (6)

where one recognizes the generalized force directions

wNi =

(
∂γNi
∂q̇

)T
=

(
∂gi
∂q

)T
and WTi =

(
∂γTi
∂q̇

)T
, (7)

which by W = (wN1, . . . ,wNnc
,WT1, . . . ,WTnc

) can be collected in a n× 3nc-matrix of
generalized force directions. It is well known [39, 40] that in order to model hard unilateral
constraints, one needs to allow impulsive forces to account for impacts whenever a contact closes.
To do so, we assume an additive force decomposition

dF = WdP + dF̃ (8)

where WdP and dF̃ denote the force measures of all contact and noncontact forces, respectively.
Moreover, the contact force measure is determined by the matrix of generalized force directions W
together with the associated measure to the percussion P ∈ SLBV(R;R3nc). Since the percussion
P is a special function with locally bounded variation, we can write the differential measure in
accordance with (2) as

dP = λ dt+ Λ dη , (9)

where λ(t) = Ṗ(t) ∈ R3nc are the nonimpulsive contact forces, used to model persistent
closed contacts and friction, and Λ(t) = P(t+)−P(t−) ∈ R3nc are impulsive forces used to
account for impacts. The contact force vectors Λ = (ΛN1, . . . ,ΛNnc,ΛT

T1, . . . ,Λ
T
Tnc)

T and λ =
(λN1, . . . , λNnc,λT

T1, . . . ,λ
T
Tnc)

T contain the impulsive and nonimpulsive contact forces in normal
and tangential direction ΛNi, λNi and ΛTi,λTi ∈ R2, respectively, for all individual contacts
i = 1, . . . , nc. We will further assume that, except for two impulsive forces p̄s and p̄f on the
boundary of I, no other impulsive forces act on the system. Accordingly, we can write the virtual

‡An English translation of the relevant part of [33] can be found in [34].

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



TIME FINITE ELEMENT BASED MOREAU-TYPE INTEGRATORS 5

action contributions of the noncontact forces as∫
I
δqTdF̃ =

∫
I

(
− δV (q, t) + δqTf

)
dt−

[
δqTp̄

]
∂I , (10)

where the notation
[
δqTp̄

]
∂I = −δq(ts)Tp̄s + δq(tf )Tp̄f has been introduced and in which one

part of the forces are deduced from a potential V (q, t) and the others are not. The Lagrangian
L(q, q̇, t) of the system is defined as the difference between the kinetic energy and the potential, i.e.
L(q, q̇, t) = T (q, q̇, t)− V (q, t). Using the Lagrangian together with (8) and (10) in (5) gives the
weak (with respect to time) variational form of the principle of virtual action

δA =

∫
I

[
δL(q, q̇, t) dt+ δqT(f dt+ WdP)

]
−
[
δqTp̄

]
∂I

=

∫
I

[
(δq)̇ T

(
∂L

∂q̇

)T
dt+ δqT

((
∂L

∂q

)T
dt+ f dt+ WdP

)]
−
[
δqTp̄

]
∂I = 0 ∀δq .

(11)

Using integration by parts for every time interval between two subsequent discontinuity points of
a function s ∈ SLBV(R;Rn), one can show that∫

I
(δq)̇ Ts dt

(1)
= −

∫
I
δqTṡ dt−

∫
I
δqT[s(t+)− s(t−)]dη +

[
δqTs

]
∂I

(2)
= −

∫
I
δqTds +

[
δqTs

]
∂I ,

(12)

where the boundary terms have been abbreviated by [δqTs]∂I = −δq(ts)Ts(ts) + δq(tf )Ts(tf ).
The derivative ∂L

∂q̇ of the Lagrangian in (11) is evaluated along the motion and the velocity of the
system. Hence, ∂L∂q̇ (q(•), q̇(•), •) is a special function of locally bounded variation in time and we
can apply the integration by parts formula (12) to the principle of virtual action (11), which leads to
the strong variational form of the principle of virtual action

δA =

∫
I
δqT

[
−d

(
∂L

∂q̇

)T
+

(
∂L

∂q

)T
dt+ f dt+ WdP

]
+

[
δqT

((
∂L

∂q̇

)T
− p̄

)]
∂I

= 0 (13)

for all δq. Together with the decompostion of the contact forces (9) and the identity (2), this can
also be written in a more extended form as

δA =

∫
I
δqT

[
− d

dt

(
∂L

∂q̇

)T
+

(
∂L

∂q

)T
+ f + Wλ

]
dt

+

∫
I
δqT

[(
∂L

∂q̇

)T∣∣∣∣∣
t−

−
(
∂L

∂q̇

)T∣∣∣∣∣
t+

+ WΛ

]
dη

− δq(ts)T

[(
∂L

∂q̇

)T∣∣∣∣∣
t+s

− p̄s

]
+ δq(tf )T

(∂L
∂q̇

)T∣∣∣∣∣
t−f

− p̄f

 = 0 ∀δq .

