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Abstract In this work, we propose some basic approa-

ches towards a unification of the theories for deformable

and rigid bodies. This unification process is based on two

fundamental mechanical concepts, which are the principle

of virtual work and the principle of d’Alembert–Lagrange.

The basic idea is to initially look upon structural elements

as general continua, and to endow them later with specific

properties like rigidity, imposed by perfect bilateral con-

straints. It is shown by the example of a simple flexible

multibody system how this unifying and systematic

approach has to be carried out. The system under consid-

eration consists of a rigid disk and a nonlinear elastic

string, which may come into contact with each other. The

contact is modeled as a hard unilateral geometric constraint

combined with a one-dimensional Coulomb friction ele-

ment. The contact interactions are formulated as set-valued

force laws and impact laws, and the system is consequently

treated within the framework of nonsmooth dynamics. The

model of the string allows for large deformations in time

and for a nonlinear elastic material response. By con-

straining the kinematics of the string to finite dimensions, a

nonlinear finite element formulation is achieved in a very

natural way.

keywords Virtual work � Constraints � Contact � Friction �
Nonsmooth dynamics � Elastic strings

1 Introduction

The objective of this paper is to demonstrate the potential

of constraints to serve as one of the key concepts in a

unified theory for the mechanics of deformable and rigid

bodies. Such a unification is especially desired for flexible

multibody systems. In such systems, different types of

solids as e.g. beams, shells, or rigid bodies interact with

each other. A consistent theory has to rely on the very same

fundamental principles for the whole mechanical system.

The authors claim that these are the principle of virtual

work, formulated for a set of material points, and the

concept of constraints. The ideas of such a unified formu-

lation are introduced in and carried out by a planar prob-

lem, where a rigid disk comes into contact with a nonlinear

elastic string. The system under consideration therefore

consists of two different structural elements, a rigid body

and a deformable string.

In the spirit of analytical dynamics, the equations of

motion for the entire mechanical system are derived from

only and exclusively the principle of virtual work, but not

from any balance laws as proposed by an increasing

number of individuals in the recent past. The authors think

that the principle of virtual work is the only acceptable and

general approach to mechanics. This opinion is supported

by many arguments, from which at least three should

explicitly be mentioned here: In the mechanics of continua,

the weak form of the balance laws is nowadays a fully

accepted concept, used to perform existence and unique-

ness proofs on the one hand, and to develop numerical

schemes on the other hand. Precisely this concept has to be

introduced artificially when starting off with the balance

laws. In contrast, it is intrinsically anchored in the virtual

work approach, with all of its variants. A second reason to

favor the virtual work approach over the balance laws is
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that it provides the only possibility within classical

mechanics to mathematically describe what perfect bilat-

eral constraints are. The latter is done in form of a varia-

tional equality, known as the principle of d’Alembert–

Lagrange, which puts the constraint forces into the anni-

hilator space of the admissible virtual displacements. The

concept of perfect constraints is omnipresent in each

branch of mechanics, even in the numerical schemes as

discussed later, and is strongly connected with all the

results and statements obtained from the weak form of the

balance equations. As a third reason, one may look at the

mathematical definition of forces. Forces are linear func-

tionals. They are 1-forms which have to be feeded by

primal entities to deliver a certain value as a result. The

primal entities are the virtual displacements, and the value

is the virtual work. Forces are abstract, and no man has

ever seen them. The only way to access forces is to check

them out by applying test displacements and to feel the

result, which is again the virtual work.

Concerning the numerical schemes, one should be aware

that the spatial discretization of continua by e.g. finite

elements must not only be understood as a mathematical

procedure to approximate the infinite-dimensional problem

by a finite one. From the mechanical point of view, each

and any reduction in the degrees of freedom is equivalent

with the imposition of constraints. Finite elements have

therefore to be regarded as (abstract) mechanisms, which

restrict the system to move in only the directions permitted

by them. The choice of these mechanisms together with all

the constitutive laws belongs to the stage of modeling. As

constraints are represented by constitutive laws, the

selection of the particular finite element type and hence the

numerical scheme has to be understood as part of the

modeling process and therefore as part of the mechanical

theory. Again, as the constitutive laws of constraints can

only be expressed in variational form, the virtual work

approach seems to be mandatory to capture them. A

straightforward calculation of the latter will then naturally

provide the well-known and well-suited numerical

approaches. Furthermore, the virtual work approach is able

to explicitly show the mechanical difference between a

spatially discretized and a continuously formulated prob-

lem, if carefully applied. The transition from the infinite-

dimensional to the finite-dimensional formulation goes

along with the introduction of bilateral constraints together

with their associated constraint forces, which have to be

taken into account in the virtual work expression, at least

initially. Only if these constraints are looked upon as per-

fect, the constraint forces will disappear from the equations

by the projection performed when proceeding to admissible

virtual displacements, as implicitly done in standard

Galerkin finite element methods. Obviously, these forces

are never mentioned or not even recognized when starting

from the strong form of the equations of motion, i.e. from

the balance laws. From the above, one can see how much

the numerical schemes are interwoven with the concept of

perfect constraints and the issue of modeling.

According to the concepts described above, the fol-

lowing approach is chosen for the example of the rigid disk

and the elastic string: Initially, both structural elements

together are treated as one set of material points without

any constraints. This is in particular noteworthy for the

disk, on which the rigidity constraints are imposed later.

