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Abstract. To describe time-dependent finite-dimensional mechanical systems,

their generalized space-time is modeled as a Galilean manifold. On this ba-

sis, we present a geometric mechanical theory that unifies Lagrangian and
Hamiltonian mechanics. Moreover, a general definition of force is given, such

that the theory is capable of treating nonpotential forces acting on a mechan-

ical system. Within this theory, we elaborate the interconnections between
classical equations known from analytical mechanics such as the principle of

virtual work, Lagrange’s equations of the second kind, Hamilton’s equations,

Lagrange’s central equation, Hamel’s generalized central equation as well as
Hamilton’s principle.

1. Introduction. The theory for the coordinate-free description of dynamics of
time-dependent finite-dimensional mechanical systems presented in [5, 19, 26] em-
braces Lagrangian and Hamiltonian mechanics in such a way that both frameworks
are mere coordinate representations of the same geometric postulate. Moreover, it
gives a precise definition of forces, which may or may not stem from a potential.
Hence, this theory perfectly suits the requirements from the classical formulations
of analytical mechanics exemplarily represented by [21, 25, 6, 9]. These classical
works comprise nonpotential forces and exclusively derive the Hamiltonian from
the Lagrangian formalism using a change of coordinates that introduces the gener-
alized momentum coordinates. The fact that the aforementioned geometric theory
can cope with nonpotential forces allows to rediscover classical results within this
theory. Obviously, the results of classical presentations, e.g. [16, 14], which ignore
nonpotential forces can trivially be retrieved by setting them to zero.

The coordinate-free mechanical theory is formulated using a Galilean manifold,
which for a mechanical system with n degrees of freedom is an (n+1)-dimensional
smooth manifold equipped with a time-structure and a Galilean metric. While the
time-structure allows to measure the temporal distance between two points on the

2020 Mathematics Subject Classification. Primary: 70S05, 70H03, 70H05, 70H25; Secondary:
70A05, 53Z05.

Key words and phrases. Geometric mechanics, differential geometry, time-dependent Hamil-

tonian mechanics, time-dependent Lagrangian mechanics, finite-dimensional mechanical systems,
calculus of variations.

∗ Corresponding author: capobianco@inm.uni-stuttgart.de.

1



2 G. CAPOBIANCO, T. WINANDY AND S. R. EUGSTER

space-time manifold, the Galilean metric captures the inertia of the mechanical sys-
tem. As a core object, a differential two-form, called the action form, is postulated
to characterize the motions of the mechanical system. With this action form, we
give a coordinate-free definition of the virtual work needed for the formulation of the
principle of virtual work. For this, we define virtual displacement fields as particu-
lar types of vector fields on the state space of the mechanical system. In doing so,
we break with the common understanding of virtual displacements interpreted as
vector fields induced by one-parameter families of configurations. This means also,
that we loosen the connection between virtual displacement fields and the calculus
of variations. We share the opinion of Hamel, who on page 416 of [8] wrote:1

As fruitful as the connection of mechanics with the calculus of variations
has been (Lagrange, Hamilton, Jacobi), it cannot be denied that the above
interpretation of the virtual displacements [in the sense of the calculus of
variations,] is one-sided and does not fully correspond to their mechanical
meaning; that it impedes, in particular, the connection to results that do not
lie within the scope of variational calculus. Likewise it appears to me that
the roots of the strange, widespread opinion in the literature that the essence
of general Lagrangian mechanics can be found in the so-called variational
principles lie in that dogma.

The strong bond of analytical mechanics with variational principles manifests for
instance in the frequent use of Hamilton’s principle. Therefore, we use the calcu-
lus of variations on manifolds to state Hamilton’s principle within the mechanical
theory on Galilean manifolds. To be more precise, we introduce three different, but
closely related, action functionals, which are defined on different sets of curves. One
of the main goals of this paper is to link the coordinate-free principles, stated within
the geometric theory, to equations known from classical textbooks. Following this
philosophy, we show how six different classical action functionals of Hamilton’s prin-
ciple can be interpreted as coordinate representations of three action functionals.
Moreover, using different types of virtual displacement fields in the principle of vir-
tual work, we derive Lagrange’s equations of the second kind, Hamilton’s equations,
Lagrange’s central equation as well as Hamel’s generalized central equation.

After a brief introduction of frequently-used notation in Sect. 2, we present a
restatement of the mechanical theory on Galilean manifolds according to [19] in
Sects. 3–10. For reasons of simplicity, we abstain from elaborating the geomet-
ric foundations of the theory in every detail and refer the interested reader to [5],
which reviews the original ideas of [19]. In Sect. 11, we introduce the virtual dis-
placement fields to state the principle of virtual work in Sect. 12. Therefrom, we
derive Lagrange’s equations of the second kind and Hamilton’s equations in Sect. 13
as well as the central equation of Lagrange and Hamel’s generalized version thereof
in Sect. 14. Finally, Hamilton’s principle is studied in Sect. 15.

2. Notation. The present paper uses the language of differential geometry as pre-
sented for example in [18, 17, 24]. To facilitate reading, we introduce some notation.

Let M be a smooth manifold, then TpM stands for the tangent space of M in p.
The tangent bundle of M is denoted as TM . The set of all smooth sections of a
vector bundle E over M is denoted Γ(E). Consequently, Vect(M) := Γ(TM) is the
set of all vector fields on M . For the evaluation of a vector field v ∈ Vect(M) in a

1Translation from German by the second author.
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point p ∈M we use the notation

v(p) = (p, vp), where vp ∈ TpM .

To distinguish the evaluation v(p) of a vector field v in a point p ∈M from its action
as a derivation on a smooth function f ∈ C∞(M), we write the latter as v[f ]. We
denote by Lv the Lie derivative with respect to the vector field v ∈ Vect(M). Using
d for the exterior derivative, we have the identity

Lvf = v[f ] = df(v)

for any smooth function f ∈ C∞(M). The space Vect(M) is equipped with the
Lie bracket [·, ·] defined as the commutator of derivations on smooth functions. It
holds that Lv(w) = [v, w]. We denote the space of (differential) k-forms as Ωk(M)
and the set of differential forms of arbitrary degree as Ω?(M). We use the common
notation ¬ for the interior product.

We adopt Einstein’s summation convention implying a summation from 1 to n
whenever an index i appears once as an upper and once as a lower index, e.g.,

vi
∂

∂xi
=

n∑
i=1

vi
∂

∂xi
or

∂

∂ui
⊗ ηi =

n∑
i=1

∂

∂ui
⊗ ηi .

3. Galilean manifold and state space. To model the generalized space-time of
an n-dimensional time-dependent finite-dimensional mechanical system, we intro-
duce an (n+1)-dimensional smooth manifold M with time structure ϑ, which is
a non-vanishing closed one-form on M . The Poincaré lemma guarantees the exis-
tence of local time functions t : M ⊇ U → R with dt = ϑ

∣∣
U

such that the temporal

distance of two events p, q ∈ U is given by t(q)− t(p).
A chart (U, φ) of M given by

φ : M ⊇ U → Rn+1, p 7→ φ(p) = (t, x1, . . . , xn) (1)

is adapted to the time structure if its first coordinate function is a time function.
The existence of adapted charts is guaranteed by the existence of time functions
and the fact that ϑ is nowhere zero. Therefore, the adapted charts provide an atlas
of M . In what follows, we will restrict our considerations to adapted charts. The
change of coordinates

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ), (t, x1, . . . , xn) 7→ (t̄, y1, . . . , yn)

between two adapted charts (U, φ) and (V, ψ) of M with U ∩ V 6= ∅ is given by

t̄ = t+ const.,

yi = ψi ◦ φ−1
(
t, x1, . . . , xn

)
, i = 1, . . . , n,

(2)

where ψi : V → R denotes the i-th coordinate function of the chart ψ.
The time structure ϑ is used to introduce the spacelike bundle A0M of M as the

vector subbundle of the tangent bundle TM resulting from the pointwise restriction
of the tangent space TpM to the space of spacelike vectors in p given by

A0
pM := kerϑp =

{
vp ∈ TpM

∣∣ϑp(vp) = 0
}
⊂ TpM (3)

for every p ∈ M . By definition, A0M is a distribution of rank n on M . As dϑ = 0
annihilates the distribution trivially, it is completely integrable and therefore defines
a foliation of M by the Frobenius theorem.2 The leafs of this foliation are just the

2Theorems 19.12 and 19.21 in [18]
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codimension-one submanifolds of synchronous events that can be distinguished in
classical mechanics.

Each chart
(
U, φ

)
of an adapted atlas of M induces the smooth local sections

∂

∂x1
, . . . ,

∂

∂xn
: U → TM (4)

that provide a basis for A0
qM at each q ∈ U .

In order to model the inertia of a mechanical system, the bundle A0M is equipped
with a bundle metric3

g = gij dxi ⊗ dxj (5)

called Galilean metric. The Galilean metric is a tensor field, for which in each
p ∈ M the tensor gp is symmetric and positive definite. The coefficient matrix gij
is the mass matrix of the mechanical system.

The above construction can be summarized in the following definition.

Definition 3.1. The Galilean manifold (M,ϑ, g) of an n-dimensional mechanical
system is an (n+1)-dimensional smooth manifold M with a time structure ϑ and
a bundle metric g that endows the subspaces A0

pM with an inner product for all
p ∈M .

