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Abstract: In the theory of second-gradient continua, the internal virtual work func-
tional can be considered as a second order distribution in which the virtual displacements
take the role of test functions. In its easiest representation, the internal virtual work
functional is represented as a volume integral over a subset of the three-dimensional Eu-
clidean vector space and involves first and second derivatives of the virtual displacements.
In this paper, we show by an iterative integration by parts procedure how an alternative
representation of such a functional can be obtained when the integration domain is a
subset that contains also edges and wedges. Since this procedure strongly relies on the di-
vergence theorem for submanifolds of a Euclidean vector space, it is a main goal to derive
this divergence theorem for submanifolds starting from Stokes’ theorem for manifolds. To
that end, results from Riemannian geometry are gathered and applied to the submanifold
case.
keywords: divergence theorem, submanifolds, second-gradient continua

1 Introduction

The divergence theorem for submanifolds of a Euclidean vector space is indispensable
to prove alternative representations of internal virtual work functionals of a continuum.
These representations are required among others to identify compatible external virtual
work functionals and to obtain the local equilibrium equations together with the boundary
conditions, see among others [12,13,16,18,22,27,28,37]. Typically, the divergence theorem
for an m-dimensional orientable submanifold M ⊆ En of an n-dimensional Euclidean
vector space En is employed, where m ≤ n = 3. Applying Einstein summation convention,
which implies summation over upper and lower indices that appear twice in a term, a point
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x ∈ E3 can be written as x = xiei ∈ En, where (e1, . . . , en) is a basis of En. In particular,
we agree that Roman indices range from 1 to n. Consider a (local) parametrization
ψ = ψ(θ1, . . . , θm) of the m-dimensional manifold M , then for α ∈ {1, . . . ,m} the vectors
gα(x) := ∂ψ

∂θα

∣∣∣ψ−1(x) define a basis of TxM . Hence, a vector field X ∈ Vect(M) can be
represented in two natural ways, namely X = X i

∥ei = Xαgα with the tacit assumption
that Greek indices range from 1 to m. Since the inner product ⟨·, ·⟩ on En induces a
Riemannian metric g on M , the manifold is equipped with the Levi-Civita connection ∇
as well as the Riemannian volume form dM . Exploiting that TxM is a subspace of En,
we furthermore define the orthogonal projection P∥(x) : En → En onto TxM .

According to [25,26], the divergence theorem corresponds to the equality∫
M

divX dM =
∫
∂M

⟨X, ν⟩ d∂M , (1)

where ν denotes the outward-pointing unit normal to the topological boundary ∂M of M ,
div(X) is the divergence of the vector field X and d∂M is used for the Riemannian volume
element of the boundary manifold ∂M . In the literature on higher gradient continua, see
for instance [2,5,11,12,17,18,22,23,27,28,32,36,37], several expressions of the divergence
of a vector field are encountered. Specifically, these are

divX = 1
√
g

∂

∂θα

(√
gXα

)
= ∂Xα

∂θα
+ ΓααβXβ = P∥

j
i

∂X i
∥

∂xj
, (2)

where g := det(g(gα, gβ)) = det(⟨gα, gβ⟩) denotes the determinant of the first fundamen-
tal form, Γγαβ are the Christoffel symbols of the connection ∇ and the P∥

j
i

denote the
components of the orthogonal projection. In fact, these are all local expressions, in case
a parametrization of the manifold is given or when the orthogonal projector has been
introduced.

In addition the application of the divergence theorem to second-gradient continua in
Section 2, the main goal of this paper is to show why these different representations
occur and how they are related. In fact, the divergence theorem (1) is a consequence
of Stokes’ theorem on manifolds [25], which is formulated in the context of intrinsic
differential geometry. To get to the divergence theorem in the form (1), we will show in
this paper how to apply results from intrinsic differential geometry to submanifolds of En.
In Section 3, we mainly gather results from literature and present a concise derivation of
the divergence theorem on Riemannian manifolds, which is of great interest for the theory
of general relativity [9, 10]. Along the way, we will see that there exist two different but
equivalent definitions of the divergence, whose local representations in a natural way
lead to the second and third expression of (2). Then, in Section 4, the special case of
submanifolds of En is considered, which directly leads to the divergence theorem in the
form (1) as well as to the last coordinate expression in (2). In particular, we will show
again the equivalence of the two definitions of the divergence. This allows a reader that is
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only interested in the equivalence of these definitions for submanifolds of Euclidean vector
spaces to omit Theorem 1 and Corollary 1 of Section 3.

2 Equivalent representations of the internal virtual work func-
tional for second-gradient continua

To get two different representations of the internal virtual work functional of second-
gradient continua in Eulerian description, we apply the divergence theorem for subman-
ifolds (1) together with the divergence representation given by the last expression in
(2). The aim is to show the importance of the divergence theorem for continuum me-
chanics and it is not intended as an exhaustive treatment of second order continua.
For more details about second-gradient continua and possible applications, we refer to
[1, 3, 4, 7, 14,19–21,29,30,33].

Following the postulation accepted for Galilean Mechanics, the physical space, where
a second-gradient continuum can be placed, is modeled as a three-dimensional Euclidean
vector space E3 with the inner product denoted by ⟨·, ·⟩. We assume the actual configu-
ration ω ⊂ E3 of the considered continuum to be a three-dimensional submanifold with
corners, which is sufficiently regular to perform all the required calculations, see [12]. The
topological boundary of ω is denoted by ∂ω, which is the union of a finite number of
two-dimensional orientable surfaces with boundary. These surfaces, called faces of ω, are
again manifolds with corners and their boundary curves are called edges. The union of
all edges of ω is denoted by ∂∂ω.