The disk is formulated as a continuous body with infinitely

many degrees of freedom and not overhasty considered as a

finite-degree of freedom system. The principle of virtual

work, formulated for the entire set of material points,

serves then as the fundamental equation to describe the

dynamics of the system. In this way, a variational formu-

lation of the dynamics of the two structural elements

together can be obtained from the very same fundamental

principle. In a later step, perfect constraints are implicitly

imposed on the system in the form of a constrained kine-

matics, which is described by a finite number of general-

ized coordinates. The kinematics for the material points

forming the string results from two nested restrictions,

which first turn the material points into a continuous string

and then approximate it by a finite number of elements.

Also the kinematics for the material points forming the disk

follows from two restrictions and allows for general planar

rigid body motion. In contrast to the string, the second

restriction of the disk corresponds to the rigidity constraint

and describes insofar the material law of a rigid body. The

constraint forces occurring due to these restrictions are

assumed to be perfect and consequently eliminated by the

principle of d’Alembert–Lagrange. The contact between

the disk and the string is modeled by unilateral frictional

constraints. In contrast to the kinematic restrictions from

above, these constraints are not perfect and can not be

eliminated with the principle of d’Alembert–Lagrange. The

contact forces are therefore explicitly considered in the

equations of motion and equipped with their associated set-

valued force laws. Hard frictional contacts may lead to

discontinuities in the accelerations and velocities of the

system, caused by the occurring slip-stick transitions and

impacts. Impulsive motion is indeed observed in the dis-

cretized system, which is due to the condensed masses

from the finite element approximation.

The mechanics of one-dimensional continua goes back

to Jac. Bernoulli and Euler, see Antman [4] and Truesdell

[41]. A vast amount of literature exists on the subsequent

extensions, generalizations and new approaches. Short

historical overviews are given in Antman [4] besides a

detailed and extensive treatise of rod theories. Other

treatments of one-dimensional structural elements can be

found in Ballard and Millard [6], Rubin [38], Salençon
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[39]. Internal (material) constraints play a crucial role

within structural mechanics to derive desired rod theories.

Internal constraints, as e.g. incompressibility constraints,

restrict possible motions to those for which the constraint

conditions are fulfilled. A treatment of internal mechanical

constraints is given in Truesdell and Noll [42, Sect. 30]:

Based on the assumption that the forces maintaining the

constraints do no produce work, the ‘‘principle of deter-

minism for simple materials subject to internal constraints’’

is formulated. The principle states that the stress can

additively be split in a part determined by the deformation

of the body, and a part which does not produce any work at

any motion satisfying the constraints. The concept is suc-

cessfully applied in Naghdi and Rubin [32] to derive sev-

eral constrained theories of rods. According to Antman [3],

Antman and Marlow [5], Rajagopal and Srinivasa [34], the

treatment of internal constraints by Truesdell and Noll [42]

is from the physical point of view not general enough. As

an example, Rajagopal and Srinivasa [34] mentions the

material law of an incompressible viscous fluid with

pressure-dependent viscosity (cf. also Frémond et al. [18]).

The stress state for such a material depends, in addition to

the deformation of the body, on the pressure which is the

constraint force guaranteeing the incompressibility condi-

tion. Exactly the same discussion arises in rigid body

dynamics when frictional effects occur. In such Coulomb-

type systems, constraint forces may not be workless as

well. Following Glocker [19, Sect. 3.6], not the effective

work but the virtual work due to virtual displacements is

considered to treat constraints. The virtual displacements

can be chosen compatible or incompatible to the con-

straints. The class of perfect bilateral constraint forces is

then defined by the principle of d’Alembert–Lagrange as

constraint forces which do not produce any virtual work at

the whole system for compatible virtual displacements. In

the current paper, we will introduce perfect bilateral

internal constraints when spatially discretizing the system.

Constraints with friction, or the above mentioned vis-

cous material model which can be interpreted as a material

with Coulomb friction, do not belong to the class of perfect

bilateral constraints and are mostly ignored in classical

analytical mechanics. A wider class of constraints, also

including unilateral constraints, is treated in the field of

nonsmooth mechanics and finds their applications amongst

others in contact mechanics, Acary and Brogliato [1],

Frémond [17], Glocker [19], Jean [24], Leine and Nijmeijer

[26], Moreau [28, 30], and material formulation, Frémond

[16], Romano and Sacco [37]. The treatment of unilateral

frictional contacts arises in the posed problem when the

disk interacts with the string via a hard contact with Cou-

lomb friction. The contact interactions are formulated as

set-valued force laws, which are subsequently written as

normal cone inclusions by using the theory developed in

convex and nonsmooth analysis (Glocker [19], Moreau

[31], Rockafellar [36]). Static frictional contact problems

for deformable bodies with hyperelastic material laws have

been treated in the context of nonsmooth mechanics in

Alart and Curnier [2]. A general theory which discusses the

dynamics of nonsmooth systems in finite degree of freedom

mechanics has already been developed in Glocker [19],

Jean [24], Moreau [28].

Various formulations of frictional contact problems for

one-dimensional continua can be found in applications.

There are self contact problems of rods, Chamekh et al.

[11], Goyal et al. [23], descriptions of the pantograph-

catenary interaction, Cho [12], Collina and Bruni [13],

Rauter et al. [35], simulations of belt drive systems, Dufva

et al. [14], Kerkkänen et al. [25], Yi et al. [43] or predic-

tion of hair dynamics, Bertails et al. [7], Bertails-Descou-

bes et al. [8]. Except of Bertails-Descoubes et al. [8], all

works treat the contact problems by compliant models, i.e.

soft contacts. In the paper at hand, the unilateral constraints

are introduced as hard frictional contacts, described by set-

valued force laws. For a discussion about the advantages

and disadvantages of the contact formulations by hard or

soft contacts the reader is referred to Brogliato et al. [10].