The evolution of the configuration of a mechanical system is a time-parametrized
curve

γ : R ⊇ I →M, τ 7→ γ(τ) (6)

in the Galilean manifold (M,ϑ, g). A time-parametrized curve is defined as a smooth
sequence of events with ϑ(γ̇) = 1, where γ̇ denotes the tangent field along γ. The
local time coordinate t increases monotonically along a time-parametrized curve
because locally

1 = ϑ(γ̇) = dt(γ̇) = γ̇[t] =
d

dτ

(
t ◦ γ(τ)

)
. (7)

Consequently, the time coordinate is an affine function along γ, i.e.,

t ◦ γ(τ) = τ + τ0,

where τ0 ∈ R is a constant. The condition ϑ(γ̇) = 1 motivates the following defini-
tion of the state space of a mechanical system.

Definition 3.2. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional me-
chanical system. The state space A1M of the mechanical system is the affine sub-
bundle of the tangent bundle TM resulting from the pointwise restriction of the
tangent space TpM to the affine space of time-normalized vectors in p given by

A1
pM :=

{
vp ∈ TpM

∣∣ϑp(vp) = 1
}
⊂ TpM. (8)

for every p ∈M .

3If the fibers of a vector bundle are equipped with an inner product that smoothly depends
on the point in the base manifold, one speaks of a bundle metric. See Definition 1.8.11 in [12].
A bundle metric is the generalization of a Riemannian metric on a manifold to arbitrary vector
bundles. Indeed, a Riemannian metric on a manifold is just a bundle metric on its tangent bundle.

For this reason some authors, see Definition 6.42 in [17] or p. 308 in [24], designate a bundle metric
as Riemannian metric. We abstain from doing so since it might lead to confusion.
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The coordinate vector fields induced by an adapted chart φ : p 7→
(
t, x1 . . . , xn

)
can be used to express a time-normalized vector vp ∈ A1

pM as

vp =
∂

∂t

∣∣∣∣
p

+ ui
∂

∂xi

∣∣∣∣
p

. (9)

Accordingly, any adapted chart φ induces a corresponding natural chart of the state
space A1M as

Φ: A1M ⊇ π−1(U)→ R2n+1,
(
p, vp

)
7→
(
t, x1, . . . , xn, u1, . . . , un

)
, (10)

where

π : A1M →M, (p, vp) 7→ p (11)

denotes the natural projection of the affine bundle A1M . The state space A1M is
canonically endowed with the time structure

ϑ̂ := π∗ϑ , (12)

which is the pullback of the time structure of M by the natural projection (11).
The natural chart (10) is an adapted chart with respect to the time structure (12)
of A1M because it holds that

ϑ̂
∣∣
π−1(U)

= dt.

Definition 3.3. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional me-
chanical system and let A1M be the corresponding state space. A motion of the
mechanical system is a curve

β : R ⊇ I → A1M, τ 7→ β(τ) (13)

in the state space A1M that is time-parametrized with respect to ϑ̂ and satisfies the
condition

β =
(
π ◦ β

)̇
. (14)

The second-order condition (14) requires the motion β to correspond to the (time-
normalized) tangent field along its (time-parametrized) projection γ := π ◦ β onto
the base manifold M . A time-parametrized curve in the state space which fulfills
(14) is called a second-order curve. Thus, a motion of a mechanical system is a
second-order curve. Condition (14) can be restated as

β = γ̇ : I → A1M, τ 7→
(
γ(τ), γ̇γ(τ)

)
, (15)

where γ as a time-parametrized curve in the Galilean manifold M describes the
evolution of the configuration of the mechanical system.

The possible motions of a finite-dimensional mechanical system can be charac-
terized altogether by modeling a vector-field Z ∈ Vect(A1M) such that any integral
curve β : I → A1M of Z is a motion, i.e., a motion of the mechanical system satisfies

β̇(τ) = Z
(
β(τ)

)
. (16)

Since the motion of a mechanical system is a second-order curve, Z cannot be
arbitrary, but needs to be time-normalized such that

ϑ̂(Z) = 1. (17)

Additionally, the vector field Z needs to obey the second-order condition

Dπ Z = idA1M . (18)
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Indeed, condition (14) together with (16) lead to

β =
(
π ◦ β

)̇
= Dπ β̇ = Dπ Z ◦ β, (19)

where Dπ : T
(
A1M

)
→ TM denotes the differential of the natural projection (11).

Because condition (19) has to hold for arbitrary integral curves β, the second-order
condition (18) follows.

A vector field Z ∈ Vect(A1M) that satisfies conditions (17) and (18) is called
a second-order (vector) field. In every natural chart (10), a second-order field is
locally given by

Z =
∂

∂t
+ ui

∂

∂xi
+ Zi

∂

∂ui
, (20)

with n smooth (local) functions Zi. From the local expression (20) it is apparent
that second-order fields can only differ by the coefficients of their ∂/∂ui part. More-
over, the differential equation (16) related to a second-order field Z is a system of
second-order differential equations in first-order form

ṫ(τ) = 1,

ẋ(τ) = u(τ),

u̇(τ) = Z
(
t(τ),x(τ),u(τ)

)
,

(21)

where we adopt the notation that quantities a1, . . . , an are gathered as Rn-tuples
a := (a1, . . . , an). The first equation of (21) can be solved to

t(τ) := t ◦ β(τ) = τ + τ0, (22)

where τ0 ∈ R denotes a constant. Because of the second-order condition (14), which
expressed in the natural chart is

ẋ(τ) = u(τ) , (23)

the remaining equations of (21) are equivalent to the second-order differential equa-
tions

ẍ(τ) = Z
(
t(τ),x(τ), ẋ(τ)

)
.

Since τ0 in (22) is a constant, it is clear form the change of coordinates (2) that τ0
can be eliminated by a change in the time coordinate. In the following we therefore
use without loss of generality

t(τ) = τ . (24)

4. Action form of a second-order field. To any second-order field Z on A1M ,
a two-form Ω ∈ Ω2(A1M) can be associated which uniquely determines Z. This
allows to transfer the mechanical modeling of Z, which characterizes any motion of
the mechanical system, to the modeling of Ω. In this section, we make use of the
geometric structure of the state space to formulate the relation between Ω and Z.

The differential of the natural projection (11), Dπ : T (A1M)→ TM , defines the
vertical bundle Ver(A1M) as the vector subbundle of the tangent bundle T (A1M)
resulting from the pointwise restriction of the tangent space Ta(A1M) to the space
of vertical vectors in a given by

Vera(A1M) = ker Dπa =
{
w ∈ Ta(A1M)

∣∣ Dπa(w) = 0
}
. (25)

A section V ∈ Γ
(
Ver(A1M)

)
of the vertical bundle is called a vertical vector field.

Let
(
U, φ

)
be an adapted chart of M and consider the corresponding natural
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chart (10) on the neighbourhood π−1(U) of A1M . A vertical vector field V can
then be expressed as

V = V i
∂

∂ui
,

because the vectors
∂

∂u1

∣∣∣∣
a

, . . . ,
∂

∂un

∣∣∣∣
a

(26)

provide a basis of Vera(A1M) for points a ∈ π−1(U) ⊆ A1M . The vertical bundle
naturally appears in the study of second-order fields because the difference of two
second-order fields is always a vertical vector field. This can be seen from the local
expression (20) of a second-order field.

Vertical vector fields can be used to define semi-basic forms on A1M as the
differential forms ω on A1M for which V ¬ ω vanishes for any vertical vector field
V . An equivalent statement is that the local representation of ω with respect to
the dual basis dt,dx1, . . . ,dxn,du1, . . . ,dun induced by the natural chart (10) does
not contain terms in du1, . . . ,dun. A differential form ω on A1M is basic, if there
is a differential form α on M such that ω = π∗α, where π∗ denotes the pullback by
the natural projection. Hence, basic forms are semi-basic. However, in contrast to
semi-basic forms, the chart representations of the coefficients of basic forms do not
depend on u1, . . . , un.

We introduce the operator ∂ from [20] as the anti-derivation on the exterior
algebra of differential forms that increases the degree of a form by one and obeys
the following rules

∂f =
∂f

∂ui
(dxi − uidt), ∂(dxi) = ∂(dt) = 0, ∂(dui) = dui ∧ dt, (27)

where f denotes a smooth function on A1M . With the rules (27), one easily verifies
that

∂ ◦ d = −d ◦ ∂ . (28)

However, ∂2 6= 0 but

∂2ω = ϑ̂ ∧ ∂ω, (29)

where ϑ̂ denotes the time structure on A1M . To prove (29), it is enough to see

that ∂2 and ω 7→ ϑ̂ ∧ ∂ω are derivations that coincide on zero- and one-forms. By
induction, (29) holds for forms of arbitrary degree. From the rules (27), it becomes
obvious that ∂ maps semi-basic forms to semi-basic forms.