(14)

Since the virtual action δA has to vanish for all virtual displacements δq, the terms in the square
brackets of (13) and (14) have to vanish. From (13), this implies the equality of measures

d

(
∂L

∂q̇

)T
=

[(
∂L

∂q

)T
+ f

]
dt+ WdP , (15)

which are equivalent to the equations of motion in the form of Lagrange’s equation of the second
kind

d

dt

(
∂L

∂q̇

)T
−
(
∂L

∂q

)T
= f + Wλ , (16)
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together with the impact equations(
∂L

∂q̇

)T∣∣∣∣∣
t+

−
(
∂L

∂q̇

)T∣∣∣∣∣
t−

= WΛ . (17)

Both evolution equations are completed by the two boundary conditions(
∂L

∂q̇

)T∣∣∣∣∣
t+s

= p̄s and

(
∂L

∂q̇

)T∣∣∣∣∣
t−f

= p̄f . (18)

Therefore, the impulsive forces p̄s and p̄f give the generalized momentum of the system at the
beginning and the end of the considered time interval, respectively. As in dynamics we are often
interested in an initial value problem rather than in a boundary value problem, we can use p̄s to
impose the initial condition on the generalized momentum, and therefore on the velocity, and leave
p̄f free, allowing an arbitrary final velocity. Note that the equations of motion (16) just hold almost
everywhere. The time instants on which they are not defined, are the impact time instants when
Λ 6= 0.

The kinetic energy of a general finite dimensional mechanical system is of the form

T (q, q̇, t) =
1

2
q̇TM(q, t)q̇ + a(q, t)Tq̇ + c(q, t) , (19)

where M(q, t) is the symmetric positive definite mass matrix of the system, cf. [41, § 9.3]. The
functions M, a and c are assumed to be continuous and sufficiently smooth. Therefore, the
generalized momentum, denoted by p, takes the form

p(q, q̇, t) =

(
∂L

∂q̇

)T
(q, q̇, t) =

(
∂T

∂q̇

)T
(q, q̇, t) = M(q, t)q̇ + a(q, t) , (20)

as the potential V (q, t) does not depend on the velocity of the system. The associated differential
measure with respect to time is

dp = d

(
∂L

∂q̇

)T
(2)
=
(
Mq̈ + Ṁq̇ + ȧ

)
dt+ M(q̇+ − q̇−)dη

(3)
= Mdq̇ +

(
Ṁq̇ + ȧ

)
dt . (21)

In order to keep the notation as short as possible, we introduce the force vectors

h(q, q̇, t) =

(
∂L

∂q

)T
(q, q̇, t)+ f(q, q̇, t)− Ṁ(q, q̇, t)q̇− ȧ(q, q̇, t) , (22)

and

b(q, q̇, t) =

(
∂L

∂q

)T
(q, q̇, t) + f(q, q̇, t) . (23)

Using the differential measure of the generalized momentum (21) together with (22), the equality
of measures (15) can be restated in the form

M(q, t) dq̇− h(q, q̇, t) dt = W(q, t) dP , (24)

which corresponds to Moreau’s equation (7.4) in [2, p. 34] and which can also be found in various
presentations on the dynamics of nonsmooth mechanical systems, cf. [3, 40, 42, 11] to name a few.
Moreover, using (20) and (22), the equations of motion (16) can be written as

M(q, t) q̈− h(q, q̇, t) = W(q, t)λ (25)

and, similarly, the impact equations as

M(q, t)
(
q̇(t+)− q̇(t−)

)
= W(q, t) Λ . (26)
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The equality of measure (24) together with the boundary conditions (18) are equivalent to the triplet
consisting of the equations of motion (25), the impact equations (26) and the boundary conditions
(18). Moreover, both these nonvariational characterizations of the motion of a mechanical system
are equivalent to the principle of virtual action (11) and (13), respectively.

To complete the description of the frictional contacts, we specify the constitutive equations for
the contact forces λ and Λ similarly to [10] for each individual contact i = 1, . . . , nc. In normal
direction to the contact plane we can formulate the impenetrability condition as the normal cone
inclusion

− gi ∈ NR+
0

(λNi) ⇔ gi ≥ 0, λNi ≥ 0, λNi gi = 0 , (27)

known as Signorini’s condition [1]. For gi = 0, the impulsive force ΛNi is specified by a Newton-
type impact law

− ξNi ∈ NR+
0

(ΛNi) with ξNi = γ+
Ni + eNiγ

−
Ni , (28)

where we denote the restitution coefficient in normal direction by eNi and the pre- and post-impact
velocities by γ−Ni = γNi(t

−) and γ+
Ni = γNi(t

+), respectively. For gi > 0, when the contact is open,
ΛNi = 0 is zero. We model the tangential contact forces λTi, i.e. friction forces in the contact plane,
as Coulomb friction, which is described by

− γTi ∈ NCTi(λNi)(λTi) (29)

where CTi(λNi) specifies the set of possible friction forces, e.g. CTi(λNi) = {λTi ∈ R2| ||λTi|| ≤
µiλNi} for isotropic friction with friction coefficient µi. For closed contacts gi = 0, we assume a
Newton-type frictional impact law of the form

− ξTi ∈ NCTi(λNi)(ΛTi) with ξTi = γ+
Ti + eTiγ

−
Ti , (30)

where eTi denotes the restitution coefficient in tangential direction. As in normal direction, when the
contact is open gi > 0, there can be no impact and ΛTi = 0 is accordingly set to zero. Reformulating
(27) on velocity level as done in [1] and exploiting the cone structure of the constitutive laws, (27)–
(30) can be combined to

− ξNi ∈ NR+
0

(dPNi) and − ξTi ∈ NCTi(dPNi)(dPTi) (31)

if gi = 0. Otherwise the differentials of the percussions dPNi and dPTi are set to zero. For a more
detailed discussion about the constitutive contact laws and the combination to the formulation in
terms of measures we refer to [10]. Furthermore, a didactic introduction to contact laws formulated
as normal cone inclusions can be found in [43].