In this review article, further literature on the topic of

contacts is found. A force which is described by a set-

valued force law, as e.g. Coulomb’s friction law, has

mostly an ambivalent character. The force acts either as an

impressed force, where a functional dependence between

the kinematics and the force exists, or as a constraint force

which takes arbitrary values to fulfill the constraint. In the

case of Coulomb friction, the friction force during slip is an

impressed force, and the friction force during sticking is a

constraint force.

The paper is organized as follows. In Sect. 2 the equa-

tions of motion of the discretized system are derived from

the principle of virtual work and the principle of d’Alem-

bert–Lagrange. General assumptions on force distributions

are taken, and the discretization of the string is shown for a

shape function being nonlinear in its generalized coordi-

nates. In Sect. 3, the constitutive equations for the assumed

force distributions are specified. For the bilateral constraints

and the contact forces, set-valued force laws are introduced

which require an impact law to fully describe the dynamics

of the system. In Sect. 4 snapshots of two different simu-

lations are shown and discussed.

2 Problem description and equations of motion

As an example, the dynamical system depicted in Fig. 1 is

analyzed. It consists of a homogenous disk and a string in

the vertical plane. The disk is considered as a rigid body

and is characterized by its radius R and its density qD. The
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string which is suspended at A and B, has an undeformed

length L, mass density q0 in its reference configuration,

stiffness k and is perfectly flexible, i.e. has no bending

stiffness. The contact between the disk and the string is

modeled as a hard unilateral constraint with Coulomb type

friction. At a collision time-instant, a Newton-type impact

law is imposed. The disk and the string are subjected to

gravity with gravitational acceleration g. The mechanical

system is considered as a set of material points S of which

each material point is placed in a three-dimensional

Euclidean space by a corresponding time dependent posi-

tion vector nð�; tÞ. The dot ð�Þ stands for a specific material

point. The vector field nð�; tÞ defines the motion of the

system S. Differentiability with respect to time for almost

all t allows for the definition of a velocity and an accel-

eration vector field as _nð�; tÞ ¼ onð�; tÞ=ot and €nð�; tÞ ¼
o2nð�; tÞ=ot2, respectively. The mass dm of a material point,

placed at n, is subjected to internal and external forces. The

principle of virtual work states that if the virtual work

dW ¼
Z

S

dnTð€ndm� dFÞ ¼ 0 8dn; 8t ð1Þ

vanishes for all variations dn, then the system S is in

dynamic equilibrium.

The system consists of two subsystems: The string S1

and the disk S2. The problem is planar and we neglect the

third vector component in the further derivation. Subse-

quently, since the integral is additive, derivations of the

kinematics and force distributions are done separately for

each body and indexed by (•)1 for the string and (•)2 for the

disk.

2.1 Kinematics

The string is modeled as a one-dimensional deformable

body which means that each material point may be

addressed by a parameter s 2S1 ¼ ½0; L�. With foresight

to the numerical evaluation, the kinematics of the string is

constrained in such a way that the corresponding position

vector

n1ðs; tÞ ¼ r1ðs; q1ðtÞÞ ð2Þ

can be expressed by introducing finitely many generalized

coordinates q1(t). Within the assumed constrained

kinematics of Eq. (2) two different constraints are

merged. The first constraint is that every material point

of the string is addressed by a continuous function n1. If the

problem was formulated with this constraint only, the

dynamics of a continuous string would be described, as in

classical continuum mechanics. Since a numerical

evaluation of the system is desired, the second constraint

corresponds to the spatial discretization of the string. The

constraints enforce the position vectors of the string to

remain on the curve described by the function r1. When the

discretization of the string is understood as a constraint, it

becomes obvious that a spatial discretization leads to

additional forces in the string. Consequently the discretized

formulation merely approximates the continuous

formulation. The choice of generalized coordinates leads

naturally together with the formulation of the virtual work

of the system to the so-called finite element method. We

speak of local finite elements if the string is divided in the

sense of Biot [9]. Following Biot [9, p. 324], the system is

divided into a certain number of cells, each of which is

described by a small number of generalized coordinates, in

such a way that interconnection constraints are satisfied. A

cell, commonly called element and indexed by (•)e, is a

region of the string Xe ¼ ½ne; neþ1� � ½0; L� ¼ [kel

e¼1X
e. The

material points at s = ne for e ¼ 1; . . .; kel are the nodes of

the kel numbers of elements. The kinematics of an element

is described by the shape function r1
e(se, q1

e(t)). The

parameter se (cf. Eq. (4)) is called element coordinate

and takes values in the interval [0,1]. The connectivity

matrix C1
e of an element extracts the small number of

generalized coordinates q1
e = C1

e q out of the generalized

coordinates q(t) which describe the total system. With the

choice of the shape functions r1
e and the use of the

characteristic function vXeðsÞ, which equals unity inside

and vanishes outside the region Xe, the motion of the string

r1ðs; q1Þ ¼
Xkel

e¼1

vXe re
1ðse; qe

1Þ; ð3Þ

Fig. 1 In the dynamical system a rigid disk interacts with a

suspended nonlinear elastic string by frictional contacts
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se ¼ s� ne

neþ1 � ne
; qe

1 ¼ Ce
1q ð4Þ

is discretized by kel elements. The local shape functions have

to be chosen in such a way that the motion r1 is at least

continuous in s. This condition is asked for in standard,

polynomial based, finite element analysis. Since the occurring

kinks between the elements may corrupt the contact

interaction, we strengthen this condition and ask for a twice

differentiable C2-function. A shape function satisfying this

condition is e.g. a cubic Bézier spline of the form

re
1ðse; qe

1Þ ¼
xe

ye

� �
þ ðseÞ2ð3� 2seÞ

xeþ1 � xe

yeþ1 � ye

� �

þ 3seð1� seÞ2re

cðueÞ
sðueÞ

� �

� 3ðseÞ2ð1� seÞqe

cðueþ1Þ
sðueþ1Þ

� �
;

qe
1ðtÞ ¼ ðxe ye re ue xeþ1 yeþ1 qe ueþ1ÞT;

and is depicted in Fig. 2. Sine and cosine are abbreviated

by s(•) and c(•), respectively. The element function is

neither linear in its generalized coordinates q1
e(t) nor

restricted to nodal degrees of freedom as in standard finite

element formulations.