Finally, we equip the vertical bundle Ver(A1M) with a bundle metric. For this,
we notice that the space Vera(A1M) defined by (25) can be also seen as the tangent
space to A1

pM at the point a ∈ A1M with p = π(a). Since A1
pM is the affine

hyperplane in TpM defined by the equation ϑp(v) = 1 for all v ∈ TpM , the tangent
space to A1

pM can be identified with kerϑp = A0
pM defined in (3). Accordingly, we

have the pointwise isomorphism

Vera
(
A1M

) ∼= A0
π(a)M (30)

for all a ∈ A1M , which can be locally expressed as

∂

∂ui

∣∣∣∣
a

7→ ∂

∂xi

∣∣∣∣
π(a)

(31)



8 G. CAPOBIANCO, T. WINANDY AND S. R. EUGSTER

using the basis vectors from (26) and (4). By the isomorphism (30), the Galilean
metric g on the bundle A0M of spacelike vectors induces a bundle metric ĝ on the
bundle Ver(A1M) of vertical vectors that is defined as

ĝa

(
∂

∂ui

∣∣∣∣
a

,
∂

∂uj

∣∣∣∣
a

)
:= gπ(a)

(
∂

∂xi

∣∣∣∣
π(a)

,
∂

∂xj

∣∣∣∣
π(a)

)
, (32)

for all a ∈ A1M . Consequently, using (5), the bundle metric ĝ locally reads as

ĝ = gij◦π dui ⊗ duj . (33)

By abuse of notation we henceforth denote the coefficients gij◦π in (33) by gij .
Let Z ∈ Vect(A1M) be a second-order field with local representation (20). The

action form of Z is defined as the two-form Ω ∈ Ω2(A1M) which locally reads as

Ω := gij

(
dui − Zidt− 1

2

∂Zi

∂uk
(
dxk − ukdt

))
∧
(
dxj − ujdt

)
, (34)

where gij are the coefficients of the bundle metric ĝ. A coordinate-free definition of
the action form can be found in [20]. The following theorem asserts that the action
form Ω of Z uniquely characterizes the second-order vector field Z. Moreover, the
theorem gives necessary and sufficient conditions on a two-form for being the action
form of some second-order vector field.

Theorem 4.1 ([19], p. 21 and p. 24). Let
(
M,ϑ

)
be a manifold with time structure.

A two-form Ω on A1M is the action form of a second-order field Z if and only if it
satisfies the following conditions:

(i) For any vector fields X and Y on A1M , where each is either second-order or
vertical,

Ω
(
X,Y

)
= 0 .

(ii) Ω defines a bundle metric g on A0M , i.e., the matrix

gij = Ω

(
∂

∂ui
,
∂

∂xj

)
is symmetric and positive definite for all charts.

(iii) ∂Ω = 0.

The second-order field Z is the only vector field on A1M for which

Z¬Ω = 0, ϑ̂(Z) = 1.

For the proof of the theorem as well as for the coordinate-free definition of ∂ and
the action form of Z (34), we also refer to [5].

Theorem 4.1 represents a cornerstone for the mechanical theory presented in
this paper. In fact, postulating a two-form Ω that satisfies the conditions (i)–
(iii) uniquely defines the second-order field Z characterizing the motions of the
mechanical system.

It is a consequence of Theorem 4.1 that the kernel of the action form Ω of Z
defined as

ker Ω :=
{

(a,Xa) ∈ T (A1M)
∣∣ Xa
¬Ωa = 0

}
is the line bundle which is spanned by the vector field Z. This can be proven by
contradiction. For that we note that by Theorem 4.1, the span of Z is a subbundle
of ker Ω, because Z¬Ω = 0. Assume that there is a section X of ker Ω which does
not lie in the span of Z. For any f ∈ C∞(A1M), fX still lies in ker Ω. Therefore, we
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can choose f such that ϑ̂(fX) = 1. Since by Theorem 4.1, Z is the only vector field
lying in ker Ω that is time-normalized, it follows that Z = fX which contradicts
the assumption and proves that ker Ω is indeed the one-dimensional vector bundle
over A1M spanned by the vector field Z. Hence, in every point a ∈ A1M

dim ker Ωa = 1 (35)

implying that Ωa, seen as a linear map of tangent vectors to covectors, has rank 2n
in every a. For reasons of brevity, we say that Ω has rank 2n.

5. The kinetic energy. We experience that whenever we perceive the motion of
a mechanical system, we do this relative to some reference. For instance, we observe
the motion of a car relative to the street or the motion of the sun relative to the
horizon. To account for this when modeling the inertia of a mechanical system,
we introduce a reference field as a time-normalized vector field R defined on a
neighbourhood UR of M , i.e.,

R : M ⊇ UR → A1M

with π ◦ R = idM , where again (M,ϑ, g) denotes the Galilean manifold of the
mechanical system. For an adapted chart φ(p) = (t, x1, . . . , xn), the reference field
R = ∂/∂t is said to be the resting field induced by the chart.

In (13), we defined the motion of a mechanical system to be a second-order curve
β = γ̇ : I → A1M , where γ = π ◦ β : I → M denotes a time-parametrized curve
in the Galilean manifold (M,ϑ, g). We define the relative velocity of the motion γ̇
with respect to the reference field R as the vector field along γ which is pointwise
given by

γ̇γ(τ) −Rγ(τ) ∈ A0
γ(τ)M.

As a difference of time-normalized vectors, the relative velocity is spacelike and can
therefore be measured by the Galilean metric g. This brings us to the following
definition.

Definition 5.1. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional me-
chanical system and let A1M be the corresponding state space. The kinetic energy
of the mechanical system with respect to a reference field R : M ⊇ UR → A1M is
the function

TR : π−1(UR)→ R, (p, vp) 7→ 1
2 gp(vp −Rp, vp −Rp) , (36)

with vp ∈ A1
pM and R(p) = (p,Rp).

The kinetic energy of the motion β = γ̇ with respect to the reference field R is
then given by

TR
(
γ̇(τ)

)
= 1

2 gγ(τ)

(
γ̇γ(τ) −Rγ(τ), γ̇γ(τ) −Rγ(τ)

)
.

Let (U, φ) be an adapted chart ofM and let us assume for simplicity that U ⊆ UR.
Moreover, let R = ∂/∂t + Ri∂/∂xi be an arbitrary reference field. In the natural
chart induced by φ, the kinetic energy (36) locally reads as

TR = 1
2giju

iuj − gijuiRj + 1
2gijR

iRj , (37)

where we have used the local expression of the metric (5) and the symmetry of the
bilinear map g. In the special case where R is a resting field (i.e., R = ∂/∂t), the
local expression of the kinetic energy (37) reduces to

TR = 1
2giju

iuj .
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Definition 5.2. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional me-

chanical system and let ϑ̂ = π∗ϑ be the time structure of the state space A1M .
The kinetic energy TR with respect to a reference field R of the mechanical system
induces the action form

ΩR := d(TRϑ̂+ ∂TR) . (38)

To check that (38) indeed defines an action form, we have to check the properties
(i) to (iii) from Theorem 4.1. According to the rules (27), (28), and (29) of ∂, it
holds that

∂ΩR = −d(∂TR ∧ ϑ̂+ ∂2TR) = −d(∂TR ∧ ϑ̂+ ϑ̂ ∧ ∂TR) = 0,

which shows that ΩR enjoys property (iii). To prove properties (i) and (ii), we use
the rules (27) to arrive at the local expression

TRϑ̂+ ∂TR = TR dt+
∂TR
∂ui

(dxi − uidt). (39)

Using (39) in the definition (38) leads to

ΩR =
∂TR
∂xi

dxi ∧ dt+ d

(
∂TR
∂ui

)
∧
(
dxi − uidt

)
=

(
d

(
∂TR
∂ui

)
− ∂TR
∂xi

dt

)
∧
(
dxi − uidt

)
.

(40)

It is clear from the expression (40) that ΩR fulfills property (i). Moreover, it follows
that

ΩR

(
∂

∂ui
,
∂

∂xj

)
=

∂2TR
∂ui∂uj

= gij .

6. Forces. Consider two second-order fields Z1 and Z2 on the state space A1M of
a mechanical system. As two second-order fields can only differ by a vertical vector
field, it holds that

Z2 = Z1 + V, (41)

where V is a smooth section of the vertical bundle Ver(A1M). This vertical vector
field can be interpreted as (relative) acceleration between Z1 and Z2. The bundle
metric ĝ defined in (32) induces the bijection

ĝ · : Γ
(
Ver(A1M)

)
→ Γ

(
Ver∗(A1M)

)
, V 7→ F = ĝ · V (42)

between smooth sections of the vertical bundle Ver(A1M) and sections of the dual
of the vertical bundle Ver∗(A1M), where ĝ · V is the one-form ĝ( · , V ).

If we consider the Galilean metric to model the mass of a finite-dimensional me-
chanical system and if we interpret vertical vector fields as (relative) accelerations,
then with the bijection (42) we are facing Newton’s second law that says “force F
is equal to mass ĝ times acceleration V ”. This motivates the following definition.

Definition 6.1.4 Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional
mechanical system and let A1M be the corresponding state space. A force is a
smooth section of the dual of the vertical bundle Ver∗(A1M), i.e., a force is a
C∞(A1M)-linear map

F : Γ(Ver(A1M))→ C∞(A1M) (43)

on the space of vertical vector fields.

4This definition of force is implicitly given in Theorem 1 on page 32 of [19].
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Consider the action forms Ω1 and Ω2 of the respective second-order fields Z1 and
Z2. We introduce the differential two-form Φ by which the action forms Ω1 and Ω2

differ, i.e.,

Ω2 = Ω1 + Φ. (44)

This implies ∂Φ = 0 because ∂Ω1 = ∂Ω2 = 0 by Theorem 4.1.
It is possible to associate the two-form Φ in (44) to the force F which by (42) is

related to the vertical vector field in (41). Indeed, in terms of the coordinate fields
induced by a natural chart, the coefficients of the force

F = Fi dui , (45)

which is associated to V = Z2 − Z1 by (42), are given by

Fi = gijV
j = gij(Z

j
2 − Z

j
1) .