Choosing a basis (e1, e2, e3) of E3, we can represent any spatial point as x = xiei ∈ E3.
A spatial virtual displacement field δx is a vector field on the actual configuration, i.e., a
vector-valued function δx : ω → E3. Using the basis representation δx(x) = δxi(x)ei for
the spatial virtual displacements, we introduce the abbreviations

δdij := ∂δxi

∂xj
and δdijk := ∂2δxi

∂xj∂xk
(3)

for the components of the first and second gradient of the spatial virtual displacement
field δx.

The internal virtual work functional of a second-gradient continuum in Eulerian form
can be defined in the form

δW int
ω (δx) := −

∫
ω

(
cki δd

i
k + c

jk
i δd

i
jk

)
dω , (4)

where cki and c
jk
i are the components of the Cauchy–Euler stress c and the Cauchy–

Euler double-stress c, respectively. In fact, the functional δW int
ω can be considered as a

representation of a second order distribution. With the subsequent transformations, we
will find an equivalent representation, which is important for the choice of compatible
external virtual work functionals for second-gradient continua.
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Using (3) together with the product rule, we have that

cki δd
i
k + c

jk
i δd

i
jk = cki

∂δxi

∂xk
+ c

jk
i

∂2δxi

∂xj∂xk
=

(
cki − ∂cjki

∂xj

)
∂δxi

∂xk
+ ∂

∂xj

(
c
jk
i

∂δxi

∂xk

)
. (5)

Introducing the abbreviation

c̄ki := cki − ∂cjki
∂xj

,

the integrand (5) of the internal virtual work can be further recast to

cki δd
i
k + c

jk
i δd

i
jk = − ∂c̄ki

∂xk
δxi + ∂

∂xj

(
c̄jiδx

i + c
jk
i

∂δxi

∂xk

)
(6)

by using the product rule on the first term. It is clear that because Txω = E3 for all
x ∈ ω, the orthogonal projection onto Txω is the identity map, whose components are
given by the Kronecker delta δji . Consequently, comparing the last term in (6) with
the last coordinate expression in (2) reveals that the internal virtual work (4) can be
reformulated as

δW int
ω (δx) =

∫
ω

∂c̄ki
∂xk

δxi dω −
∫
ω

div
((
c̄jiδx

i + c
jk
i

∂δxi

∂xk

)
ej

)
dω .

We can now invoke the divergence theorem (1) on the second integral to arrive at

δW int
ω (δx) =

∫
ω

∂c̄ki
∂xk

δxi dω −
∫
∂ω

(
c̄jiδx

i + c
jk
i

∂δxi

∂xk

)
nj d∂ω ,

where ni := ⟨ei, n⟩ and n denotes the outward-pointing unit normal vector field to ∂ω.
Consequently, the internal virtual work functional can be represented as

δW int
ω = δW int,0

ω + δW int,0
∂ω + δW̄ int,I

∂ω ,

where we have introduced the functionals

δW int,0
ω (δx) :=

∫
ω

∂c̄ki
∂xk

δxi dω ,

δW int,0
∂ω (δx) := −

∫
∂ω
c̄jinjδx

i d∂ω ,

δW̄ int,I
∂ω (δx) := −

∫
∂ω
c
jk
i nj δd

i
k d∂ω .

(7)

Since ∂ω has co-dimension one, the tangent space Tx∂ω is a two-dimensional subspace
of E3 for all x ∈ ∂ω. Consequently, the normal space Nx∂ω := (Tx∂ω)⊥ is one-dimensional
and is spanned by the outward-pointing unit normal vector n(x). It is immediately clear
that the map

m⊥ : E3 → E3, X 7→ ⟨n,X⟩n

4



is the orthogonal projection onto the normal space. Moreover, since

m⊥(ei) = ⟨n, ei⟩njej = nin
jej = m⊥

j
i
ej , (8)

the components of the projection can be identified as m⊥
j
i

= nin
j. Denoting the orthogo-

nal projection onto Tx∂ω by m∥(x), it holds that id = m⊥ +m∥, where “id” is the identity
map on E3. Hence, δij = m⊥

i
j

+ m∥
i
j
, which we use to further manipulate δW̄ int,I

∂ω defined
in (7). Namely,

δW̄ int,I
∂ω (δx) = −

∫
∂ω
c
jk
i nj

∂δxi

∂xl
δlk d∂ω = −

∫
∂ω
c
jk
i nj

∂δxi

∂xl
(m⊥

l
k

+m∥
l
k
) d∂ω . (9)

Hence, the virtual work functional (9) can be represented as the sum

δW̄ int,I
∂ω = δW int,I

∂ω + δW̃ int,I
∂ω ,

where the first functional is is defined as

δW int,I
∂ω (δx) := −

∫
∂ω
c
jk
i

∂δxi

∂xl
njm⊥

l
k
d∂ω

(8)= −
∫
∂ω

(cjki njnk)
∂δxi

∂xl
nl d∂ω ,

which is a second order transverse distribution, [31], involving the normal derivative ∂δxi

∂xl n
l

of the virtual displacement field δx. The second functional is then given by

δW̃ int,I
∂ω (δx) := −

∫
∂ω
c
jk
i nj

∂δxi

∂xl
m∥

l
k
d∂ω

= −
∫
∂ω
c
jk
i nj

∂δxi

∂xl
m∥

l
m
m∥

m
k
d∂ω

= −
∫
∂ω

[
m∥

l
m

∂

∂xl

(
m∥

m
k
c
jk
i njδx

i
)

−m∥
l
m

∂

∂xl

(
m∥

m
k
c
jk
i nj

)
δxi

]
d∂ω

(2)= −
∫
∂ω

[
div

(
m∥

m
k
c
jk
i njδx

iem

)
−m∥

l
m

∂

∂xl

(
m∥

m
k
c
jk
i nj

)
δxi

]
d∂ω ,

(10)

where for the equalities we have used the idempotence of the projector m∥, the product
rule and the local representation (2) of the divergence. Note, that we are allowed to
use (2) for the last equality, since m∥

m
k
c
jk
i δx

inj are the components of the vector field
m∥(cjki njδxiek) ∈ Vect(∂ω), which in virtue of the projector m∥ is indeed a vector field
on ∂ω. Using the divergence theorem (1) in (10) leads to