3. TIME FINITE ELEMENT DISCRETIZATION

In this section, we propose three different discretizations of the principle of virtual action. These
discretizations differ by the choice whether the strong or the weak variational form is discretized
and what quadrature rule is applied. While the discretization of the weak variational form can
be understood as the Bubnov-Galerkin method, the discretization of the strong variational form
corresponds to the weighted residual approach. To begin with, by introducing generic local shape
functions in time, the infinite dimensional formulation of the principle of virtual action is reduced
to a finite set of nonlinear equations. In a second step, we reduce the set of possible shape functions
and assume the approximated motion to be piecewise linear. The choice of different quadrature rules
for the integral over time then leads finally to the respective discretizations.

Let (t1 ≤ · · · ≤ tN ) beN time instants subdividing the time interval I = [ts, tf ] into nel = N − 1
temporal elements Ωe = [te, te+1) indexed by (•)e or (•)e, where e = 1, . . . , nel. The time interval
∆te = te+1 − te denotes the temporal length of the element e. For every element e, let ϕe(se, ze)
be the shape function of the element, which depends on the element parameter se ∈ [0, 1] and the
element coordinates ze. We assemble the element shape functions to a global shape functionϕ(t, z),

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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8 G. CAPOBIANCO ET AL.

which depends not only on time t but also on the collection z of all element coordinates ze. The
global and local coordinates are related by some connectivity matrix Ce, which extracts the local
coordinates from the global coordinates by ze = Cez. The approximation of the system’s motion
can then be considered as the constrained motion given by

q(t) = ϕ(t, z) =

nel∑
e=1

χΩe(t) ϕe(se(t), ze) with se(t) =
t− te
∆te

for t ∈ Ωe , (32)

where χΩe(t) is the characteristic function on the set Ωe. The characteristic function is equal to one
if t ∈ Ωe and zero otherwise. Considering a smooth variational family of element coordinates ẑe(ε),
containing the actual coordinates in the form ẑe(ε0) = ze, the variation of the element coordinate is

δze =
∂ẑe

∂ε

∣∣∣∣
ε0

. (33)

Thus by equation (32), the variational family ẑe induces a variational family of motions q̂(t, ε) =
ϕe(se(t), ẑe(ε)) for t ∈ Ωe, which using (4) gives the virtual displacement

δq(t) =
∂ϕe

∂ze

∣∣∣∣
(se(t),ze)

∂ẑe

∂ε

∣∣∣∣
ε0

(33)
= Ne(se(t), ze) δze, t ∈ Ωe , (34)

where we have introduced the function Ne = ∂ϕe

∂ze . By construction, the induced virtual
displacement (34) is admissible with respect to the constraint (32). We constrain the motion in
the weak variational form of the principle of virtual action (11) to the special form (32) by means of
ideal constraint forces, which by the principle of d’Alembert–Lagrange have no contribution to the
virtual action if the kinematics is chosen admissible to the constraint. Therefore, the weak variational
form of the principle of virtual action (11) for admissible virtual displacements (34) together with
(20) and (23) becomes

δA =

nel∑
e=1

∫
Ωe

[
δze TṄe Tp dt+ δze TNe T (b dt+ WdP)

]
−
[
δze TNe Tp̄

]
∂I = 0 (35)

for all δze and all e, where the boundary terms are

[
δze TNe Tp̄

]
∂I = −(N1δz1)T

∣∣∣∣
t=ts

p̄s + (Nnelδznel)T

∣∣∣∣
t=tf

p̄f . (36)

In equation (35), all quantities are evaluated along the constrained motion (32). The generalized
momentum (20) within the element e is for instance given by p

(
ϕe(se(t), ze), ϕ̇e(se(t), ze), t

)
.

In the same way, we constrain the strong variational form of the principle of virtual action (13) to
the motion (32). Using (20) and the equivalence between (15) and (24) to rewrite the integrand in
(13), leads to

δA =

nel∑
e=1

∫
Ωe

δze TNe T [−M dϕ̇+ h dt+ W dP] +
[
δze TNe T(p− p̄

)]
∂I = 0 (37)

for all δze and all e, where again all quantities are evaluated along the constrained motion (32).
Choosing some quadrature rule in (35) or (37), these principles lead to algebraic systems of
equations, which together with the constitutive laws for the forces determine ze for all elements
e. These element coordinates then give an approximation of the motion of the system S by (32). If
one is interested in the solution of an initial value problem, most of the time, the algebraic system of
equations can be rewritten as a stepping scheme, meaning that the equations can be decoupled such
that the motion can be computed sequentially for each element starting from the first. In this case
it is not needed to construct the whole algebraic system of equations and then extract the stepping
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scheme, as done e.g. in [44]. However, the decoupling can directly be recognized in the variational
formulation as we will see below.