Using the representation (34) of the action form, the two-form Φ = Ω2−Ω1 is given
as

Φ = gij(Z
i
2 − Zi1) dxj∧dt+

1

2
gij

(
∂Zi2
∂uk

− ∂Zi1
∂uk

)
(dxj−ujdt)∧(dxk−ukdt)

= Fj dxj∧dt+
1

2

∂Fj
∂uk

(dxj−ujdt
)
∧(dxk−ukdt),

(46)

where the last equality uses that the coefficients gij = gij ◦ π are independent of
u1, . . . , un and form a symmetric matrix. The local expression (46) shows that the
two-form Φ is semi-basic.

Definition 6.2. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional me-
chanical system and let A1M be the corresponding state space. A force two-form is
a differential two-form Φ ∈ Ω2(A1M) that is semi-basic and satisfies ∂Φ = 0.

A coordinate-free version of the map relating forces (45) to force two-forms (46)
together with a proof that this map is a bijection can be found in [5, 19, 26]. It
follows from (46) that the difference of two action forms is a force two-form. This
implies that by choosing a reference field R, any action form Ω can be decomposed
as

Ω = ΩR + ΦR (47)

where ΩR is the action form given by (38) and ΦR is a force two-form.

7. Classification of forces. We say that a force F p is a potential force if the
related force two-form Φp is closed, i.e., if

dΦp = 0. (48)

Straightforward computations in local coordinates show that a force two-form
(46) is closed if and only if its coefficients Fi can be written as

Fi = Ei +Biju
j , (49)

with functions Ei and Bij which do not depend on (u1, . . . , un). Moreover, these
functions have to fulfill

Bij = −Bji (50)

together with

∂Bij
∂xk

+
∂Bki
∂xj

+
∂Bjk
∂xi

= 0 and
∂Bij
∂t

=
∂Ei
∂xj
− ∂Ej
∂xi

,
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which thanks to the suggestive use of the letters B and E can be identified as a
generalized version of Maxwell’s equations. Consequently, a closed force two-form
has the local form

Φp = Ei dxi ∧ dt+ 1
2Bij dxi ∧ dxj , (51)

implying that a closed force two-form is basic.
According to the Poincaré lemma, a closed differential form is locally exact, i.e.,

there exists a neighbourhood W ⊆ A1M and a one-form φ defined on W such that

Φp
∣∣
W

= dφ. (52)

As a one-form φ satisfying (52), we consider the locally defined basic one-form

φ = −V dt+Ai dxi , (53)

with functions5 V and Ai which only depend on (t, x1, . . . , xn). With the one-
form (53) it holds that

Ei = −
(
∂V

∂xi
+
∂Ai
∂t

)
, Bij = 2

∂Aj
∂xi

.

The previous considerations allow us to split a given force two-form

Φ = Φp + Φnp (54)

into a potential force two-form Φp that is locally defined by the exterior derivative of
the one-form (53) and the remaining part Φnp which we will refer to as nonpotential
force two-form.

8. Lagrangian and Cartan one-form. Using the decomposition of forces (54)
in (47), any action form Ω can be decomposed as

Ω = ΩR + Φp
R + Φnp

R , (55)

where ΩR is the action form (38) induced by the kinetic energy with respect to
a reference field R of the mechanical system. At least locally, the potential force
two-form Φp

R is the exterior derivative of the one-form φR given in (53). Using the
rules (27), it can be seen that the chart representation (53) of φR is equivalent to

φR = (−VR +ARi u
i)dt+ ∂(−VR +ARi u

i), (56)

because VR and ARi only depend on (t, x1, ..., xn). By comparing (56) to the defini-
tion (38) of the action form ΩR induced by the kinetic energy TR of the mechanical
system, it is clear that the sum ΩR + Φp

R can be locally written as

ΩR + Φp
R = ΩR + dφR = d[(TR − VR +ARi u

i)ϑ̂+ ∂(TR − VR +ARi u
i)]

= d(LRϑ̂+ ∂LR) = dωR ,
(57)

where we have introduced the following objects.

Definition 8.1. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional me-

chanical system, ϑ̂ = π∗ϑ be the time structure of the state space A1M , and let TR
be the kinetic energy of the mechanical system with respect to a reference field R.
Let Φp

R be the (locally) exact potential force two-form given in the natural chart
(10) by

Φp
R = dφR with φR = −VRdt+ARi dxi ,

5In the context of a charged particle moving in an electromagnetic field the function V is known
as scalar potential of the field and the R3-tuple (A1, A2, A3) is said to be its vector potential. See

p. 45 in [15].
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where the component functions VR and AiR of φR only depend on (t, x1, . . . , xn).
The Lagrangian of the mechanical system with respect to the reference field R is
the function

LR := TR − VR +ARi u
i (58)

on the state space and it defines the Cartan one-form

ωR = LRϑ̂+ ∂LR . (59)

The coefficient function VR in (58) is known as the potential energy with respect
to the reference field R of the mechanical system. Moreover, in classical mechanics
(no electromagnetism) ARi = 0 can be assumed, see [5].

In the local coordinates induced by the natural chart (10), the Cartan one-form
reads as

ωR = LRdt+
∂LR
∂ui

(
dxi − uidt

)
=

(
LR − ui

∂LR
∂ui

)
dt+

∂LR
∂ui

dxi , (60)

from which we can see that the Cartan one-form determines the Lagrangian by

LR = Z¬ ωR, (61)

where Z is an arbitrary second-order field on the state space. As it will be needed
later on, we use (60) to compute the exterior derivative of the Cartan one-form as

dωR =
∂LR
∂xi

dxi ∧ dt+ d

(
∂LR
∂ui

)
∧
(
dxi − uidt

)
=

(
d

(
∂LR
∂ui

)
− ∂LR

∂xi
dt

)
∧
(
dxi − uidt

)
.

(62)

9. Canonical chart. Let LR denote the Lagrangian of the mechanical system with
respect to the reference field R, then the Cartan one-form takes a particularly simple
form with respect to the canonical chart6

Φ̃ : A1M ⊇ π−1(U)→ R2n+1, (p, vp) 7→ (t̃, x̃1, . . . , x̃n, p1, . . . , pn) , (63)

which is defined by the change of coordinates Φ̃ ◦ Φ−1 given by

t̃ = t, x̃i = xi and pi =
∂LR
∂ui

◦ Φ−1(t, x1, . . . , xn, u1, . . . , un) . (64)

Note that Φ denotes the natural chart (10). We call pi generalized momentum
coordinates, which by equations (58) and (37) together with ∂VR/∂u

i = 0 have the
form

pi = gij
(
uj −Rj

)
+ARi . (65)

The full rank of the Galilean metric g guarantees that the relation (65) can be
resolved for u1, . . . , un as

ui = gij
(
pj −ARj

)
+Ri, (66)

where gij are the components of the inverse matrix of gij . We refer to
(
t̃, x̃1, . . . , x̃n,

p1, . . . , pn
)

as canonical coordinates. The tildes on t and the xi allow the distinction
between the canonical coordinates and those provided by the natural chart (10).

6These coordinates are by no means canonically defined since they depend on the choice of a
reference field R. Physically, the quantities p1, . . . , pn are generalized momenta. In the context of
time-independent mechanics playing on the cotangent bundle T ∗Q of a time-independent configu-
ration manifold Q, the position and generalized momentum coordinates provided by the Darboux

theorem are canonical. Moreover, Hamilton’s equations are also referred to as canonical equations
(see [16], p. 132). So we use the adjective canonical because of tradition.
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We rewrite the Cartan one-form (60) as

ωR = −HRdt̃+ pidx̃
i, (67)

where we have used that dt = dt̃ and dxi = dx̃i for i = 1, . . . , n, and defined the
Hamiltonian as

HR : A1M ⊇ π−1(U)→ R, a 7→ HR(a) := −
(
LR − ui

∂LR
∂ui

)
(a),

which is a local function defined on the neighbourhood π−1(U). By equations (37)
and (58), the Hamiltonian takes the form

HR =
1

2
giju

iuj − 1

2
gijR

iRj + VR

=
1

2
gij
(
pi −ARi

)(
pj −ARj

)
+Rj(pj −ARj

)
+ VR ,

(68)

where we have used (66) for the second equality. In the special case where the
reference field R is the resting field of the natural chart, i.e. Ri = 0, the Hamiltonian
is the sum of the kinetic energy (36) and the potential energy VR.