δW̃ int,I
∂ω = δW int,0

∂∂ω + δW̃ int,0
∂ω

with the functionals given by

δW int,0
∂∂ω (δx) := −

∫
∂∂ω

m∥
m
k
c
jk
i njbmδx

i d∂∂ω = −
∫
∂∂ω

c
jk
i njbkδx

i d∂∂ω ,

δW̃ int,0
∂ω (δx) :=

∫
∂ω
m∥

l
m

∂

∂xl

(
m∥

m
k
c
jk
i nj

)
δxi d∂ω ,

(11)
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where bm := ⟨em, b⟩ and b denotes the outward-pointing unit normal field to the edges
constituting ∂∂ω which are also tangent to ∂ω. Note, to obtain δW int,0

∂∂ω , the divergence
theorem has been applied leading to a line integral along the edges of ∂ω. We used here a
notational convention in the expression of the integral. In fact, an edge γ is constituted by
two concurring boundary surface manifolds σ+ and σ−, say. Hence, γ is traversed twice:
once with the surface normal n−, edge normal b− and the limit (δxicjki )− approached from
the surface σ−, as well as once with the corresponding n+, b+ and (δxicjki )+. Consequently,
if we denote each of the edge curves by γi for i = 1, . . . , ne, the integral expression of the
first equality in (11) must be understood as follows∫

∂∂ω
c
jk
i njbkδx

i d∂∂ω :=
ne∑
i=1

∫
γi

[
(cjki njbkδxi)+ + (cjki njbkδxi)−

]
dγi .

In conclusion, the internal virtual work functional (4) can be represented equivalently
in the form

δW int
ω (δx) = [δW int,0

ω + (δW int,0
∂ω + δW̃ int,0

∂ω ) + δW int,I
∂ω + δW int,0

∂∂ω ](δx)

=
∫
ω

∂c̄ki
∂xk

δxi dω +
∫
∂ω

[
m∥

l
m

∂

∂xl

(
m∥

m
k
c
jk
i nj

)
− c̄jinj

]
δxi d∂ω

−
∫
∂ω

(cjki njnk)
∂δxi

∂xl
nl d∂ω −

∫
∂∂ω

c
jk
i njbkδx

i d∂∂ω .

(12)

Since in D’Alembert-Lagrange continuum mechanics, the fundamental principle is the
principle of virtual work, which requires for a static equilibrium the total virtual work
δW tot

ω := δW int
ω + δW ext

ω = 0 to vanish for all admissible virtual displacement fields δx,
the external virtual work functional compatible for second-gradient continua must be of
the form

δW ext
ω (δx) =

∫
ω
fωi δx

idω+
∫
∂ω
f∂ωi δxid∂ω+

∫
∂ω
d∂ωi

∂δxi

∂xc
ncd∂ω+

∫
∂∂ω

f∂∂ωi δxid∂∂ω , (13)

where the co-vector fields fω, f∂ω and f∂∂ω are forces per unit actual volume, surface and
line, respectively. Note, the somehow uncommon additional surface density d∂ω, called
surface density of double-forces, which is a density per unit actual surface and which is
dual to the normal gradient with respect to the actual normal vector. Using (12) and (13)
in the the principle of virtual work, the expressions in the volume integral readily lead to
the equilibrium equations, whereas the expressions in the surface and edge integrals lead
to the boundary conditions.

3 Divergence theorem on Riemannian manifolds

In this section, we aim at revising the concepts needed to understand the divergence
theorem in a setting which uses the least mathematical structure as possible. For that,
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we regard M as a smooth oriented (topological) manifold equipped with a Riemannian
metric g, i.e., g is a covariant tensor field of rank two on M which endows the tangent
spaces TxM with an inner product for each x ∈ M .

Since the manifold M is oriented, we can define the Riemannian volume form dM ∈
Ωm(M) as the unique differential m-form defined by the condition

dMx(B1, . . . , Bm) = 1 (14)

for every x ∈ M and for any positively oriented orthonormal basis (B1, . . . , Bm) of TxM .
The Riemannian volume form is well-defined and unique since the transformation matrix
between two positively oriented orthonormal bases has determinant 1. It can be shown,
see Proposition 15.31 in [26], that

dM = √
g dθ1 ∧ · · · ∧ dθm (15)

with respect to a positively oriented chart ϕ : M ⊃ U → Rm, x 7→ (θ1, . . . , θm), where
√
g =

√
det(gαβ) and gαβ = g

(
∂
∂θα ,

∂
∂θβ

)
.

With the Riemannian volume form at hand, we can define the divergence of a vector
field X on M as the scalar function divX ∈ C∞(M) satisfying

divX dM = LX(dM) , (16)

where LX denotes the Lie derivative with respect to X, see [25,26]. Hence, the divergence
of X captures how the (incremental) volume of M changes under the flow of the vector
field X. It follows immediately from Cartan’s magic formula LX(dM) = d(X¬dM) +
X¬d(dM) and because dM is a top-degree form that

divX dM = d(X¬dM) . (17)

The divergence operator is not C∞-linear, since the Leibniz rule applies for the exterior
derivative. In fact, for X, Y ∈ Vect(M) and f ∈ C∞(M),

div(X + fY ) dM = d(X¬dM + fY ¬dM)
= d(X¬dM) + fd(Y ¬dM) + df ∧ (Y ¬dM)
= divX dM + f divY dM + df ∧ (Y ¬dM) .