To derive the three integration schemes, we choose a piecewise linear motion and equidistant
temporal nodes implying ∆te = ∆t ∀e for some constant time step ∆t. The nodal coordinates
qk ≈ q(tk) are introduced such that they approximate the generalized coordinates of the system at
the temporal nodes tk. The piecewise linear motion is then given by the linear interpolation between
two neighboring nodal coordinates implying the element shape function

ϕe(se, ze) = (1− se) qe + se qe+1 =
(
(1− se)I seI

)︸ ︷︷ ︸
N(se)

ze, where ze =

(
qe

qe+1

)
(38)

and I ∈ Rn×n is the identity matrix. With these linear shape functions, the constrained motion (32)
in the interior of each temporal element has constant velocity within an element, which we denote
by ue, and zero acceleration, i.e. for t ∈ int(Ωe) = (te, te+1)

q̇(t) = ϕ̇e(se(t), ze) =
1

∆t
(qe+1 − qe) = ue and q̈(t) = ϕ̈e(se(t), ze) = 0 . (39)

Moreover, the shape function (38) induces by equation (34) the admissible virtual displacements

δq(t) = (1− se(t)) δqe + se(t) δqe+1 and (δq)̇ (t) =
1

∆t
(δqe+1 − δqe) (40)

for t ∈ Ωe and t ∈ int(Ωe), respectively. The differential measure dϕ̇ of the velocity of the
constrained motion (32) contains only jump parts, as the acceleration is zero almost everywhere. By
equation (39) the velocity jumps occur at the element nodes te for e = 2, . . . , N − 1. Furthermore,
it follows that the left limit of the velocity at te is ue−1 and the right limit is ue. The differential
measure of the motion then takes the form

dq̇
(32)
= dϕ̇

(2)
=

N−1∑
e=2

(ue − ue−1) dδte . (41)

Using (38)–(41), the strong variational form of the principle of virtual action (37) leads to

δA =

nel∑
e=1

(
δqe
δqe+1

)T ∫
Ωe

Ne T [h dt+ W dP]−
N−1∑
e=2

δqT
e M(qe, te)

(
ue − ue−1

)
− δqT

1

[
p(q1,u1, t1)− p̄s

]
+ δqT

N

[
p(qN ,uN−1, tN )− p̄f

]
= 0 ∀δqk ∀k .

(42)

We approximate the integral over Ωe = [te, te+1) by evaluating the integrand at the upper bound of
the time interval and multiplying it with the length of the temporal element ∆t, i.e.∫

Ωe

Ne T [h dt+ W dP] ≈
(

0
I

)[
h(qe+1,ue, te+1)∆t+ W(qe+1, te+1)Pe+1

]
, (43)

where we have introduced the notation Pe = ∆tλ(te) + Λ(te). Using this quadrature rule in (42)
and rearranging the sum, we obtain

δA =

N−1∑
k=2

δqT
k

[
−M(qk, tk)

(
uk − uk−1

)
+ h(qk,uk−1, tk)∆t+ W(qk, tk)Pk

]
+δqT

N

[
p(qN ,uN−1, tN ) + h(qN ,uN−1, tN )∆t+ W(qN , tN )PN − p̄f

]
− δqT

1

[
p(q1,u1, t1)− p̄s

]
= 0 ∀δqk ∀k .

(44)

A necessary condition for the virtual action in (44) to vanish is that

−M(qk, tk)
(
uk − uk−1

)
+ h(qk,uk−1, tk)∆t+ W(qk, tk)Pk = 0 (45)
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for k = 2, . . . , N − 1, which together with the definition of uk in (39) defines a stepping scheme.
Introducing constitutive laws for the forces, this scheme allows to calculate the generalized
coordinates qk+1 from known coordinates qk−1 and qk at previous time instants. Combining this
scheme with the discrete contact law of Moreau, which we introduce below, yields Moreau’s time-
stepping scheme, cf. [2, 45, 42, 11]. As also the other terms in the square brackets of the principle
of virtual action (44) have to vanish, the first step (k = 1) of the scheme is given by

p(q1,u1, t1)− p̄s = 0 . (46)

This, by equation (18), implies that the velocity of the first element u1 can be set equal to the initial
velocity of the system, instead of computing the first step.

To obtain a different scheme, the trapezoidal rule is used for the integral (43), leading to the
approximation of the integral∫

Ωe

Ne T [h dt+ W dP] ≈ 1

2

(
h(qe,ue, te)∆t+ W(qe, te)Pe

h(qe+1,ue, te+1)∆t+ W(qe+1, te+1)Pe+1

)
. (47)

With this quadrature rule, the principle of virtual action (42) has the form

δA =

N−1∑
k=2

δqT
k

[
−M(qk, tk)

(
uk − uk−1

)
+

1

2

(
h(qk,uk−1, tk) + h(qk,uk, tk)

)
∆t+ W(qk, tk)Pk

]
− δqT

1

[
p(q1,u1, t1)− 1

2

(
h(q1,u1, t1)∆t+ W(q1, t1)P1

)
− p̄s

]
+δqT

N

[
p(qN ,uN−1, tN ) +

1

2

(
h(qN ,uN−1, tN )∆t+ W(qN , tN )PN

)
− p̄f

]
= 0 ∀δqk ∀k .