It can be seen from (68) that we can rewrite (66) as

ui =
∂HR

∂pi
. (69)

Expressing the basis vectors ∂/∂ui induced by the natural chart (10) with respect
to the basis vectors induced by the chart (63) gives

∂

∂ui
=

∂t̃

∂ui
∂

∂t̃
+
∂x̃j

∂ui
∂

∂x̃j
+
∂pj
∂ui

∂

∂pj
= gji

∂

∂pj
, (70)

where we adopt the convention that a lower index appearing in the denominator is
considered to be an upper index. Using this relation and equation (69) in (46), a
force two-form Φ can locally be written as

Φ = Fidx̃
i ∧ dt̃+

1

2
grj

∂Fi
∂pr

(
dx̃i − ∂HR

∂pi
dt̃

)
∧
(

dx̃j − ∂HR

∂pj
dt̃

)
(71)

because dt = dt̃ and dxi = dx̃i for i = 1, . . . , n.
Finally, it follows from (69) and (70) that a second-order field (20) has the local

representation

Z =
∂

∂t
+ ui

∂

∂xi
+ Zi

∂

∂ui
=

∂

∂t̃
+
∂HR

∂pi

∂

∂x̃i
+ Zi

∂

∂pi
(72)

with respect to the natural and the canonical chart. Note that we have introduced
the coefficients Zi = gijZ

j .

10. Dynamics of finite-dimensional mechanical systems. It is possible to
characterize any action form Ω by means of a Lagrangian LR and a nonpotential
force two-form Φnp

R , which can be seen from (55) and (57). Moreover, the action
form Ω uniquely determines a second-order field by Theorem 4.1. This empowers
us to model the second-order field which gives the motions of a mechanical system
by modeling a Lagrangian together with a nonpotential force two-form. In other
words, for a specific mechanical system, e.g., a rigid-body model of an industrial
robot, the modeling process consists in finding an appropriate Lagrangian together
with a nonpotential force two-form. Hence, we formulate the following fundamental
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postulate for the description of the dynamics of time-dependent finite-dimensional
mechanical systems.

Postulate 1. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional mechan-

ical system and ϑ̂ = π∗ϑ be the time structure of the state space A1M . Moreover,
let ωR be the Cartan one-form induced by a Lagrangian LR of the mechanical sys-
tem and let Φnp

R be the nonpotential force two-form, each one with respect to the
reference field R.

A motion β of the mechanical system is an integral curve of the vector field
X ∈ Vect(A1M) characterized by

ϑ̂(X) = 1 and X¬Ω = 0, (73)

where

Ω := dωR + Φnp
R (74)

is the action form Ω of the mechanical system. Consequently, a motion β is a
solution of the equations of motion

β̇(τ) = X(β(τ)) . (75)

Using (57) in (74) allows to write the action form Ω of the mechanical system as

Ω = ΩR + Φp
R + Φnp

R ,

where ΩR is the action form (38) induced by the kinetic energy TR of the system
and Φp

R is the potential force two-form of the system. Consequently, the action
form ΩR describes the motion of a mechanical system which with respect to the
reference field R is not subjected to forces (i.e., Φp

R = Φnp
R = 0). It is important to

note, that the same system might be subjected to forces if a different reference field
R̃ is chosen. Indeed, by (47) we have

Ω = ΩR = ΩR̃ + ΦR̃

for the two different reference fields. We call the force two-form ΦR̃ inertia force as
it appears due to the change of reference field, see Sect. 39 in [16] or Sects. IV.4–5
in [14]. Two examples thereof are the Coriolis forces and the centrifugal forces.

We call a mechanical system exact (closed) if its action form Ω is exact (closed).
In view of (74), a mechanical system is closed if it is only subjected to potential
forces. According to the Poincaré lemma, a closed differential form is locally exact.
Hence, a closed mechanical system is locally exact and its action form can be locally
written as Ω = dωR. It can be shown that inertia forces stemming from a change
of reference field are potential forces [5]. Thus, the statement that a mechanical
system is only subjected to potential forces is independent of the reference field.

11. Virtual displacements. In its development, classical mechanics has been in-
timately related to the calculus of variations, which led to the definition of virtual
displacements as the derivative with respect to the parameter ε of a one-parameter
family of curves, where the motion of the mechanical system is the curve given
by ε = 0. Thus, a virtual displacement is induced by a one-parameter family of
curves and can be seen as a vector field along the motion. As our Postulate 1 is
not based on the calculus of variations, we consider virtual displacements as vector
fields that (locally) induce one-parameter families of curves. Indeed, a vector field
Y ∈ Vect(A1M) on the state space A1M induces the one-parameter family

κε(τ) = ϕYε ◦ β(τ) (76)
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by displacing every point β(τ) of the motion with the flow ϕYε of the vector field Y ,
where ϕY0 = idA1M .

It turns out, that not every vector field Y can be seen as a virtual displacement.
In fact, in classical mechanics a virtual displacement occurs at fixed time,7 which in
our context means that the temporal distance between the point β(τ) of the motion
and the associated displaced point κε(τ) is zero, i.e.

t
(
κε(τ)

)
− t
(
β(τ)

)
= t ◦ ϕYε

(
β(τ)

)
− t
(
β(τ)

)
= 0 , (77)

where t is a time function on the state space A1M and where we have used (76) for
the second equality. Condition (77) is fulfilled, if the flow of Y preserves the time
function t such that

t ◦ ϕYε − t = (ϕYε )∗t− t = 0 , (78)

which using ϕY0 = idA1M implies

LY t = lim
ε→0

1

ε

[
(ϕYε )∗t− t

]
= 0 . (79)

Hence, the vector field Y is required to be spacelike by LY t = dt(Y ) = 0. Conse-
quently, we define a virtual displacement field on the state space A1M as a vector
field Y ∈ Vect(A1M) which is spacelike, i.e., a virtual displacement field must satisfy
the condition

ϑ̂(Y ) = 0 (80)

and is therefore a section of the spacelike bundle A0(A1M) of A1M . Hereby,

A0(A1M) is defined by replacing M and ϑ with A1M and ϑ̂ in (3). We introduce

Virt(A1M) = Γ
(
A0(A1M)

)
(81)

denoting the set of virtual displacement fields on A1M . By (80), a virtual displace-
ment field is locally given by

Y = δxi
∂

∂xi
+ δui

∂

∂ui
= δx̃i

∂

∂x̃i
+ δpi

∂

∂pi
, (82)

where the basis vector fields are induced by the natural chart (10) and the canonical
chart (63), respectively. To agree with the notation used in classical literature, the
coefficients of the virtual displacement fields are decorated with deltas.

As the motion β of a mechanical system is a second-order curve in the state
space, we consider next a virtual displacement field Y , such that its induced one-
parameter family of motions κε defined by (76) is a second-order curve for every ε.
Let Z be the second-order vector field of which the motion β is an integral curve,
then

κ̇ε = (ϕYε ◦ β)̇ = DϕYε β̇ = DϕYε Z ◦ β .
Since the flow of Y in (76) is a (local) diffeomorphism, we obtain

κ̇ε = DϕYε Z ◦ (ϕYε )−1 ◦ κε = (ϕYε )∗Z ◦ κε .
Therefore, the curves κε of the one-parameter family induced by Y are integral
curves of the vector field (ϕYε )∗Z given by the push-forward of Z with the flow
of Y . As κε is a family of second-order curves, (ϕYε )∗Z is a second-order field.
Moreover, since the difference of two second-order fields is vertical,

LY Z = lim
ε→0

1

ε

[
(ϕYε )∗Z − Z

]
∈ Γ
(
Ver(A1M)

)
, (83)

7Pars [21] calls these virtual displacements ‘contemporaneous variations’.
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where we have used the definition of the Lie derivative and ϕY0 = idA1M . Hence,
the set of virtual displacement fields that for any integral curve of Z induce one-
parameter families of second-order curves is

VirtZ(A1M) :=
{
Y ∈ Virt(A1M)

∣∣ LY Z = [Y,Z] ∈ Γ
(
Ver(A1M)

)}
. (84)

With respect to a natural chart (10), Y ∈ VirtZ(A1M) has the local form

Y = δxi
∂

∂xi
+ LZδxi

∂

∂ui
. (85)

Indeed, let xi and ui denote the coordinate functions of the natural chart then the
∂/∂xi component of [Y, Z] is[

Y,Z
]
[xi] = Y

[
Z[xi]

]
− Z

[
Y [xi]

]
= Y [ui]− Z[δxi] (86)

where we have used the definition of the Lie bracket as well as the local represen-
tation (20) of the second-order field Z. It can be seen from (86) that the ∂/∂xi

components of [Y,Z] vanish if and only if Y has the form (85). This is equivalent
to [Y,Z] being vertical, since the vertical bundle is spanned by ∂/∂u1, . . . , ∂/∂un.

In classical mechanics yet another class of one-parameter family of motions is
often encountered. Its construction uses that a second-order curve β on A1M is
the tangent field γ̇ to the time-parametrized curve γ = π ◦ β on M . By the same
argument as in (78), a virtual displacement field on M is a spacelike vector field

Ȳ ∈ Virt(M) := Γ(A0M) , (87)

which with respect to the adapted chart (1) has the form

Ȳ = δxi
∂

∂xi
. (88)

The virtual displacement field Ȳ on M induces the one-parameter family ϕȲε ◦ γ
of time-parametrized curves on M . By construction, (ϕȲε ◦ γ)̇ is a one-parameter

family of second-order curves on A1M . Let Ŷ be the virtual displacement field on

A1M , which induces the one-parameter family of second-order curves κε = ϕŶε ◦ γ̇,
chosen such that

κε = ϕŶε ◦ γ̇ = (ϕȲε ◦ γ)̇ . (89)

This vector field Ŷ is called the complete lift of Ȳ . It can be shown that with
respect to a natural chart, the virtual displacement field Ŷ on A1M has the local
form

Ŷ = δxi ◦ π ∂

∂xi
+ LZ(δxi ◦ π)

∂

∂ui
, (90)

where δxi are the component functions of (88) and π denotes the natural projection
(11) of A1M . A detailed treatment of lifts is given in [27].