(18)

Since the interior product is an anti-derivation and df ∧ dM = 0, because dM is a
top-degree form, we have that

0 = Y ¬ (df ∧ dM) = (Y ¬df) ∧ dM − df ∧ (Y ¬dM) . (19)

From the sum of (18) and (19) the well known property

div(X + fY ) = divX + f divY + df(Y ) . (20)
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of the divergence operator is readily derived. Property (20) reveals that the divergence
operator X 7→ divX is R-linear, which can also be immediately seen from (17) using the
R-linearity of the exterior derivative and interior product.

Using the representation (15), the first local form of the divergence in (2) is found by
straightforward computations in coordinates.

Proposition 1. Let ϕ : M ⊃ U → Rm, x 7→ (θ1, . . . , θm) be a positively oriented chart of
M and let X = Xα ∂

∂θα be a vector field on M . Then,

divX = 1
√
g

∂

∂θα

(√
gXα

)
. (21)

Proof. This proof can be found on page 399 of [25]. Still, it is given here for completeness,
as it is also the goal of this paper to gather all important proofs related to the divergence
theorem at one place.

Using the local representation (15) of the Riemannian volume form, we have that

X¬dM =
m∑
α=1

(−1)α−1√gXαdθi ∧ · · · ∧ dθ(α) ∧ · · · ∧ dθm ,

where the dual vector dθ(α) is left out in the sequence of wedge products. Consequently,
by (17), we have that

divX dM = d(X¬dM)

=
m∑
α=1

(−1)α−1d(√gXα) ∧ dθi ∧ · · · ∧ dθ(α) ∧ · · · ∧ dθm

=
m∑
α=1

(−1)α−1 ∂

∂θβ
(√gXα)dθβ ∧ dθi ∧ · · · ∧ dθ(α) ∧ · · · ∧ dθm .

(22)

The m-form appearing in the last sum in (22) vanishes whenever α ̸= β and can be
rearranged to equal dθ1 ∧ · · · ∧ dθm when α = β. For that, (α − 1) permutations of the
indices occur, such that (22) takes the form

divX dM =
m∑
α=1

(−1)2(α−1) ∂

∂θα
(√gXα)dθ1 ∧ · · · ∧ dθm

= ∂

∂θα
(√gXα)dθ1 ∧ · · · ∧ dθm

= ∂

∂θα
(√gXα) 1

√
g
dM.

Again, (15) has been used.
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Instead of characterizing the divergence of a vector field implicitly by condition (16),
an explicit formula can be found.

Theorem 1. Let ∇ denote the Levi-Civita connection on the Riemannian manifold (M, g).
The divergence of a vector field X ∈ Vect(M) in p ∈ M is the trace of the map ∇X :
TpM → TpM, Yp 7→ ∇YpX. Explicitly, for any chart ϕ : M ⊃ U → Rm, x 7→ (θ1, . . . , θm)
the divergence can be locally written as

divX = dθα
(
∇ ∂

∂θα
X

)
. (23)

Hence, as done for instance by [6,34], the divergence could alternatively be defined as

divX = tr(Y 7→ ∇YX) ,

where “tr” denotes the trace operator. The proof of Theorem 1 involves one of the
structural equations of a Riemannian manifold, which we will revise briefly before proving
the theorem. The reader familiar with the subject can skip the subsequent paragraphs
and directly go to the proof.

The structural equations result from Cartan’s theory of moving frames, which roughly
speaking stems from representing connections in terms of arbitrary basis fields Bα ∈
Vect(M) instead of using the basis fields ∂

∂θα induced by a chart of the manifold. Let
B1, . . . , Bm denote the canonical dual fields to the basis given by the Bα. It is clear, that,
in contrast to the exterior derivative of the dual fields dθα, the exterior derivatives dBα

do not vanish. In fact, by the well known formula for the exterior derivative of one-forms,
see Proposition 14.29 in [26], for any X, Y ∈ Vect(M) it holds that

dBα(X, Y ) = ∇X

(
Bα(Y )

)
− ∇Y

(
Bα(X)

)
−Bα([X, Y ]) , (24)

where by definition ∇X(f) := X(f) for any smooth f : M → R and [X, Y ] denotes the
Lie bracket of X and Y . Since the covariant derivative ∇Xω of a one-form ω is defined
such that the product rule

∇X(ω(Y )) = ∇Xω(Y ) + ω(∇XY ) (25)

is satisfied, equation (24) can be reformulated to

dBα(X, Y ) = ∇XB
α(Y ) +Bα(∇XY ) − ∇YB

α(X) −Bα(∇YX) −Bα([X, Y ])
= ∇XB

α(Y ) − ∇YB
α(X) +Bα(∇XY − ∇YX − [X, Y ])

= ∇XB
α(Y ) − ∇YB

α(X) .
(26)

Herein, we have used that the Levi-Civita connection is torsion free, that is, T (X, Y ) =
∇XY − ∇YX − [X, Y ] = 0. Exploiting the linearity of the connection and the fact that
any vector field can be represented as X = Bβ(X)Bβ, it follows from (26) that

dBα(X, Y ) = Bβ(X)∇Bβ
Bα(Y ) −Bβ(Y )∇Bβ

Bα(X) = (Bβ ∧ ∇Bβ
Bα)(X, Y ) ,
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from which we conclude the structural equation

dBα = Bβ ∧ ∇Bβ
Bα . (27)

Introducing the real-valued functions ωγαβ := Bγ(∇BαBβ), we have

∇BαBβ = ωγαβBγ and ∇BαB
γ = −ωγαβBβ , (28)

where the second equality follows from the first as a consequence of (25). Using (28), the
structural equation (27) can finally be written as

dBα = Bβ ∧ ∇Bβ
Bα = −ωαβγBβ ∧Bγ . (29)

The complete structural equations of a Riemannian manifold can be found in the 5. The-
orem of [35, p. 267]. For a more in depth exposition of the theory of moving frames we
refer to [25] or [35].