(48)
Once more, a stepping scheme can be extracted form the principle of virtual action as a necessary
condition for the virtual action to vanish. The resulting symmetric stepping scheme

−M(qk, tk)
(
uk − uk−1

)
+

1

2

(
h(qk,uk−1, tk) + h(qk,uk, tk)

)
∆t+ W(qk, tk)Pk = 0 , (49)

together with the discrete contact law of Moreau, leads to a stepping scheme for mechanical systems
with frictional contacts, which we call symmetric Moreau-type time-stepping scheme. The first step
of the scheme is given by

p(q1,u1, t1)− 1

2

(
h(q1,u1, t1)∆t+ W(q1, t1)P1

)
− p̄s = 0 , (50)

which is also a necessary condition for a vanishing virtual action in (48). The quantity p̄s can be
used to impose the initial condition for the velocity on the discretized motion. In fact, equation (18)
links p̄s to the initial coordinate and velocity of the system. This is the most natural way to impose
the initial condition. One may be tempted to set u1 equal to the initial velocity, but this leads to a
bad approximation of the initial condition, especially for big time steps.

The third stepping scheme is derived by the discretization of the weak variational form of the
virtual action (35). Therefore, we use (38)–(40) in (35) leading to the principle of virtual action
for the piecewise linear motion. We approximate the arising integral by the trapezoidal rule, which
gives the approximations∫

Ωe

Ṅe Tp dt ≈ 1

2

(
−I
I

)(
p(qe,ue, te) + p(qe+1,ue, te+1)

)
(51)

and ∫
Ωe

Ne T [b dt+ W dP] ≈ 1

2

(
b(qe,ue, te)∆t+ W(qe, te)Pe

b(qe+1,ue, te+1)∆t+ W(qe+1, te+1)Pe+1

)
. (52)
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Using these approximations in (35) and rearranging the summation leads to the principle of virtual
action

δA =

N−1∑
k=2

δqT
k

[
1

2

(
− p(qk,uk, tk)− p(qk+1,uk, tk+1) + p(qk−1,uk−1, tk−1) + p(qk,uk−1, tk)

)
+

1

2

(
b(qk,uk−1, tk) + b(qk,uk, tk)

)
∆t+ W(qk, tk)Pk

]
− δqT

1

[
1

2

(
p(q1,u1, t1) + p(q2,u1, t2)− b(q1,u1, t1)∆t−W(q1, t1)P1

)
− p̄s

]
+δqT

N

[
1

2

(
p(qN−1,uN−1, tN−1) + p(qN ,uN−1, tN )

)
+

1

2

(
b(qN ,uN−1, tN )∆t+ W(qN , tN )PN

)
− p̄f

]
= 0 ∀δqk ∀k .

(53)
As the virtual action has to vanish for all virtual displacements δqk, the terms in the square brackets
have to vanish. This implies the variational Moreau-type time-stepping scheme, which has already
been proposed by the authors in [46],

0 =

[
1

2

(
− p(qk,uk, tk)− p(qk+1,uk, tk+1) + p(qk−1,uk−1, tk−1) + p(qk,uk−1, tk)

)
+

1

2

(
b(qk,uk−1, tk) + b(qk,uk, tk)

)
∆t+ W(qk, tk)Pk

] (54)

for k > 1 and the first step

0 =
1

2

(
p(q1,u1, t1) + p(q2,u1, t2)− b(q1,u1, t1)∆t−W(q1, t1)P1

)
− p̄s . (55)

For the discretization of the contact laws (31) we choose the discrete contact law used in Moreau’s
stepping scheme, cf. [10, p. 76]. For both the normal and tangential direction of the contact i at the
temporal node tk, the quantities ξ defined in (28) and (30) are

ξNi,k(qk,uk−1,uk, tk) = γNi(qk,uk, tk) + eNi γNi(qk,uk−1, tk)

ξTi,k(qk,uk−1,uk, tk) = γTi(qk,uk, tk) + eTi γTi(qk,uk−1, tk) ,
(56)

as due to the piecewise linear shape function (38) the pre- and post-impact velocities are γ−Ni =
γNi(qk,uk−1, tk) and γ+

Ni = γNi(qk,uk, tk), respectively, and likewise for the tangential direction.
We use this discretization of the contact kinematics to introduce the discrete contact laws

− ξNi,k ∈ NR+
0

(PNi,k) and − ξTi,k ∈ NCTi(PNi,k)(PTi,k) , (57)

which hold whenever gi(qk) ≤ 0. Otherwise the percussion increments PNi,k and PTi,k are set to
zero.

4. MOREAU-TYPE INTEGRATORS

In the previous section, we derived three different schemes for mechanical systems with frictional
contacts. In this section we restate the course of action for the schemes. We assume that the initial
conditions are q(ts) = qs and q̇(ts) = us. Using these initial conditions, the initial impulsive force
p̄s can be calculated from (18). The pair consisting of qs and p̄s is used to impose the initial
conditions on the discretized motion within the first step.
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4.1. Moreau’s time-stepping scheme [10]

1. First step (k = 1). Set q1 = qs and solve (46) for q2, i.e. solve

p(q1,u1, t1)− p̄s = 0

u1 =
1

∆t
(q2 − q1)

 ⇔

{
u1 = us

q2 = q1 + ∆tus
(58)

2. kth step. The coordinates qk−1 and qk are known from the previous step. Solve (45) together
with the contact laws (57) for qk+1, i.e. solve