12. Principle of virtual work. By Postulate 1, a motion β of the mechanical sys-
tem is an integral curve of the time-normalized vector field X on A1M characterized
by

X¬Ω = 0 , (91)

where Ω is the action form of the mechanical system. The virtual displacement
fields can be used to restate (91) in the equivalent variational form

(X¬Ω)(Y ) = Ω(X,Y ) = 0 ∀Y ∈ Virt(A1M) . (92)

In fact, we know from (35) that the map Ω(X, ·) has constant rank 2n and that it
is blind on the line bundle over A1M spanned by the time-normalized vector field
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X that satisfies (91). As ϑ̂
(
X
)

= 1 and ϑ̂
(
Y
)

= 0, virtual displacement fields Y are

used to test the 2n complementary directions to span
{
X
}

.
Since Ω is an action form, we know that the vector field X defined by (92) is a

second-order field. Using this information a priori it follows from (92) that a motion
β of the mechanical system is an integral curve of the second-order field Z on A1M
characterized by

Ω(Z, Y ) = 0 ∀Y ∈ Virt(A1M) . (93)

Definition 12.1. Let Ω be the action form of a finite-dimensional mechanical
system with state space A1M . Moreover, let Z ∈ Vect(A1M) be a second-order field
and Y ∈ Virt(A1M) be a virtual displacement field on the state space. The virtual
work of the mechanical system is the smooth function Ω(Z, Y ).

In order to derive the coordinate representation of the virtual work of the me-
chanical system, we use the definition of the action form (74) and compute the sum-
mands of Z¬Ω = Z¬ dωR+Z¬Φnp

R separately. Using (62), (72) and Z¬ df = LZf
for real-valued functions f , the representation with respect to the natural chart of
the first summand is

Z¬ dωR =

(
LZ
(
∂LR
∂ui

)
− ∂LR

∂xi

)(
dxi − uidt

)
. (94)

Similarly, straightforward computations with (67) and (72) lead to the representa-
tion

Z¬ dωR = −LZ(HR)dt̃+ dHR + Zi dx̃i − ∂HR

∂pi
dpi

= −
(
LZHR −

∂HR

∂t̃

)
dt̃+

(
∂HR

∂x̃i
+ Zi

)
dx̃i

(95)

with respect to the canonical chart. Finally, using the chart representations (72) in
(46) and (71) respectively, the contribution of the nonpotential force is

Z¬Φnp
R = Fiu

idt− Fi dxi = Fi
∂HR

∂pi
dt̃− Fi dx̃i . (96)

Hence, in the local coordinates used for the virtual displacement field Y in (82) the
virtual work reads as

Ω(Z, Y ) =

[
LZ
(
∂LR
∂ui

)
− ∂LR

∂xi
− Fi

]
δxi =

(
Zi +

∂HR

∂x̃i
− Fi

)
δx̃i . (97)

It can be seen from the absence of the coefficients δui and δpi of Y in (97)
that the virtual work is blind on Ver(A1M). Therefore, only virtual displacement
fields in the n complementary directions to Ver(A1M) need to be tested in (93). A
look at (85) and (90) reveals that both the virtual displacements in VirtZ(A1M)
and the complete lifts of virtual displacements in Virt(M) can be used to test n
complementary directions to Ver(A1M) in (93). Thus, we have established the
following theorem.

Theorem 12.2 (Principle of virtual work). Let (M,ϑ, g) be the Galilean manifold

of a finite-dimensional mechanical system and ϑ̂ = π∗ϑ be the time structure of the
state space A1M . Moreover let Ω be the action form (74) of the mechanical system.
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A motion β of the mechanical system is an integral curve of the second-order
field Z on A1M equivalently characterized by one of the following conditions

(i) Ω(Z, Y ) = 0 ∀Y ∈ Virt(A1M) (98)

(ii) Ω(Z, Y ) = 0 ∀Y ∈ VirtZ(A1M) (99)

(iii) Ω(Z, Ŷ ) = 0 ∀Ȳ ∈ Virt(M) , (100)

where Ŷ is the complete lift of the virtual displacement field Ȳ .

As the characterizations of the motion in Theorem 12.2 by (97) coincide in local
coordinates, we refer to either of the characterizations as principle of virtual work.
In [21] on p. 74, the local expression of the virtual work (97) involving the Lagrangian
is referred to as the ‘fourth form of the fundamental equation’. Note that one could
postulate the principle of virtual work as the starting point of a theory for the
description of finite-dimensional mechanical systems. In our presentation, which is
based on Postulate 1, the observation that the virtual work vanishes is a theorem
rather than a principle. Nevertheless, we speak of the principle of virtual work
in order to relate our presentation to classical approaches. The observation that
Postulate 1 generalizes the principle of virtual work can be found in the book by
Souriau, where it is written that the virtual work is a truncated version of the action
form Ω.

13. Equations of motion. Let us consider a motion β : I → A1M , τ 7→ β(τ) of
the mechanical system, which by Theorem 12.2 is an integral curve of the second-
order field Z characterized by the principle of virtual work, i.e., the motion satisfies
the equations of motion

β̇(τ) = Z
(
β(τ)

)
. (101)

With (97), it follows from Theorem 12.2 that Z is characterized by Lagrange’s
equations of the second kind

LZ
(
∂LR
∂ui

)
− ∂LR

∂xi
= Fi. (102)

With (24), the motion, being a second-order curve, has the chart representation
Φ◦β(τ) = (τ,x(τ), ẋ(τ)) with respect to the natural chart Φ. Equation (102) needs
to be satisfied along the motion, such that

d

dτ

(
∂LR
∂ui

◦ β(τ)

)
− ∂LR

∂xi
◦ β(τ) = Fi ◦ β(τ) (103)

by (101) and the definition of the Lie derivative. We recognize (103) as Lagrange’s
equations of the second kind in their classical form.8

Similarly, with (97) it follows from Theorem 12.2 that Z is characterized by

Zi = −∂HR

∂x̃i
+ Fi. (104)

Hence, by (72), the second-order field Z locally reads as

Z =
∂

∂t̃
+
∂HR

∂pi

∂

∂x̃i
+

(
− ∂HR

∂x̃i
+ Fi

)
∂

∂pi

8See [13], p. 24, [25], p. 63, [21], p. 75 or [16], p. 3.
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and the equations of motion (101) take the form

˙̃xi(τ) =
∂HR

∂pi
◦ β(τ), (105)

ṗi(τ) = −∂HR

∂x̃i
◦ β(τ) + Fi ◦ β(τ), (106)

where Φ̃ ◦ β(τ) = (τ, x̃(τ),p(τ)) is the representation of the motion in canonical
coordinates. We recognize (105) and (106) as Hamilton’s equations.9 It is clear by
construction, that (105) is the second-order condition (23) expressed in the canonical
chart.

14. Central equations of Lagrange and Hamel. We pursue our endeavor to
establish a firm link to the classical results by deriving Lagrange’s central equation
and Hamel’s generalized version of it as coordinate representations of two different
versions of the principle of virtual work given in Theorem 12.2. We use the definition
of the action form of a mechanical system Ω from Postulate 1 to write the virtual
work of the system as

Ω
(
Z, Y

)
= dωR

(
Z, Y

)
+ Φnp

R

(
Z, Y

)
, (107)

where

dωR = dLR ∧ dt+ d

(
∂LR
∂ui

)
∧
(
dxi − uidt

)
− ∂LR

∂ui
dui ∧ dt

and

Φnp
R = Fidx

i ∧ dt+
1

2

∂Fi
∂uj

(
dxi − uidt

)
∧
(
dxj − ujdt

)
,

as can be seen from from (60) and (46). Considering that Z¬ (dxi − uidt) = 0 be-
cause Z is a second-order field and that Y ¬ dt = 0 since Y is a virtual displacement
field, it follows that

Ω
(
Z, Y

)
= −LY LR + LZ

(
∂LR
∂ui

)
δxi +

∂LR
∂ui

δui − Fiδxi , (108)

where we used the local representation (82) of the virtual displacement field Y .
Using (108), the principle of virtual work given by Theorem 12.2 (i) reads as

LZ
(
∂LR
∂ui

δxi
)
− LY LR − Fiδxi +

∂LR
∂ui

(
δui − LZδxi

)
= 0 (109)

for all δxi, δui ∈ C∞(π−1(U)), where we have used the product rule for the Lie
derivative and π−1(U) denotes the domain of the natural chart. We refer to equa-
tion (109) as Hamel’s generalized central equation.10

On the other hand, using (108) in the principle of virtual work given by The-
orem 12.2 (ii), the principle of virtual work takes the form of Lagrange’s central
equation11

LZ
(
∂LR
∂ui

δxi
)
− LY LR − Fiδxi = 0 (110)

for all δxi ∈ C∞(π−1(U)).

9See p. 132 of [16] or p. 63 of [25].
10See [9], p. 480 and [8], p. 424. Note that the generalized central equation in [8] is formulated

in more general coordinates that comprise the coordinates used in (109).
11See [7], p. 15, [2], p. 47, or [3], p. 21.
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15. Hamilton’s principle. In this section, we derive three versions of Hamilton’s
principle, which characterize the motion of an exact mechanical system as the so-
lution of a variational problem.