The disk is modeled as a two-dimensional rigid body.

The position of each material point ðr; #Þ 2S2 ¼ ½0;R��
½0; 2p�, as depicted in Fig. 5, is uniquely described by the

position of the center of gravity rOMðqÞ ¼ xðtÞ yðtÞð ÞT and

the orientation uðtÞ of the body and can be formulated as

n2ððr; #Þ; tÞ ¼ r2ððr; #Þ; q2ðtÞÞ ¼
x

y

� �
þ r

sðuþ #Þ
�cðuþ #Þ

� �
;

q2 ¼ C2q:

ð5Þ

Analogous to an element of the string, the generalized

coordinates q2ðtÞ ¼ ðx y uÞT describing the disk are

extracted by its connectivity matrix C2. In the same sense

as for the string the kinematics merges two different

constraints. The first constraint guarantees that the disk is a

two-dimensional continuous body described by the func-

tion n2. The second constraint, by introducing generalized

coordinates, corresponds to the rigidity constraint. Since

the dynamics of the rigid disk is of interest, the transition

from the infinite dimensional to the finite dimensional

description is necessary and does not lead to any approx-

imation of the system.

2.2 Force distributions

Besides the kinematical parametrization of the system, the

occurring forces have to be specified. In our consideration

the string is modeled as perfectly flexible. Thus the stress

t(s) in the string, at least once differentiable in s, is

tangent to the current configuration of the string

(cf. [4, p. 17])

t� or1

os
¼ 0, t ¼ T

or1=os

or1=osk k ; ð6Þ

with a scalar valued function T which contains the force

law for a specific material. This assumption can be

motivated by a reduction from a three-dimensional

continuum model to a one-dimensional string model

and coincide with the symmetry property of the Cauchy

stress tensor [4, Sect. 16.6]. This symmetry property can

be seen as a constitutive assumption of the three-

dimensional continuum or as the consequence that we

do not allow any distributed torques in classical

continuum mechanics. Therefore the perfect flexibility

of the string can be seen as an appropriate constitutive

assumption. Using this assumption, we can draw the free

body diagram as in Fig. 3 which gives us the force

distributions on the string. The body forces b1 and the

contact force distribution -l are defined per unit line

segment. The contact force distribution -l models the

contact interaction between the string and the disk. A

perfect bilateral constraint force distribution dz1

guarantees that the string follows the kinematics,

dictated by its discretization. The concept of atomic

measures in space d (cf. [19, 29]) allows us to include

concentrated forces at the boundaries.

dF1 ¼ ot
os
þ ðb1 � lÞdsþ dz1 for s 2 ð0; LÞ

dF1 ¼ ðtþ FAÞdg for s ¼ 0

dF1 ¼ ð�tþ FBÞdg for s ¼ L:

ð7Þ

The disk is subjected to the body force b2 defined per

unit area segment r dr d0 and the reaction force l of the

contact force distribution. To fulfill the rigidity conditions

a perfect bilateral constraint force distribution dz2 is

introduced on the interior of the disk and hence

dF2 ¼ b2rdrd#þ dz2 for ðr;#Þ 2 ð0;RÞ� ð0;2pÞ
dF2 ¼ lRd# for ðr;#Þ 2 Rf g� ð0;2pÞ: ð8Þ

(a) (b)

Fig. 2 a The position xe, ye and the angle ue belong to the node ne.

The weight factors re and qe-1 are degrees of freedom of the element.

b The element on the domain Xe � ½0;L� can be described by eight

generalized coordinates q1
e. The element is depicted for se 2 ½0; 1�
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2.3 Virtual work for compatible virtual displacements

The virtual work of the system dW = dWstring ? dWdisk is

the sum of the virtual work of its subsystems. Using Eq. (1)

and Eq. (7) the virtual work for the string is

dW string¼
Z

S1

dnT
1

€n1dm�
ZL

0

dnT
1

ot

os
þb1� l

� �
ds

�
Z

S1

dnT
1 dz1�dnT

1 ðtþFAÞjs¼0�dnT
1 ð�tþFBÞjs¼L:

We want to mention that in contrast to the standard

procedure, the discrete boundary forces which are relevant

for the physical behavior, contribute to the virtual work of

the system. Since the stress distribution t is at least once

differentiable in s, the term
R L

0
dnT

1
ot
os

can be integrated by

parts whereupon the contribution of the stresses at the

boundaries cancel out.

dW string ¼
Z

S1

dnT
1

€n1dmþ
ZL

0

odn1

os

� �T

t ds

�
ZL

0

dnT
1 ðb1 � lÞds�

Z

S1

dnT
1 dz1

� dnT
1 FAjs¼0 � dnT

1 FBjs¼L:

ð9Þ

The virtual work for the disk is obtained using Eq. (1)

together with Eq. (8) as follows

dWdisk ¼
Z

S2

dnT
2

€n2dm�
Z2p

0

ZR

0

dnT
2 b2rdrd#

�
Z

S2

dnT
2 dz2 �

Z2p

0

dnT
2 lRd#:

ð10Þ

As stated in Eq. (1) the virtual work vanishes for all virtual

displacements dn. With the choice of the kinematics, i.e.

the discretization in Eq. (2) and (5) the problem is

constrained in every material point of the string and the

disk by bilateral constraints g1(s, t) = n1 - r1 = 0 and

g2(s, t) = n2 - r2 = 0, respectively, from an infinite

dimensional problem to a finite dimensional problem.