M(qk, tk)
(
uk − uk−1

)
− h(qk,uk−1, tk)∆t = W(qk, tk)Pk

uk =
1

∆t
(qk+1 − qk), uk−1 =

1

∆t
(qk − qk−1) ,

where ∀i ∈ J = {i | gi(qk) ≤ 0} :

− ξNi,k ∈ NR+
0

(PNi,k) with ξNi,k as in (56)

− ξTi,k ∈ NCTi(PNi,k)(PTi,k) with ξTi,k as in (56)

(59)

3. Increase k by one and redo 2. if tk < tf .

4.2. Symmetric Moreau-type stepping scheme

1. First step (k = 1). Set q1 = qs and solve (50) together with the constitutive laws (57) for q2,
i.e. solve

p(q1,u1, t1)− 1

2

(
h(q1,u1, t1)∆t+ W(q1, t1)P1

)
− p̄s = 0

u1 =
1

∆t
(q2 − q1), u0 = us ,

where ∀i ∈ J = {i | gi(q1) ≤ 0} :

− ξNi,1 ∈ NR+
0

(PNi,1) with ξNi,1 as in (56)

− ξTi,1 ∈ NCTi(PNi,1)(PTi,1) with ξTi,1 as in (56)

(60)

2. kth step. The coordinates qk−1 and qk are known from the previous step. Solve (49) together
with the contact laws (57) for qk+1, i.e. solve

M(qk, tk)
(
uk − uk−1

)
− 1

2

(
h(qk,uk−1, tk) + h(qk,uk, tk)

)
∆t = W(qk, tk)Pk

uk =
1

∆t
(qk+1 − qk), uk−1 =

1

∆t
(qk − qk−1) ,

where ∀i ∈ J = {i | gi(qk) ≤ 0} :

− ξNi,k ∈ NR+
0

(PNi,k) with ξNi,k as in (56)

− ξTi,k ∈ NCTi(PNi,k)(PTi,k) with ξTi,k as in (56)

(61)

3. Increase k by one and redo 2. if tk < tf .
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4.3. Variational Moreau-type stepping scheme [46]

1. First step (k = 1). Set q1 = qs and solve (55) together with the constitutive laws (57) for q2,
i.e. solve

1

2

(
p(q1,u1, t1) + p(q2,u1, t2)− b(q1,u1, t1)∆t−W(q1, t1)P1

)
− p̄s = 0

u1 =
1

∆t
(q2 − q1), u0 = us ,

where ∀i ∈ J = {i | gi(q1) ≤ 0} :

− ξNi,1 ∈ NR+
0

(PNi,1) with ξNi,1 as in (56)

− ξTi,1 ∈ NCTi(PNi,1)(PTi,1) with ξTi,1 as in (56)

(62)

2. kth step. The coordinates qk−1 and qk are known from the previous step. Solve (54) together
with the contact laws (57) for qk+1, i.e. solve[

1

2

(
− p(qk,uk, tk)− p(qk+1,uk, tk+1) + p(qk−1,uk−1, tk−1) + p(qk,uk−1, tk)

)
+

1

2

(
b(qk,uk−1, tk) + b(qk,uk, tk)

)
∆t+ W(qk, tk)Pk

]
= 0

uk =
1

∆t
(qk+1 − qk), uk−1 =

1

∆t
(qk − qk−1) ,

where ∀i ∈ J = {i | gi(qk) ≤ 0} :

− ξNi,k ∈ NR+
0

(PNi,k) with ξNi,k as in (56)

− ξTi,k ∈ NCTi(PNi,k)(PTi,k) with ξTi,k as in (56)

(63)

3. Increase k by one and redo 2. if tk < tf .

4.4. Remarks on the numerical schemes

For the solution of the normal cone inclusions arising due to the constitutive contact laws, the
inclusion can be rewritten as an implicit proximal point equation. A discussion of different schemes
of this type can be found in [10, 18, 45, 43]. For the special case of planar mechanical systems, the
inclusions can be written in the form of a linear complementarity problem, as shown in [1, 47, 42].
The linear complementarity problem may be solved by Lemke’s algorithm or some other schemes.
We refer to [48] and [11] for details on linear complementarity problems and their numerical
treatment. As a modification of Lemke’s algorithm, a mechanically feasible pivoting strategy is
proposed in [49]. Typically, Moreau’s time-stepping scheme is assumed to have a possible impact,
and therefore a velocity jump, at the midpoint of the considered integration step, see for example
[2, 45, 42, 11]. The time instants tk in the present formulation (59) are the possible impact times
and correspond to the midpoints of the aforementioned common formulations.

5. NUMERICAL RESULTS

For autonomous mechanical systems described by a kinetic energy, which does only depend on the
velocity q̇ of the system, and forces f , which do not depend on the velocity, the three integrators
coincide. This is for instance the case for the bouncing ball system as depicted in figure 1. This
system consists of a mass m, which, under the influence of gravity with gravitational acceleration g,
falls on a plane. The gap is equal to the position coordinate q. The bouncing ball system exhibits an
accumulation of impacts. Namely, for a dissipative impact law, there is a sequence of infinitely
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many impacts in a finite time interval. The integrators derived in this paper can all overcome
such an accumulation of impacts, as they do not resolve every single impact, cf. figure 2. This
is due to the constant time step used in the schemes and due to the discrete contact laws (57),
which take effect as soon as some contacts penetrate during the stepping process. This treatment
of the contacts on velocity level represents a drawback of these contact laws, as discussed in the
introduction. However, for many applications, the ability to overcome accumulations of impacts
is considered more important than the price payed to achieve it, namely the contact penetration,
which decreases with decreasing time steps. To prevent the contact penetration, [20, 21, 22] propose
to introduce a Lagrange multiplier in the kinematic equations, which define the velocities in a
first order formulation of the equations of motions. This multiplier allows to enforce the contact
law on position level and can be seen as the adoption of the Gear-Gupta-Leimkuhler approach
[50] to nonsmooth mechanical systems. Another approach to circumvent the contact penetration is
proposed in [13, Appendix C], where in addition to velocity jumps also position jumps are allowed.
The fact that the single impacts are not resolved, but all impacts happening during a time step are