By the definition of the action form Ω of a mechanical system in Postulate 1, it is
clear that Ω is exact if the mechanical system is only subjected to potential forces.
By Postulate 1, the action form Ω of an exact mechanical system is given by the

exterior derivative of the Cartan one-form ωR = LRϑ̂+∂LR, where LR denotes the
Lagrangian of the mechanical system with respect to a reference field R.

Let C(γ0, γ1) denote the set of time-parametrized curves β : I = [τ0, τ1] → A1M
with fixed position endpoints γ0, γ1 ∈M , i.e.

C(γ0, γ1) :=
{
β time-param.

∣∣ π ◦ β(τ0) = γ0, π ◦ β(τ1) = γ1

}
. (111)

We define the action of a mechanical system as the functional

A : C(γ0, γ1)→ R, β 7→ A
[
β
]

=

∫
β(I)

ι∗ωR, (112)

where

ι : β(I) ↪→ A1M (113)

denotes the inclusion map of the subset β(I) into A1M . The set β(I) ⊂ A1M is an
immersed submanifold of A1M . Indeed, the map β : I → A1M is an injective immer-
sion because of equation (22) and since the tangent vector of a time-parametrized
curve never vanishes.

We know from definition (80) that a virtual displacement field Y ∈ Virt(A1M)
on the state space induces a one-parameter family of time-parametrized curves

κε(τ) = ϕYε ◦ β(τ) (114)

by displacing the curve β(τ) with the flow ϕYε of Y . To assure that the family κε
lies in C(γ0, γ1) we demand

π ◦ κε(τ0) = π ◦ β(τ0) = γ0 and π ◦ κε(τ1) = π ◦ β(τ1) = γ1

for every ε, which implies that

Y (β(τ0)) ∈ Ver(A1M) and Y (β(τ1)) ∈ Ver(A1M) . (115)

Following [11], we use the one-parameter family induced by the virtual displace-
ment field Y to define the first variation of the action (112) in β as

δA
[
Y
]

:=
d

dε

∣∣∣∣
ε=0

A
[
ϕYε ◦ β

]
, (116)

where ϕY0 = idA1M . It is important to point out, that the one-parameter family
defining the first variation has to lie in the set of curves for which the functional
is defined, i.e., the set C(γ0, γ1) in this case. Using Prop. 16.6 of [18] in (116), the
first variation of the action (112) can be recast as

δA
[
Y
]

=
d

dε

∣∣∣∣
ε=0

∫
ϕY

ε ◦β(I)

ι∗ε ωR =
d

dε

∣∣∣∣
ε=0

∫
β(I)

ι∗
((
ϕYε
)∗
ωR

)
=

∫
β(I)

ι∗
(

d

dε

∣∣∣∣
ε=0

(
ϕYε
)∗
ωR

)
=

∫
β(I)

ι∗(LY ωR)

(117)
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where ιε : κε(I) ↪→ A1M denotes the inclusion map of the subset κε(I) ⊂ A1M and
ι = ι0 denotes the inclusion map (113). Finally, by Cartan’s magic formula and
Stoke’s theorem, the first variation (117) becomes

δA
[
Y
]

=

∫
β(I)

ι∗
(
Y ¬ dωR

)
+

∫
∂β(I)

ι̂∗
(
Y ¬ ωR

)
, (118)

where ∂β(I) denotes the boundary of β(I) and ι̂ : ∂β(I) ↪→ A1M its inclusion map.
The integral over the boundary in (118) vanishes as the virtual displacement fields
are vertical on the boundary by (115) and ωR is semi-basic, see (60). Consequently,
the first variation (118) of the action (112) can be written as

δA
[
Y
]

=

∫
I

(
Y ¬ dωR

)(
β̇(τ)

)
dτ =

∫
I

dωR(Y, X̃) ◦ β(τ)dτ, (119)

where the vector field X̃ satisfies β̇(τ) = X̃(β(τ)). We say that a curve β with given
fixed position endpoints stationarizes the action (112) if its first variation (119) in
β vanishes for all virtual displacement fields satisfying (115).

Theorem 15.1 (Hamilton’s principle I). Let (M,ϑ, g) be the Galilean manifold of
an exact finite-dimensional mechanical system and let ωR be its Cartan one-form
with respect to the reference field R, such that the action form of the system is given
by Ω = dωR. A time-parametrized curve β with fixed position endpoints γ0, γ1 ∈M
stationarizes the action

A : C(γ0, γ1)→ R, β 7→ A
[
β
]

=

∫
β(I)

ι∗ωR (120)

if and only if the curve β is a motion of the mechanical system.

Proof. By Postulate 1, a motion β of the mechanical system is an integral curve of
the unique time-normalized vector field X on A1M characterized by

dωR(X,Y ) = 0 ∀Y ∈ Virt(A1M) , (121)

see (92). Consequently, the first variation in β of the action (120) vanishes for all

virtual displacement fields satisfying (115) as X plays the role of X̃ in (119). Hence,
a motion of the mechanical system stationarizes the action.

To show the converse, we assume that the time-normalized curve β stationarizes
the action, i.e., the first variation (119) in β vanishes for all virtual displacement
fields satisfying (115). We first show by reductio ad absurdum that it follows from
the stationarity condition that

dωR(Y, X̃) ◦ β(τ) = 0 ∀Y ∈ Virt(A1M) and ∀τ ∈ I , (122)

where the virtual displacement fields Y must satisfy (115) and the tangent field of

β is given by the vector field X̃ defined only along β. Without loss of generality, we
assume that there exists a virtual displacement Y ∗ and a τ∗ such that dωR(Y ∗, X̃)◦
β(τ∗) > 0. Since dωR(Y ∗, X̃) ◦ β seen as a function of τ is a smooth real-valued
function defined on I ⊆ R, it follows by continuity that there exists an open subset
Ĩ ⊆ I containing τ∗ such that

dωR(Y ∗, X̃) ◦ β(τ) > 0 ∀τ ∈ Ĩ . (123)

We choose an open neighborhood W ⊆ A1M of β(τ∗) such that W ∩ β(I) ⊆ β(Ĩ).
Moreover, we select a closed neighborhood A ⊂ W of β(τ∗) and denote by ψ ∈
C∞(A1M) a smooth bump function for A supported in W defined as a real-valued
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function with the properties 0 ≤ ψ ≤ 1 on A1M and ψ = 1 on A.12 Using the bump
function to define the virtual displacement field Ỹ = ψY ∗, it follows from (123) and
the C∞-linearity of dωR that

dωR(Ỹ , X̃) ◦ β(τ) ≥ 0 ∀τ ∈ I := β−1
(
W ∩ β(I)

)
⊆ Ĩ , (124)

because ψ ≥ 0. Since ψ = 1 on A, the inequality in (124) is strict for τ ∈ β−1
(
A ∩

β(I)
)
. This, together with the fact that by construction Ỹ = 0 on the complement

of W , implies that

δA
[
Ỹ
]

=

∫
I

dωR(Ỹ , X̃) ◦ β(τ)dτ =

∫
I

dωR(Ỹ , X̃) ◦ β(τ)dτ > 0 , (125)

which is a contradiction to the stationarity condition and therefore proves (122) for
virtual displacement fields Y that satisfy (115).

Since the vector field X characterized by (121) is unique, it follows from (122)

that X̃ ◦ β = X ◦ β. Hence, β is a motion of the mechanical system as it is an
integral curve of the vector field X of Postulate 1.

In order to relate this version of Hamilton’s principle to classical mechanics, we
rewrite the action (120) as

A
[
β
]

=

∫
I

β∗ωR =

∫
I

ωβ(τ)

(
β̇(τ)

)
dτ , (126)

where we have dropped the R for notational reasons, and derive its chart representa-
tion with respect to the natural and the canonical chart. For the natural chart (10),
it holds by (24) that Φ ◦ β(τ) =

(
τ,x(τ),u(τ)

)
, such that

β̇(τ) =
∂

∂t

∣∣∣∣
β(τ)

+ ẋi(τ)
∂

∂xi

∣∣∣∣
β(τ)

+ u̇i(τ)
∂

∂ui

∣∣∣∣
β(τ)

.

Therefore, the action (126) locally reads as

A
[
β
]

=

∫
I

[
LR
(
τ,x(τ),u(τ)

)
+
∂LR
∂uj

(
τ,x(τ),u(τ)

)(
ẋj(τ)− uj(τ)

)]
dτ , (127)

where we have used (60) and introduced LR := LR ◦ Φ−1 to denote the chart
representation of the Lagrangian defined in (58). The action functional (127) can

be found for instance in [21, p. 531]. In the canonical chart Φ̃, the motion has the

representation Φ̃ ◦ β(τ) =
(
τ, x̃(τ),p(τ)

)
, such that

β̇(τ) =
∂

∂t̃

∣∣∣∣
β(τ)

+ ˙̃xi(τ)
∂

∂x̃i

∣∣∣∣
β(τ)

+ ṗi(τ)
∂

∂pi

∣∣∣∣
β(τ)

.