The virtual displacements which are compatible to these

constraints are of the form

dni ¼
ori

oq
dq 8dq; for i ¼ 1; 2: ð11Þ

With respect to the principle of d’Alembert–Lagrange

(cf. [19, p. 48]), the virtual work of the perfect bilateral

constraints integrated over the total system S vanishes for

all compatible virtual displacements. Using Eq. (1) together

with Eqs. (9), (10) and the principle of d’Alembert–

Lagrange, the virtual work of S for compatible virtual

displacements (see Eq. (11)) is obtained as

dW ¼ dqT

Z

S1

or1

oq

� �T

€r1 þ
Z

S2

or2

oq

� �T

€r2dm

8<
:

9=
;

2
64

þ
ZL

0

o2r1

oqos

� �T

t ds

8<
:

9=
;�

ZL

0

or1

oq

� �T

b1ds

8<
:

þ or1

oq
ðs ¼ 0Þ

� �T

FA þ
or1

oq
ðs ¼ LÞ

� �T

FB

þ
Z2p

0

ZR

0

or2

oq

� �T

b2rdrd#

9=
;

�
Z2p

0

or2

oq

� �T

lRd#�
ZL

0

or1

oq

� �T

lds

8<
:

9=
;
3
5:

ð12Þ

The expressions in the curly brackets are the generalized

forces called inertia forces finertia, internal forces fint,

external forces fext and contact forces fcontact. Hence the

principle of virtual work can be written in short as

dW ¼ dqT f inertia þ f int � fext � fcontact
� �

¼ 0 8dq; 8t:
ð13Þ

Fig. 3 Free body diagram of the string. The occurring forces in the

domain of the string are the stress t, the body forces b1, the contact

force distribution -l and the perfect bilateral constraint forces dz1.

The boundaries of the string are cut free and belong to the mechanical

system. On the boundaries the discrete bearing reactions FA and FB

and the stresses at s = 0 and s = L are acting
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Since this equality holds for all virtual displacements

dq and for all instants of time t, it relates directly to the

classical partial differential equations.

3 Constitutive laws

For a complete description of the system, the generalized

forces have to be specified in detail by constitutive laws. For

several force laws the mass distributions of the two bodies

have to be known. The distribution on the boundary van-

ishes for the particular body. For the string one defines an

arbitrary stress free state of the string as its reference state

r1,ref(s, q1,ref). In this state the mass per unit line segment is

q0. For the homogenous disk the density qD is defined per

unit area segment. Hence the mass distributions of the two

bodies are

dm ¼ q0 or1;ref =os
�� ��ds for s 2 ð0; LÞ

dm ¼ qDrdrd# for ðr; #Þ 2 ð0;RÞ � ð0; 2pÞ:

The kinematics of the string is described by local shape

functions. In many of the following derivations one has to

integrate over the mass distribution of the string. To be short in

those derivations, we perform the integration at the example

of the total mass of the string. The notation
P

e stands for the

summation defined in Eq. (3). When introducing the

coordinates of the nodes n1\ � � �\ne\ � � �\nkelþ1

ascendingly for increasing index e, the partial derivative
ose

os
[ 0 is strictly positive due to Eq. (4).

m ¼
Z

S1

dm ¼
ZL

0

q0

or1;ref

os

����
����ds

¼
X

e

v½ne;neþ1�

ZL

0

q0

ore
1;ref

ose

ose

os

����
����ds

¼
X

e

Zneþ1

ne

q0

ore
1;ref

ose

����
���� ose

os
ds ¼

X
e

Z1

0

q0

ore
1;ref

ose

����
����dse:

3.1 Inertia forces

As stated in Papastavridis [33, p. 540] or Eugster [15] the

following equivalence holds
Z

S

or

oq

� �T

€rdm ¼M€qþ C : _q� _q;

M ¼
Z

S

dm
or

oq

� �T
or

oq
; C ¼

Z

S

dm
or

oq

� �T
o2r

oq� oq
;

where M = M(q) is the symmetric and positive definite

mass matrix and C ¼ Cðq; _qÞ are the Christoffel symbols of

the second kind. The colon denotes the double contraction

between higher order tensors and � is the tensor product.