To bridge the gap between the theory of moving frames and the “classical” treatment
of connections, we assert that we can always chose Bα = ∂

∂θα . In that case Bα = dθα.
It is immediately clear from (28) that ωγαβ = Γγαβ, where the Γγαβ denote the Christoffel
symbols of the Levi-Civita connection. Moreover, since dBα = d(dθα) = 0, the structural
equation (29) expresses the symmetry of the Christoffel symbols, i.e., Γγαβ = Γγβα.

Proof of Theorem 1. A similar proof can be found in Addendum 1 of Chapter 7 in [34].
Without loss of generality, we choose basis fields Bα ∈ Vect(M) which constitute a posi-
tively oriented orthonormal basis (B1, . . . , Bm) and by (B1, . . . , Bm) denote its canonical
dual basis. By that choice, the Riemannian volume form has the simple representation
dM = B1 ∧ · · · ∧ Bm, which can immediately be seen from (14). Since the trace can
be computed using any basis together with its dual basis, we can prove the theorem by
showing that

divX = Bα(∇BαX) . (30)
Moreover, the vector field X may be represented as X = XβBβ and by (20) we have that

divX = div(XβBβ) = Xβ divBβ + dXβ(Bβ) . (31)

By the property ∇X(fY ) = f∇XY + df(X)Y for any smooth function f , the right hand
side of (30) satisfies

Bα(∇BαX) = Bα(∇Bα(XβBβ)) = Xβ Bα(∇BαBβ) + dXβ(Bβ) . (32)

Hence, it follows from inserting (31) and (32) in (30) that the theorem can be proven by
showing (30) for the basis vectors B1, . . . , Bm. Moreover, since the basis can be reordered
arbitrarily, it even suffices to show (30) for one basis vector. We choose B1 for simplicity
and subsequently show that

divB1 = Bα(∇BαB1) .
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It is straightforward to see that

B1
¬ (B1 ∧ · · · ∧Bm) = B2 ∧ · · · ∧Bm .

Consequently, by (17) we have

divB1 dM = d(B2 ∧ · · · ∧Bm)

=
m∑
α=2

(−1)αB2 ∧ · · · ∧ dBα ∧ · · · ∧Bm

=
m∑
α=2

(−1)αB2 ∧ · · · ∧
(

− ωαβγB
β ∧Bγ

)
∧ · · · ∧Bm

=
m∑
α=2

(−1)αB2 ∧ · · · ∧
(

− ωαα1B
α ∧B1

)
∧ · · · ∧Bm

=
m∑
α=2

(−1)α(−1)α−1(−ωαα1B
1) ∧B2 ∧ · · · ∧Bα ∧ · · · ∧Bm

=
m∑
α=2

ωαα1dM ,

where we have used (29). It can be concluded that

divB1 =
m∑
α=2

ωαα1 . (33)

Because the chosen basis is orthonormal, i.e., g(Bβ, Bγ) = δβγ, and ∇ is metric, it
holds that ωγαβ = −ωβαγ. Indeed,

0 = ∇Bα(g(Bβ, Bγ)) = g(∇BαBβ, Bγ) + g(Bβ,∇BαBγ) = ωγαβ + ωβαγ .

As a consequence, ω1
11 = 0, which allows to take the sum from 1 to m in (33). Using that

ωγαβ = Bγ(∇BαBβ), (33) can be stated as

divB1 = Bα(∇BαB1) .

Corollary 1. Let Γγαβ denote the Christoffel symbols of the Levi-Civita connection on
the Riemannian manifold (M, g) w.r.t. the chart ϕ : M ⊃ U → Rm, x 7→ (θ1, . . . , θm).
Moreover, let X = Xα ∂

∂θα , then

divX = ∂Xα

∂θα
+ ΓααβXβ . (34)
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Proof. The representation (34) follows immediately from using the coordinate expression

∇ ∂
∂θα
X =

(
∂Xγ

∂θα
+ ΓγαβXβ

)
∂

∂θγ
(35)

in (23).

The boundary ∂M of the oriented Riemannian manifold (M, g) is a codimension-one
submanifold of M . This implies that for every boundary point x ∈ ∂M , the tangent
space Tx∂M is a subspace of TxM . Moreover, the orthogonal complement (Tx∂M)⊥ is
one-dimensional. This allows to define the outward-pointing unit normal vector field ν ∈
Vect(M) to ∂M by the following three conditions. First, ν is normalized, i.e., g(ν, ν) = 1.
Second, ν is orthogonal to the boundary, that is, ν(x) spans (Tx∂M)⊥, and last, ν is
outward-pointing, which means that for all x ∈ ∂M there is a curve γ : (−ε, 0] → M
(ε > 0) with γ(0) = x and γ̇(0) = ν(x).

The orientation of M induces an orientation on the boundary by means of the outward-
pointing unit normal ν. In fact, we define the induced orientation of ∂M by say-
ing that a basis (B1, . . . , Bm−1) of Tx∂M is positively oriented if and only if the basis
(ν,B1, . . . , Bm−1) of TxM is positively oriented.

Proposition 2 (see [26], Proposition 15.34). Let (M, g) be an oriented Riemannian mani-
fold with boundary ∂M , which carries the induced orientation. Moreover, let dM and d∂M
denote the the Riemannian volume form of M and ∂M , respectively. Then,

d∂M = ν¬dM |∂M , (36)

where ν is the outward-pointing unit normal to ∂M .