Figure 1. The bouncing ball system. Figure 2. Gap of the bouncing ball calculated with Moreau’s
time-stepping scheme. Parameters: m = 0.1, g = 9.81,
eN = 0.75 and ∆t = 0.001. Initial condition; q(0) = 1.

treated together by the discrete contact law, is of great importance for systems with many contacts.
A very prominent example is the simulation of granular media, cf. for example [12, 13, 14, 15, 16].
It would be computationally very expensive to resolve all impacts for such systems. Moreover, such
systems are likely to exhibit accumulations of impacts.

The spring pendulum depicted in figure 3 is an example system, which can be described by a
nonconstant mass matrix. Therefore, the integrators derived in this paper do not coincide for the
spring pendulum, which makes it suitable to compare the longterm energy behavior as well as the
convergence of the schemes. The spring pendulum consists of a mass m, which is connected to one
end of a linear spring with stiffness k. The other end of the spring is pivoted in point O. The actual
length of the spring is denoted by l(t) and its undeformed length is l0. The deflection of the spring
pendulum with respect to the vertical axis is ϕ(t). The external forces acting on the system are
the gravity, described by the gravitational constant g and contact forces arising from a frictionless
contact with a vertical wall, where the contact is closed for ϕ = 0 and open for ϕ > 0. The contact
between the wall and the pendulum is described by the restitution coefficient eN = 1 modeling an
elastic impact, which does not dissipate any energy. Therefore, the total energy E = T + V , with

T =
1

2
m(l̇2 + l2ϕ̇) and V =

1

2
k(l − l0)2 −mgl cosϕ , (64)

is conserved along the motion, as the system is conservative also during time intervals between
impacts. The energy error eE(t) = E(t)−E(0)

E(0) for motions of the spring pendulum, which are
calculated with the three schemes derived above and the modified θ-method of Jean [3] for θ = 1/2,
are compared in figure 4. As the scheme presented in [3] is formulated for mechanical systems with
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Figure 3. The spring pendulum.

Figure 4. Energy error of the scheme of Moreau (solid),
the symmetric Moreau-type scheme (dashed), the variational
Moreau-type scheme (dashed) and the θ-method of Jean
(gray) with θ = 1/2. Parameters: m = 1, l0 = 1, k =
100, g = 9.81, eN = 1 and ∆t = 0.001. Initial conditions:

ϕ(0) = π/4, l(0) = 1.1, ϕ̇(0) = l̇(0) = 0.

constant mass matrix, we chose to evaluate the nonconstant mass matrix of the spring pendulum
at the beginning of the time step, as suggested in [10]. In order to better understand figure 4,
we note that the symmetric and variational Moreau-type stepping schemes are both symmetric
schemes, meaning that inverting the scheme and changing the sign of the time step leads to the
scheme itself. It is known for smooth time-reversible systems that errors of the conservation of
first integrals are bounded if the numerical scheme is symmetric, cf. Hairer et al. [27, Sec. XI.3]
for details and error bounds. As the spring pendulum is time-reversible between two subsequent
impacts, the energy error is expected to be bounded between two impacts. Moreover, the variational
Moreau-type stepping scheme is a variational integrator in the sense of discrete mechanics, as it is
derived by discretizing the weak variational form of the virtual action. Such a discretization leads
to a variational integrator, as shown in [26, Sec. 2.6.6], which are also known to perform well
with respect to longterm energy conservation, cf. [27, Sec. IX.8] for details and error bounds. This
represents an additional reason to explain the good conservation property of the variational Moreau-
type stepping scheme between two impacts. Figure 4 confirms the good energy conservation
properties of the two schemes and shows furthermore that no significant energy error occurs over the
impact neither. In contrast to these two schemes, Moreau’s stepping scheme dissipates a significant
amount of energy. It can be observed, that the scheme dampens out the pendular motion of the
system. This occurs approximately during the time interval [0 500]. After that, the motion of the
spring pendulum is merely the motion of a vertically swinging harmonic oscillator, which has a
constant mass matrix and for which the three integrators coincide. By what was said about the two
other schemes, this explains the stabilization of the energy error for simulation times greater than
500. Also the modified θ-method dissipates energy, but overall, the energy error is smaller than the
error of the time-stepping scheme of Moreau. For linear mechanical systems, the energy dissipation
of the schemes of Moreau and Jean are studied in [51].