During the derivation of this identity the derivative with

respect to time is swapped with the derivative with respect

to the generalized coordinates. Therefore we are restricted

to holonomic constraints. Evaluation of the mass matrix and

the Christoffel terms for the two bodies leads to

M1 ¼
X

e

Ce
1

� �T
Z1

0

q0

ore
1

oqe
1

� �T
ore

1

oqe
1

� �
ore

1;ref

ose

����
����dse

8<
:

9=
;Ce

1

M2 ¼ C2ð ÞT
Z2p

0

ZR

0

qD

or2

oq2

� �T
or2

oq2

� �
rdrd#

8<
:

9=
;C2

¼ C2ð ÞT qD

R2p 0 0

0 R2p 0

0 0 R4

2
p

0
B@

1
CA

8><
>:

9>=
>;C2

C1 : _q� _q ¼
X

e

Ce
1

� �T
Z1

0

q0

ore
1

oqe
1

� �T
o2re

1

oqe
1 � oqe

1

:

8<
:

_qe
1 � _qe

1

ore
1;ref

ose

����
����dse

	

C2 : _q� _q ¼ 0; where M ¼M1 þM2;C ¼ C1 þ C2:

3.2 Internal forces

Since the string is considered to be a deformable body, the

reaction force against deformation, i.e. the stress, is not a

constraint force as in a rigid body but contributes to the

virtual work of the system for compatible virtual displace-

ments. To evaluate the stress a constitutive equation is

needed which combines kinematical quantities, e.g. the

state of deformation, with force quantities. The measure of

deformation compares an actual spatial configuration r1

with the reference configuration r1,ref, introduced above. An

intuitive choice of the measure of deformation is the stretch

me, which is the quotient of the incremental lengthes of the

actual curve and the curve in the reference configuration

me ¼ dL

dLref

¼
dre

1

�� ��
dre

1;ref

���
��� ¼

ore
1=ose

�� ��
ore

1;ref =ose

���
��� :

The internal force vector from Eqs. (12) and (13)

together with Eq. (6) is

f int ¼
X

e

Ce
1

� �T
Z1

0

o2re
1

oqe
1ose

� �T

tedse;

where

te ¼ TeðmeÞ ore
1=ose

ore
1=ose

�� �� :
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As an example of a nonlinear material law, a neo-

Hookean material is chosen which depends merely on the

stretch at the specific material point, i.e.

TeðmeÞ ¼ k

3
me � 1

ðmeÞ2

 !
:

The stiffness k is a quantity depending on the material

property and the geometry of the physical string and is

determined experimentally.

3.3 External forces

The external forces of the system are the body forces b1 ¼
q0kor1;ref =oskg and b2 = qD g due to gravity g = (0 -

g)T and the bearing reactions Fi = kBi ei, for i = {A, B}.

The reaction forces are modeled as perfect bilateral con-

straint forces. These constraint forces can be characterized

by a set-valued force law as depicted in Fig. 4. For the

most concise formulation of such a force law the concept of

normal cone inclusions (cf. [19, 22]) is used. Hence the

force law is written as follows

Fi ¼ kBiei; gBi 2NRð�kBiÞ; for i ¼ A;B

where gBi is the gap function between the actual position of

the endpoints of the string and its desired suspension points

rOA and rOB, respectively. NR is the normal cone to the set

of all reals R, i.e. the classical constraint equation

gBi ¼ 0 ¼NR. The vectors

eA ¼
r1

1ðse ¼ 0Þ � rOA

kr1
1ðse ¼ 0Þ � rOAk

; eB ¼
rkel

1 ðse ¼ 1Þ � rOB

krkel

1 ðse ¼ 1Þ � rOBk

are the normalized direction vectors between these points.

Due to Eqs. (12) and (13) the external forces can be written as

fext ¼
X

e

Ce
1

� �T
Z1

0

q0

ore
1

oqe
1

� �T

g
ore

1;ref

ose

����
����dse

8<
:

9=
;

þ C1
1

� �T or1
1ðse ¼ 0Þ

oq1
1

� �T

eAkBA

( )

þ Ckel

1

� �T orkel

1 ðse ¼ 1Þ
oqkel

1

 !T

eBkBB

( )

þ C2ð ÞT 0� qD R2pg 0
� �T
n o

:

3.4 Contact forces

During the motion of the system, the string constrains the

disk by surrounding its contour. The force distribution l as

the contact interaction between the two bodies seems to be

an appropriate choice for a continuous formulation. But in

the kinematically discretized model the contact force dis-

tribution will typically degenerate into discrete forces at a

limited number of points, the positions of which are a priori

unknown. A convenient approach is to introduce a dense

grid of kcp possible contact points at arbitrarily given

material points of the string and to approximate the force

distribution l by introducing discrete contact forces in

normal and tangential direction in the sense that (cf.

Eq. (12) and (13))

fcontact ¼
Z2p

0

or2

oq

� �T

lRd#�
ZL

0

or1

oq

� �T

lds

�
Xkcp

i¼1

or2

oq
� or1

oq

� �T

FN þ FTð Þ
" #

i

¼
Xkcp

i¼1

wNkN þ wTkT½ �i:

ð14Þ

In the following the contact model is developed for an

arbitrary point P on an element e with element coordinate

si
e placed at rOP = r1

e(si
e,q1

e). The corresponding contact

Fig. 4 Set-valued force law for perfect bilateral constraint on

displacement level. The force -kB can take arbitrary values to fulfill

the constraint gB = 0

Fig. 5 Parametrization of the disk’s material points and contact

kinematics
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point on the disk at (R, 0i) is placed at rOQ =

r2((R, 0i), q2). With respect to Fig. 5 the discrete contact

forces can be written as FN = kN eN and FT = kT eT as

normal and tangential contact forces, respectively. The

normal direction eN for the contact point is the normalized

connection line between the contact point rOP and the

position of the disk’s center of gravity rOM. The tangential

direction eT is orthogonal to the normal direction and is

introduced as depicted in Fig. (5)

eN ¼
rOM � rOP

krOM � rOPk
; eT ¼ ðeN � eI

yÞeI
x � ðeN � eI

xÞeI
y:

The contact point Q on the boundary of the disk is at

(R, 0i). Due to Fig. (5) the normal and tangential unit

vectors can be expressed as well in terms of sine and cosine

of the angle u0 ¼ uþ #i. Using Eq. (5) it can be seen that

the angle 0i does not have to be known explicitly, since it

holds that

orOQ

oq2

� �T

eN ¼
1 0

0 1

Rcðu0Þ Rsðu0Þ

0
B@

1
CA �sðu0Þ
�cðu0Þ

� �
¼

eN

0

� �

orOQ

oq2

� �T

eT ¼
1 0

0 1

Rcðu0Þ Rsðu0Þ

0
B@

1
CA cðu0Þ

sðu0Þ

� �
¼

eT

R

� �
:

Together with Eq. (14) the generalized force directions for

an arbitrary contact point on an element e can be written as

wN ¼ C2ð ÞT
eN

0

� �
� Ce

1

� �T ore
1

oqe
1

� �T

eN ;

wT ¼ C2ð ÞT
eT

R

� �
� Ce

1

� �T ore
1

oqe
1

� �T

eT :

The contact forces contribute to the equations of motion

as stated in Eq. (14). For the normal and tangential force

law, the contact kinematics in normal and tangential

direction are needed. The gap function gN and its

corresponding constraint velocity cN are given by

gN ¼ eT
N rOM � rOPð Þ � R;

cN ¼ eT
N _rOM � _rOPð Þ ¼ eT

N

orOM

oq
� orOP

oq

� �
_q ¼ wT

N _q:

For gN [ 0, the bodies are separated, for a vanishing

contact distance gN = 0, the contact is closed and if

gN \ 0, then the two bodies penetrate. The constraint

velocity in tangential direction is given as

cT ¼ eT
T _rOQ � _rOPð Þ ¼ eT

Tð _rOM þ R _ueT � _rOPÞ

¼ eT
T R _ueT þ

orOM

oq
� orOP

oq

� �
_q

� �
¼ wT

T _q:

The contact laws, sketched in Fig. 6a and b, are

formulated as set-valued force laws which guarantee the

impenetrability condition of a contact. The force law in

normal direction is the law for a unilateral constraint on

velocity level

gN [ 0) �kN ¼ 0

gN ¼ 0) �cN 2NR
�
0
ð�kNÞ;

where R
�
0 are all negative reals including zero. In

tangential direction we introduce a force law for plane

Coulomb friction which depends on the normal contact

force kN, i.e.

cT 2N½�lkN ;lkN �ð�kTÞ:
By the results obtained so far, the virtual work of

Eq. (13) can be written in the form

M _u� h�
X
i2H

wiki ¼ 0; u ¼ _q;

ci ¼ wT
i uþ vi; ci 2NCi

ð�kiÞ;
ð15Þ

which constitutes the equations of motion of the system.

The index set Hðq; tÞ consists of all closed and (numeri-

cally) penetrated contacts. The contact forces ki act in their

appropriate generalized force direction wi(q, t). The

remaining forces in the equations of motion are collected in

h(u, q, t). The contact force laws are formulated as normal

cone inclusions on velocity level. The constraint velocities

ci(q, t) are split into a term linear in the generalized

velocities u and a remaining term vi(q, t).

3.5 Impact laws

The formulation in Eq. (15) describes the dynamics of the

spatially discretized system as long as closed contacts

remain closed or will detach, open contacts remain open,

and stick-slip transition occur. This is briefly called the

non-impulsive dynamics of the system. Because of the

introduction of set-valued force laws which may e.g. fulfill

the impenetrability condition exactly, discontinuities in

velocities may occur in addition. For these discontinuities

(a) (b)

Fig. 6 Set-valued force laws for a unilateral frictional contact with

Coulomb friction. a Unilateral constraint in normal direction on

velocity level. b Coulomb friction law in tangential direction
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Eq. (15) is not valid anymore or has to be understood in a

measure sense, see Glocker [19], Moreau [30]. Hence, an

impact equation and a corresponding impact law (cf. [21,

22]) is needed for the specific instant of time where the

solution jumps. In the considered problem the following

impact equation with an impact law of Newton type is used

Mðuþ � u�Þ �
X
i2H

wiKi ¼ 0

c	i ¼ wT
i u	 þ vi; cþi þ eic

� 2NDi
ð�KiÞ:

ð16Þ

Superscript (•)- and (•)? denote the pre- and post

impact state, Ki is the impulsive contact force of a

particular contact and the convex set Di corresponds to the

reservoir of possible impulsive forces. The convex sets for

the normal and tangential contacts are DN ¼ R
�
0 and

DT ¼ ½�lKN ; lKN �, respectively. Since we deal with

elastic structures and due to the argumentation in Glocker

[20] the restitution coefficient ei is chosen to be zero for all

contact laws.

4 Examples

Two different examples are simulated to show the possi-

bilities of our formulation. The chosen parameters are lis-

ted in Table 1. The transient dynamic behavior of the

system is evaluated with Moreau’s timestepping algorithm

which is outlined in the following. For a detailed treatment

of the algorithm, especially how to solve the inclusion

problem, we refer to Glocker [22], Leine and Nijmeijer

[26], Möller [27], Studer [40]. The spatial integrations are

evaluated numerically by a rectangle integration scheme

with equidistant points.

Moreau’s midpoint rule uses one difference scheme to

approximate both, for impact-free and impulsive motion

(15), (16), together with their associated inclusions. Start-

ing from a known state uB = u(tB) and qB = q(tB) at the

time tB of a time step Dt, the coordinates qM = q(tM) at the

midpoint are calculated as

qM ¼ qB þ Dt

2
uB; tM ¼ tB þ Dt

2
: ð17Þ

In a second step, by using the midpoint coordinates qM

and the velocities at the beginning of the time step uB, the

following inclusion is solved with respect to the velocities

uE and the impulsive contact forces Ki.