Proof. For x ∈ ∂M , let (B1, . . . , Bm−1) be a positively oriented orthonormal basis of
Tx∂M , then by definition of the induced orientation, (ν(x), B1, . . . , Bm−1) is a positively
oriented basis of TxM . Hence, by the condition (14) of the Riemannian volume form, it
holds that

d∂Mx(B1, . . . , Bm−1) = 1 = dMx(ν(x), B1, . . . , Bm−1) = (ν¬dM)x(B1, . . . , Bm−1) .

This proves the claim, since the orthonormal basis (B1, . . . , Bm−1) is arbitrary.

With this preparatory work, we can finally proceed to the derivation of the divergence
theorem for Riemannian manifolds. For that, we integrate (17) over M to arrive at∫

M
divX dM =

∫
M

d(X¬dM) =
∫
∂M

X¬dM , (37)

where Stokes’ theorem has been invoked. To further manipulate the integrand of the right-
hand side, we use the outward-pointing unit normal ν of ∂M to write X = g(ν,X)ν+X∥,
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where (X∥)x ∈ Tx∂M for all x ∈ ∂M . Due to the linearity of the interior product, we
have

X¬dM = g(ν,X) ν¬dM +X∥
¬dM = g(ν,X) d∂M +X∥

¬dM (38)
on ∂M , where (36) has been used. Moreover, it is easy to see that X∥

¬dM = 0. In fact,
for each x ∈ ∂M , let (B1, . . . , Bn−1) be a basis of Tx∂M , then

(X∥
¬dM)x(B1, . . . , Bn−1) = dMx(X∥(x), B1, . . . , Bn−1) = 0

since the vectors X∥(x), B1, . . . , Bn−1 are linearly dependent because X∥(x) ∈ Tx∂M .
Hence, we can drop the last summand when inserting (38) in (37), which proofs the
divergence theorem in the following form.

Theorem 2 (see [26], Theorem 16.32). Let (M, g) be an oriented Riemannian manifold
with boundary ∂M , which carries the induced orientation. Moreover, let dM and d∂M
denote the Riemannian volume forms of M and ∂M , respectively. For a vector field
X ∈ Vect(M) it holds that ∫

M
divX dM =

∫
∂M

g(ν,X) d∂M , (39)

where ν is the outward-pointing unit normal to ∂M .

In many applications of the divergence theorem, see for example Section 2, the bound-
ary M is the union of a finite number of faces Fi, which are orientable manifolds with
boundary. This makes of M a manifold with corner and ∂M is not a smooth manifold
in general. However, everything which has been said in this section remains valid for
manifold with corners, cf. [26]. To see that, it suffices to use ∂M = ∪iFi and treat the
faces Fi separately whenever ∂M is invoked. That is, we can define the outward-pointing
unit normal νi as well as the induced orientation for every Fi exactly as done above. Also,
equation (36) remains valid for every Fi, i.e., dFi = νi

¬dM |Fi
. Finally, the integration

over the boundary of M in the divergence theorem (39) must be interpreted as the sum
of the integrals over the faces, viz∫

M
divX dM =

∑
i

∫
Fi

g(νi, X) dFi .

4 Divergence theorem on submanifolds of En

In this section, the divergence theorem for the case of an oriented submanifold M of En
is studied. Especially, the last representation of the divergence (2) is derived.

The fact that M ⊆ En is a submanifold implies that TxM ⊆ TxEn for all x ∈ M .
In extrinsic differential geometry it is custom to identify TxEn with En. This is done
implicitly by saying that a vector v ∈ En is tangent to M at x, i.e., lies in TxM , if there is
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a curve γ in M with γ(0) = x and γ̇(0) = v, where γ̇ denotes the derivative of the curve.
Hence, TxM is a vector subspace of En. The inner product ⟨u, v⟩ between two vectors
u, v ∈ En can be used to induce a Riemannian metric on the manifold M by setting

g(x) : TxM × TxM → R, (u, v) 7→ ⟨u, v⟩ (40)

for every point x ∈ M . The fact that (M, g) is an oriented Riemannian manifold gives
rise to the Levi-Civita connection on M as well as the Riemannian volume form dM .
Moreover, it implies that the results from Section 3 apply directly to submanifolds of
En. Especially, using the induced metric (40) in the right-hand side of (39) leads to the
divergence theorem in the following form.

Corollary 2. Let M be an oriented submanifold of En equipped with the induced Rie-
mannian metric (40). Let ∂M denote the submanifold’s boundary, which carries the
induced orientation. Then the divergence theorem is given as∫

M
divX dM =

∫
∂M

⟨ν,X⟩ d∂M ,

where dM and d∂M are the Riemannian volume forms of M and ∂M , respectively, and
ν is outward-pointing unit normal to ∂M .

To finally derive the last representation of the divergence in (2), it is insightful to
further examine the geometric structure which M inherits form the surrounding space En.
Choosing a basis (e1, . . . , en) of En, we can write x = xiei ∈ M ⊆ En. Moreover, consider
a (local) parametrization ψ : Rm → M, (θ1, . . . , θm) 7→ ψ(θ1, . . . , θm) of the manifold M ,
then the vectors gα(x) := ∂ψ

∂θα

∣∣∣
ψ−1(x)

(α = 1, . . . ,m) define a basis of TxM . Let (g1, . . . , gm)
be the canonical dual basis of (g1, . . . , gm), i.e., gβ is a linear map such that gβ(gα) = δβα.
Similarly, let (e1, . . . , em) be the canonical dual basis of (e1, . . . , en), then

gα = ei(gα)ei = Aiαei and gα = gα(ei)ei = Bα
i e

i , (41)

where we have implicitly introduced the abbreviations Aiα := ei(gα) and Bα
i := gα(ei).

Since TxM is a linear subspace of the Euclidean space En, we can define the orthogonal
projection P∥(x) : En → En onto TxM . By the projection property, P∥ must be the identity
map when restricted to TxM . Hence, P∥(gα) = gα for all α = 1, . . . ,m, which implies the
local representation

P∥ : En → En, V 7→ gα(V )gα .