Using this together with the representation (67) of the Cartan one-form, it follows
from (126) that the action locally reads as

A
[
β
]

=

∫
I

[
pi(τ) ˙̃xi(τ)−HR

(
τ, x̃(τ),p(τ)

)]
dτ , (128)

where HR := HR ◦ Φ̃−1 denotes the chart representation of the Hamiltonian intro-
duced in (67). The action functional (128) is found in [4], p. 12; [14], p. 169; [21],
p. 531; [25], p. 110 and [6], p. 354.

12The existence of bump functions is guaranteed by Proposition 2.25 in [18].
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In order to derive a version of Hamilton’s Principle which is often found in
classical mechanics, we restrict the action (112) to second-order curves, i.e., to
curves in the set

Cso(γ0, γ1) :=
{
β ∈ C(γ0, γ1)

∣∣ β = (π ◦ β)̇
}
. (129)

For such curves, the action locally reads as

A
[
β
]

=

∫
I

LR
(
τ,x(τ), ẋ(τ)

)
dτ

=

∫
I

[
pi(τ)

∂HR

∂pi

(
τ, x̃(τ),p(τ)

)
−HR

(
τ, x̃(τ),p(τ)

)]
dτ ,

(130)

where we have used that the second-order curve β fulfills the second-order conditions
(23) and (105) in (127) and (128), respectively. As the action (130) is defined on
second-order curves, the variational families used to compute the first variation of
the action consist of second-order curves for any ε. Such variational families are
induced by the virtual displacement fields VirtZ̃(A1M) defined in (84), where Z̃
denotes the second-order field of which β is an integral curve. Using this in the first
variation (119) of the action leads to the stationarity condition

δA
[
Y
]

=

∫
I

dωR(Y, Z̃) ◦ β(τ)dτ = 0 ∀Y ∈ VirtZ̃(A1M) , (131)

of the restricted action (130), where Y fulfills condition (115).

Theorem 15.2 (Hamilton’s Principle II). Let (M,ϑ, g) be the Galilean manifold of
an exact finite-dimensional mechanical system and let ωR be its Cartan one-form
with respect to the reference field R, such that the action form of the system is
given by Ω = dωR. A second-order curve β with fixed position endpoints γ0, γ1 ∈M
stationarizes the action

A : Cso(γ0, γ1)→ R, β 7→ A
[
β
]

=

∫
β(I)

ι∗ωR (132)

if and only if the curve β is a motion of the mechanical system.

The proof is verbatim the proof of Theorem 15.1 except that the principle of
virtual work (Theorem 12.2 (ii)) plays the role of Postulate 1 for the characterization
of the motion of the mechanical system.

Looking at the local representation (130) of the action (132), we find that this
version of Hamilton’s principle corresponds to the one found in classical mechanics.
The representation (130) in both charts is found in [10] on pp. 98–99. Moreover
the natural chart representation is for example found in [16], p. 2 or [6], p. 35 f.
However, here the correspondence lies in the eye of the beholder, as the action
found in these texts is defined without specifying the set of functions it takes as
arguments.

The arguably most prevalent version of Hamilton’s principle in classical mechan-
ics uses that the action of a mechanical system can also be defined on the set
of time-parametrized curves γ : I = [τ0, τ1] → M with fixed position endpoints
γ0, γ1 ∈M given by

D(γ0, γ1) :=
{
γ time-param.

∣∣ γ(τ0) = γ0, γ(τ1) = γ1

}
. (133)

By definition, a second-order curve β on A1M is the tangent field to the time-
parametrized curve γ = π ◦ β on M . We use this in (132) to define the action of a
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mechanical system

A
[
γ
]

:=

∫
γ̇(I)

ι∗ωR =

∫
I

LR
(
τ,x(τ), ẋ(τ)

)
dτ , (134)

on the set D(γ0, γ1). Such curves have the representation φ ◦ γ =
(
τ,x(τ)

)
with

respect to an adapted chart.
Since the one-parameter family ϕȲε ◦ γ induced by a virtual displacement field

Ȳ ∈ Virt(M) on M is a one-parameter family of time-parametrized curves on M ,
the first variation of (134) at γ is

δA
[
Ȳ
]

=
d

dε

∣∣∣∣
ε=0

∫
(ϕȲ

ε ◦γ)̇(I)

ι∗ωR , (135)

where we essentially used (116). Similar arguments as used for (115) lead to the
conditions

Ȳ (γ0) = 0 and Ȳ (γ1) = 0 (136)

on the virtual displacement field Ȳ ∈ Virt(M) such that its induced one-parameter

family lies in D(γ0, γ1). Denoting the complete lift of Ȳ with Ŷ and using condition
(89), we obtain from (135) the stationarity condition

δA
[
Ȳ
]

=
d

dε

∣∣∣∣
ε=0

∫
ϕŶ

ε ◦γ̇(I)

i∗ωR =

∫
I

dωR(Ŷ , Z̃) ◦ γ̇(τ)dτ = 0 (137)

for all Ȳ ∈ Virt(M) which fulfill condition (136). The derivation of the last repre-
sentation of the first variation in (137) follows the lines of (117)–(119) and uses the
fact that by construction we have γ̇ ∈ C(γ0, γ1) if γ ∈ D(γ0, γ1).

Theorem 15.3 (Hamilton’s Principle III). Let (M,ϑ, g) be the Galilean manifold
of an exact finite-dimensional mechanical system and let ωR be its Cartan one-form
with respect to the reference field R, such that the action form of the system is
given by Ω = dωR. The time-parametrized curve γ with fixed position endpoints
γ0, γ1 ∈M stationarizes the action

A : D(γ0, γ1)→ R, γ 7→ A
[
γ
]

=

∫
γ̇(I)

ι∗ωR, (138)

if and only if the curve β = γ̇ is a motion of the mechanical system.

The proof follows the lines of the proof of Theorem 15.1. Here, the principle of
virtual work (Theorem 12.2 (iii)) plays the role of Postulate 1 for the characteriza-
tion of the motion of the mechanical system.

This version of Hamilton’s principle with the local representation (134) of the
action is usually found in classical texts. See for example [16], p. 2; [6], p. 35; [1],
p. 59; [21], p. 35; [25], p. 107; [9], p. 235; or [4], p. 10.

16. Conclusion. We presented a geometric theory for time-dependent finite-dim-
ensional mechanical systems which may be subjected to nonpotential forces. The
theory is formulated on a Galilean manifold (M,ϑ, g) modeling the generalized
space-time. The state space containing the system’s information on time, position
and velocity is defined as the affine bundle A1M . The fundamental idea behind the
theory is that a differential two-form with the properties from Theorem 4.1, i.e.,
an action form, uniquely characterizes a second-order vector field whose integral
curves are the motions of the system. We have seen that any action form Ω can
always be attributed to a Lagrangian and a nonpotential force two-form. This led
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us eventually to the formulation of Postulate 1, which is considered here as the fun-
damental law for time-dependent finite-dimensional mechanical systems. Starting
from Postulate 1, we derived alternative coordinate-free principles that traditionally
are used as fundamental laws in dynamics. This geometric framework allowed us to
recognize if two classical principles indeed differ by the mathematical objects they
involve or if they are just two chart representations of the same principle.

With Theorem 12.2, we proved the equivalence between the principle of virtual
work and Postulate 1. In this theorem, the principle of virtual work is given for
three different types of virtual displacement fields, all of which lead to the same
indistinguishable coordinate representation of the virtual work. Striving to present
other classical equations, we could show that these three types lead to different
classical principles when represented in coordinates. Indeed, two types of virtual
displacement fields can respectively be distinguished in the central equation of La-
grange and in Hamel’s generalized version thereof.

The study of the variational families related to three different types of virtual
displacement fields led to the formulation of three versions of Hamilton’s principle.
Their equivalence to Postulate 1 is established by Theorems 15.1–15.3. These three
principles are traced back to six versions of the principle of Hamilton found in
classical mechanics.

If one is willing to pay the price of a more involved mathematical framework, the
proposed geometric theory leads definitively to a deeper understanding of the the-
ory of time-dependent finite-dimensional mechanical systems and notably allows a
definition of forces. While the coordinate-free theory comprises the Lagrangian and
the Hamiltonian approaches as mere chart representations, it enables to precisely
distinguish concepts which appear as similar in the classical formalisms.
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[25] J. L. Synge. Classical dynamics. In S. Flügge, editor, Principles of Classical Mechanics and

Field Theory, volume III/1 of Encyclopedia of Physics. Springer, 1960.

[26] T. Winandy. Dynamics of finite-dimensional mechanical systems. phdthesis, University of
Stuttgart, 2019.

[27] K. Yano and S. Ishihara. Tangent and Cotangent Bundles, volume 16 of Pure and Applied

Mathematics. Marcel Dekker, 1973.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: capobianco@inm.uni-stuttgart.de

E-mail address: winandy tom@gmx.de

E-mail address: eugster@inm.uni-stuttgart.de

mailto:capobianco@inm.uni-stuttgart.de
mailto:winandy_tom@gmx.de
mailto:eugster@inm.uni-stuttgart.de

	1. Introduction
	2. Notation
	3. Galilean manifold and state space
	4. Action form of a second-order field
	5. The kinetic energy
	6. Forces
	7. Classification of forces
	8. Lagrangian and Cartan one-form
	9. Canonical chart
	10. Dynamics of finite-dimensional mechanical systems
	11. Virtual displacements
	12. Principle of virtual work
	13. Equations of motion
	14. Central equations of Lagrange and Hamel
	15. Hamilton's principle
	16. Conclusion
	REFERENCES