MðuE � uBÞ � hDt �
X
i2H

wiKi ¼ 0;

cB
i ¼ wT

i uB þ vi; cE
i ¼ wT

i uE þ vi;

cE
i þ eic

B
i 2NDi

ð�KiÞ:

ð18Þ

In a last step, the end state is updated as

qE ¼ qM þ Dt

2
uE; tE ¼ tM þ Dt

2
: ð19Þ

In our first application problem (see Fig. 7), a heavy

disk falls into the suspended string whereupon large

deformation of the string occurs. Multiple contacts close

and the string wraps around the disk. The string is stretched

until the motion reverses, the string relaxes and the disk is

ejected whereupon contact with the string is lost. This

sequence repeats until enough energy is dissipated such

that the contacts between the disk and the string remain

closed and the disk does not slide on the string, i.e. every

contact point is in a sticking phase. From this instant of

time the friction force behaves like a perfect constraint

force, no more energy is dissipating and the string swings

together with the disk in a motion up and down. In a

regularized friction model, where the ambivalent character

of the force is not considered, the disk will always slide on

the string, the energy of the system is dissipated completely

and the dynamical prediction differs from our formulation.

Due to the coarse mesh of only two finite elements some

artifacts occur at the position of the clamping. The string

should be in a straight line between the clamping and the

first contact point. This behavior can be eliminated easily

by increasing the number of elements.

In Fig. 8 one can see how a light disk rolls on the string.

The decoupling of the number of contact points from the

number of elements allows to introduce a dense grid of 60

contact points. Even though the contacts between the disk

and the string open and close permanently, a rolling and

sliding motion can be performed. To show the high per-

formance of shape functions which are nonlinear in their

generalized coordinates, both problems have been simu-

lated with merely two finite elements. Neither convergence

nor stability problems occurred.

Table 1 Simulation parameters for example 1 and 2

Parameter Value

Gravity g = 9.81 kg ms-2

Distance suspension points AB ¼ 0:8 m

Friction coefficient l = 0.2

Radius disk ex.1/ex.2 R = 0.3/0.1 m

Density disk ex.1/ex.2 qD = 150/0.1 kg m-2

Length string (undeformed) L = 1 m

Density string (undeformed) q0 = 0.3142 kg m-1

Stiffness string k = 853.75 N

Number of elements kel = 2

Number of contact points ex.1/ex.2 kcp = 20/60
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5 Conclusions

In this paper we have shown a systematic approach for the

formulation of the dynamics of deformable and rigid

bodies. Both the deformable and the rigid body are intro-

duced as continuous bodies. The discretization of the two

bodies reduces the problem from an infinite dimensional to

a finite dimensional problem. The choice of the kinematics,

i.e. the choice of shape functions and generalized coordi-

nates, goes along with the introduction of perfect bilateral

constraints. These constraints are enforced by the con-

straint force distributions dz1 and dz2 introduced in Eq. (7)

and (8), respectively. By treating the kinematic assump-

tions as perfect bilateral constraints, the mechanical theory

includes the numerical approximation by finite elements.

The principle of virtual work contains the projection of the

local equations of motion in arbitrary directions, i.e. the

virtual work vanishes for all virtual displacements. Toge-

ther with the principle of d’Alembert–Lagrange and the

projection onto the direction compatible to the bilateral

constraints of the kinematics, the constraint forces can be

eliminated. This formulation proposed here, allows it as

well to introduce additional constraints e.g. inextensibility

of the string. For the inextensibility constraint the

introduced kinematics of this paper would not lead to

compatible virtual displacements. This means, that the

constraint forces would not vanish for the virtual dis-

placements chosen in Eq. (11) and would contribute to the

equations of motion in Eq. (13) by a Lagrange multiplier.

Since constraints are defined in a variational form, also the

dynamics of the bodies need to be formulated variationally.

Within such a formulation, one is completely free to

choose the level, i.e. numerically or analytically, on which

one wants to fulfill the constraints. For example the rigid

disk could also be introduced as a deformable body dis-

cretized by finite elements satisfying additional rigidity

constraints. A consequent implementation of these ideas

may lead to a unification of the concepts used for

deformable and rigid bodies.

Generally, discrete forces are not included in the con-

cept of classical continuum mechanics. With the intro-

duction of an atomic measure in space, discrete forces are

applied to the deformable body in the continuous formu-

lation. Even though the boundary of the string is zero-

dimensional the boundary forces and so the boundary

condition appear explicitly in the virtual work of the sys-

tem. The contact force distribution, being the interaction

between the two bodies, has been approximated by finitely

Fig. 7 Due to large deformation of the string it is possible that multiple contact points are closed at the same time. The closed contact points are

marked by crosses. The string is discretized by two nonlinear finite elements. The nodal points are depicted by bullets

Fig. 8 Rolling of the disk is possible due to a dense grid of contact points and frictional contact laws in each contact point. The first three

snapshots are taken at an instant of time, where the disk and the string are not in contact
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many contact points of which each holds a set-valued force

law. Eventually, the nonlinear finite element formulation

has been obtained from the virtual work and the discreti-

zation of the deformable body by finitely many generalized

coordinates. This natural formulation restricts an element

shape function neither to be linear in its generalized

coordinates nor to be described only by nodal degrees of

freedom. A non-standard choice of shape function has been

shown using Bézier splines.
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16. Frémond M (1989) Internal constraints and constitutive laws. In:

Rodrigues JF (ed) Mathematical models for phase change prob-

lems. pp 3–18
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