To study the convergence behavior for ∆t→ 0 of the three schemes derived in this paper, the
error

eq(∆t) =
1

T

∫ T

0

∣∣∣∣qref(t)− qnum(t; ∆t)
∣∣∣∣2dt (65)

is introduced, which measures the mean quadratic error between a reference motion qref and the
motion qnum calculated by each of the schemes using the time step ∆t. As reference solution for
the convergence plot in figure 5, the motion computed with the symmetric Moreau-type stepping
scheme with time step ∆t = 10−7 is used. Figure 5 shows that the stepping scheme of Moreau
and the symmetric Moreau-type integrator are of the same order, but the error of the schemes
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Figure 5. Convergence plot for the spring pendulum using the scheme of Moreau (black, dashed, #), the
symmetric Moreau-type scheme (gray, 2), the variational Moreau-type scheme (black, ×) and the modified

θ-method of Jean for θ = 1/2 (gray, dashed,4).

approximately differs by one order of magnitude. Namely, for the same time step, the symmetric
Moreau-type integrator has a ten times smaller error than the stepping scheme of Moreau. The
convergence order of the variational Moreau-type scheme is slightly bigger than the order of the
other schemes, but the error lies between the errors of the two other schemes. The convergence order
of the modified θ-method lies between the convergence order of the symmetric and the variational
Moreau-type scheme.

The woodpecker toy depicted in figure 6 was first introduced in [47]. It is a simple system
containing multiple frictional contacts and is used as a benchmark for numerical integrators for
systems with frictional contacts, cf. [10, 52]. The toy consists of a mechanism composed of a sleeve,
a spring and a woodpecker. The mechanism can slide down a pole, as the sleeve is slightly larger
than the diameter of the pole. Due to the frictional contacts between the pecker and the pole (contact
point 1) as well as between the sleeve and the pole (contact points 2 and 3), the system has a limit
cycle which corresponds to a kind of pitching motion. The rigid body model of the woodpecker toy
is taken from [47]. As the mass matrix used in the model is constant and the non-contact forces
do not depend on the velocity of the system, the three integrators derived in this paper coincide.
The phase plot for the coordinate ϕM shown in figure 7 is computed by the three integrators and
is in accordance with the phase plot shown in [53]. The woodpecker toy shows that all the three
integrators are suitable for the simulation of a mechanical system with multiple frictional contacts.

6. CONCLUSIONS

With the principle of virtual action in its weak (with respect to time) variational form, we postulate a
variational principle as the fundamental equation for the dynamics of finite dimensional mechanical
systems containing frictional contact interactions. Since the principle of virtual action has to hold as
an integral expression over a time interval, the forces, similar to the velocities, can be assumed to be
special functions of locally bounded variations. This assumption allows to additively decompose the
appearing contact forces into nonimpulsive contact forces, used to model persistent closed contacts
and friction, and impulsive forces used to account for impacts. Besides the impulsive forces due
to impacts, only the two impulsive forces on the boundary of the time interval are included. Using
an integration by parts formula for SLBV-functions, the principle of virtual action is transformed
into its strong variational form and induces directly the equality of measures or equivalently the
equations of motion together with the impact equations – both systems of equations coming along
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Figure 6. Woodpecker toy. Figure 7. Phase plot for woodpecker toy computed
with Moreau’s time-stepping scheme, the symmetric
and the variational Moreau-type stepping scheme.

with the same boundary conditions. Hence, the variational framework presented in this paper
relates the equations of measures, which are often encountered in the description of nonsmooth
mechanical systems, to analytical mechanics. To complete the description of the frictional contacts,
the constitutive laws for the non-impulsive and impulsive contact forces, i.e. the contact and impact
laws, are specified as normal cone inclusions.

A further merit of the paper is how this variational framework allows for a straightforward
derivation of integration schemes for nonsmooth mechanical systems by discretizing the principle of
virtual action with finite elements in time. The choice of some shape function in combination with
some quadrature rule leads to various stepping schemes together with suitable initial conditions. In
the discretized system, the constitutive laws for the impulsive and non-impulsive contact forces are
treated on velocity-level as a unity by using a discrete contact law for the percussion increments in
accordance with Moreau [2]. From this kind of the contact law the name Moreau-type integrators
originates. In this paper, three integrators have been derived by using linear Lagrangian elements.
Choosing a rectangle quadratrue rule in the strong variational form of the virtual action, the well-
known Moreau time-stepping scheme follows. Deciding for a trapezoidal quadrature rule, the
symmetric and the variational Moreau-type stepping scheme follow from the discretization of the
strong and the weak variational form of the virtual action, respectively.

The comparison of the newly derived schemes to Moreau’s time-stepping scheme and to
the modified θ-method of Jean, shows the superiority of the new schemes in terms of energy
conservation properties, accuracy and convergence. These good properties are achieved by choosing
the trapezoidal rule which leads to symmetric schemes being known for their good numerical
performance. Moreover, concerning the variational Moreau-type stepping scheme, the discretization
of the weak variational form of the principle of virtual action leads to variational integrators
in the sense of discrete mechanics. These variational integrators are known to preserve the
structure of the underlying continuous time model, cf. [26]. Particularly, results from discrete
mechanics on symplecticity and energy consistency of variational integrators directly apply to such
a discretization.

To conclude, we have shown how the discretization of the principle of virtual action together
with Moreau’s treatment of contact forces combines the strengths of the discretization of measure
differential inclusions with the advantages of the discretization of variational principles. We arrived
in a well-structured way at new event-capturing integration schemes with excellent longterm
simulation behavior.
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