Using (41), it follows that

P∥(ei) = gα(ei)gα = Bα
i gα = Bα

i A
j
αej . (42)
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With the components P∥
j
i

:= ej(P∥(ei)) of the projection, which is equivalent to stating
that P∥(ei) = P∥

j
i
ej, a comparison with (42) yields

P∥
j
i

= Bα
i A

j
α . (43)

The directional derivative of a scalar function f : En → R and a vector field U : En →
En in the direction of the vector field V : En → En at x ∈ En are respectively defined as

DV f(x) = d(f ◦ γ)
dt

∣∣∣∣
t=0

and DVU(x) = d(U ◦ γ)
dt

∣∣∣∣
t=0

, (44)

where γ is any curve in En with γ(0) = x and γ̇(0) = V (x). Using the chain rule and the
product rule, it is straightforward to verify the following properties

DV (fU +W ) = DV f U + fDVU + DVW

DfV+WU = fDVU + DWU

DV ⟨U,W ⟩ = ⟨DVU,W ⟩ + ⟨U,DVW ⟩ ,
(45)

where U, V,W are vector fields on En and f is a scalar function. Since in En we can always
use γ(t) = x+ tV , the directional derivative in the direction of the basis vector ej is just
the partial derivative with respect to the component xj, i.e.,

Dej
f(x) = d

dt

∣∣∣∣
t=0
f(x+ tej) = ∂f

∂xj
(x)

Dej
U(x) = d

dt

∣∣∣∣
t=0
U(x+ tej) = ∂U

∂xj
(x) ,

(46)

where (44) has been employed. With the representations U = U iei and V = V jej it
follows from (45) that

DVU = DV jej
U = V j Dej

U
(46)= V j ∂U

∂xj
= V j ∂U

i

∂xj
ei .

Since two vector fields X, Y ∈ Vect(M) are also vector fields on En, it makes sense
to compute the directional derivative DYX. Instead of dedicating ourselves to general
vector fields, it is insightful to compute the directional derivative in the direction of the
basis vector field gα = ∂ψ

∂θα ◦ ψ−1 induced by the parametrization ψ of M . By definition,
at point x = ψ(θ1, . . . , θm), the curve γ(t) = ψ(θ1, . . . , θα + t, . . . θm) satisfies γ(0) = x
and γ̇(0) = gα(x). Consequently, in agreement with (44), it holds that

Dgαf(x) = d
dt

∣∣∣∣
t=0
f ◦ ψ(θ1, . . . , θα + t, . . . θm) = ∂(f ◦ ψ)

∂θα
◦ ψ−1(x)

DgαX(x) = d
dt

∣∣∣∣
t=0
X ◦ ψ(θ1, . . . , θα + t, . . . θm) = ∂(X ◦ ψ)

∂θα
◦ ψ−1(x) .

(47)
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To keep notation short, we will drop the parametrization and briefly write DgαX = ∂X
∂θα .

In other words, X and X ◦ψ are identified and it is assumed to be clear from the context
which of the two is meant. Moreover, we will interchangeably use DgαX and ∂X

∂θα .
Using the representation X = Xβgβ in (47), it follows that

DgαX = ∂(Xβgβ)
∂θα

= ∂Xβ

∂θα
gβ +Xβ ∂gβ

∂θα
.

It is immediately clear, that while gα and X are vector fields on M , the directional
derivative DgαX is not necessarily a vector field on M , because in general Dgαgβ(x) =
∂gβ

∂θα (x) /∈ TxM . Hence, the directional derivative D is not suitable as directional derivative
on M . However, we can easily construct the covariant derivative ∇ on M by setting

∇YX = P∥
(
DYX

)
, (48)

where X, Y ∈ Vect(M). The covariant derivative plays the role of the directional deriva-
tive on M . Moreover, since the projection is linear, the covariant derivative inherits the
properties (45) of the directional derivative, where the inner product is replaced by the
induced metric (40). That is,

∇Y (fX + Z) = ∇Y f X + f∇YX + ∇YZ

∇fY+ZX = f∇XX + ∇ZX

∇Y

(
g(X,Z)

)
= g(∇YX,Z) + g(X,∇YZ) ,

(49)

where X, Y, Z ∈ Vect(M) and f is a scalar function. In particular, the last property
shows that the covariant derivative is metric. In contrast to Dgαgβ = ∂gβ

∂θα , the covariant
derivative ∇gαgβ is a vector field on M by construction, hence it can be spanned by the
basis vector fields g1, . . . , gm, that is,

∇gαgβ = Γγαβgγ , (50)

where the coefficients Γγαβ are called Christoffel symbols. Since gγ = ∂ψ
∂θγ and using the

symmetry of second derivatives, we have that

∇gαgβ − ∇gβ
gα = P∥

(
∂gβ
∂θα

− ∂gβ
∂θα

)
= P∥

(
∂2ψ

∂θβ∂θα
− ∂2ψ

∂θα∂θβ

)
= 0 . (51)

Using (50), the symmetry property (51) implies the symmetry of the Christoffel symbols

Γγαβ = Γγβα

and shows that the covariant derivative is torsion-free. Since by the fundamental theorem
of Riemannian geometry, the Levi-Civita connection is the unique connection which is
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metric and torsion-free, the covariant derivative ∇ is exactly the Levi-Civita connection
on the Riemannian manifold (M, g), where g is given by (40). For more details, we refer
to Section 4.3 in [25] or Section 4A in [24]. Finally, using the representation X = Xβgβ,
(49) and (50), the covariant derivative of X with respect to gα takes the form

∇gαX =
(
∂Xγ

∂θα
+ ΓγαβXβ

)
gγ , (52)

which corresponds to (35) since in extrinsic differential geometry the basis vector gα plays
the role of the basis vector ∂

∂θα from the intrinsic theory.
This preparatory work on the geometry of M induced from the surrounding space

En is used in the subsequent paragraphs to give an alternative proof of Theorem 1 for
the case of extrinsic differential geometry and to derive the last representation of the
divergence (2).

Theorem 3. Let ∇ denote the Levi-Civita connection (48) on the Riemannian manifold
(M, g) with the induced metric (40). The divergence of a vector field X ∈ Vect(M) in
x ∈ M is the trace of the map ∇X : TxM → TxM, Yx 7→ ∇YxX. Explicitly, for any basis
(g1, . . . , gm) given by a parametrization ψ : Rm → M, (θ1, . . . , θm) 7→ ψ(θ1, . . . , θm), the
divergence can be written as

divX = gα(∇gαX) . (53)

Proof. The proof follows from direct computations in coordinates starting from (21). By
the product rule, we have

divX = 1
√
g

∂

∂θα

(√
gXα

)
= ∂Xα

∂θα
+ 1

√
g

∂(√g)
∂θα

Xα . (54)

Since √
g =

√
det(gαβ), using the short notation det(g) := det(gαβ), the chain rule can be

used to compute
∂(√g)
∂θα

= 1
2√

g

∂ det(g)
∂θα

= 1
2√

g

∂ det(g)
∂gβγ

∂gβγ
∂θα

. (55)

Since the matrix gβγ is symmetric and invertible, it holds by Jacobi’s formula that ∂ det(g)
∂gβγ

=
det(g)gβγ, where gβγ are the components of the inverse matrix of gβγ, i.e., gαβgβγ = δαγ .
Consequently, (55) can be further manipulated to

∂(√g)
∂θα

=
√
g

2 gβγ
∂gβγ
∂θα

=
√
g

2 gβγ
(
g(∇gαgβ, gγ) + g(gβ,∇gαgγ)

)
,

where for the last equality we have used the last property in (49) as well as the fact that
gβγ = g(gβ, gγ). We can now use (50) and the linearity of the metric to arrive at

∂(√g)
∂θα

=
√
g

2 gβγ
(
Γναβgνγ + Γναγgβν

)
= √

g Γναν . (56)

17



Finally, inserting (56) in (54) yields

divX = ∂Xα

∂θα
+ ΓνανXα , (57)

which corresponds to (53) after (52) is inserted.

Remark that, due to the symmetry of the Christoffel symbols, expression (57) corre-
sponds with the coordinate expression in Corollary 1.

Proposition 3. Let M be a submanifold of En. For a basis (e1, . . . , en) of En, points
x ∈ M and vector fields X ∈ Vect(M) can be expressed as x = xiei and X = X i

∥ei,
respectively. Using the orthogonal projection P∥(x) : En → En onto TxM , the divergence
of the vector field X can be represented as

divX = P∥
j
i

∂X i
∥

∂xj
. (58)

Proof. Using (48) and (41) in (53) and exploiting linearity it follows that

divX = gα
(
P∥(DgαX)

)
= Bα

k e
k
(
P∥(DAj

αej
X)

)
= Bα

kA
j
αe

k
(
P∥(Dej

X)
)
.

Moreover, invoking (43) and (46), the divergence can be further simplified to

divX = P∥
j
k
ek

(
P∥(ei)

)∂X i
∥

∂xj
= P∥

j
k
P∥

k
i

∂X i
∥

∂xj
= P∥

j
i

∂X i
∥

∂xj
,

where we have used the idempotence of the projection, i.e., P∥
j
k
P∥

k
i

= P∥
j
i
.

5 Conclusions

In Section 2, we have used the divergence theorem for submanifolds of E3 according to
Corollary 2 with the representation of the divergence due to Proposition 3. In fact, we
have used the divergence theorem twice, once to transform the volume integral into a
surface integral and once to transform a surface integral to a line integral. While in the
first application the orthogonal projector is trivially given by the identity map, the second
application shows the charm to use (58) as representation of the divergence. Since the
surface is a co-dimension one submanifold the outward-pointing unit normal vector field
readily defines the orthogonal projector.

We have shown, in order to arrive at the divergence theorem in this form, that one
can take the following path. We define the divergence of a vector field X on a manifold
M by the relation (16). Starting from this definition and accepting the theorem of Stokes
on manifolds, the divergence theorem on Riemannian manifolds can be readily derived.
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Specifically, the divergence is integrated over M , then Cartan’s magic formula, Stokes’
theorem and Proposition 2 are successively employed. Finally, the divergence theorem for
submanifolds of En follows from using the induced metric on M . The representation (58)
of the divergence follows directly from computations in coordinates of the submanifold
and are gathered in Theorem 3 and Proposition 3. Hereby, Theorem 3 provides us with
an alternative definition of the divergence, which uses the trace of the covariant derivative
of the vector field.

For completeness, we wanted to show that the alternative definition of the divergence
as the trace of the covariant derivative of the vector field is also valid for general Rieman-
nian manifolds. This result is provided by Theorem 1. Similarly to Theorem 3, the proof
follows from computations in coordinates. However, since we do not have the luxury of
a surrounding Euclidean space, the proof is more technical and employs the structure
equations of Riemannian manifolds.

For a submanifold M of En, it is also possible and common to define the divergence by
(53) for vector fieldsX which are not tangent to the submanifolds, see for instance [8,11,15,
32]. This exploits the fact that the expression (48) defining the covariant derivative makes
sense also for such vector fields X. In that case, one needs an extension of the divergence
theorem which stems from an additive splitting of X into two parts, one tangential and
one normal to the manifold M . The need of this splitting is a consequence of the fact
that the divergence theorem from the intrinsic theory can only be applied to the part of
the vector field X which is tangent to M . For more details on this construction, we refer
to [6].
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