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SUMMARY

In the present work, a new director-based finite element formulation for geometrically exact beams is
proposed. The new beam finite element exhibits drastically improved numerical performance when com-
pared with the previously developed director-based formulations. This improvement is accomplished by
adjusting the underlying variational beam formulation to the specific features of the director interpolation.
In particular, the present approach does not rely on the assumption of an orthonormal director frame. The
excellent performance of the new approach is illustrated with representative numerical examples. Copyright
© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This work deals with nonlinear beam finite elements emanating from the geometrically exact
Simo-Reissner beam model (Simo [1], Reissner [2]). The finite element discretization applied in
the present work relies on the interpolation of the director field, in contrast to the use of rotational
degrees of freedom or quaternions, see, for example, McRobie & Lasenby [3]. This type of finite
element interpolation can be considered as a characteristic feature of continuum-based beam ele-
ments and has been applied, among others, in Bathe & Bolourchi [4] and Gruttmann et al. [5], see
also Chapter 9 in Belytschko et al. [6]. The director interpolation has originally been employed in
the finite element discretization of the Simo-Reissner beam theory in Romero & Armero [7] and
Betsch & Steinmann [8, 9]. Because the director interpolation does not rely on rotational degrees
of freedom, it retains the fundamental properties of frame indifference (or objectivity) and conser-
vation of angular momentum in the finite element framework, as shown in [8, 10] . Moreover, it
facilitates the straightforward design of structure-preserving time integrators as has been shown in
Betsch & Steinmann [9, 11], Armero & Romero [12], and Leyendecker et al. [13].

In the director interpolation, the orthonormality of the director frame is typically relaxed to the
nodal points of the finite element formulation. That is, the orthonormality of the directors is typically
enforced in the nodal points, either by using three rotation parameters or by applying the method of
Lagrange multipliers. We refer to [8] where the connection between the two alternative approaches
is highlighted.
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The lack of orthonormality of the director frame on element level can be viewed as discretization
error that diminishes when the number of elements is increased. Consequently, the corresponding
finite element formulation is still consistent with the underlying beam theory. However, as has been
observed in [8], to achieve a certain level of accuracy, beam finite elements relying on the director
interpolation typically require a larger number of elements when compared with the finite element
formulations based on the interpolation of three rotation parameters. Further investigations in this
direction can be found in Romero [10] and Bauchau & Han [14].

In the present work, we propose a new finite element implementation of the geometrically exact
beam theory. The newly developed formulation relies on the director interpolation and accounts for
the lack of orthonormality of the discrete director frame in a natural way. This is achieved by the for-
mulation of the underlying variational equations using convected coordinates. Such a formulation,
where covariant and contravariant directors are distinguished, inherently allows for skew coordi-
nate systems. In case the directors are mutually orthonormal, the new formulation boils down to the
original version of the geometrically exact beam theory. It turns out that the new approach yields
a dramatically improved numerical performance when compared with the original director-based
implementation developed in [8].

The quality of the new finite element formulation lies also in the notion that the beam is considered
as a constrained three-dimensional continuum. Using the principle of virtual work and the symmetry
condition of the stress vector, the variational beam equations are developed merely by kinemati-
cal assumptions. This approach guarantees complete consistency between all introduced kinematic
and kinetic quantities. Additionally, with a variational formulation of the symmetry condition, the
authors never leave the route of a variational formulation of the mechanical problem.

An outline of the rest of the paper is as follows. In Section 2, the fundamental principles of the
underlying continuum theory are outlined in a concise manner. The geometrically exact beam theory
in skew coordinates is derived in Section 3. In Section 4, we apply a spatial discretization based on
finite elements. Representative numerical examples are given in Section 5. Eventually, conclusions
are drawn in Section 6.

2. FUNDAMENTAL PRINCIPLES OF A CONTINUOUS BODY

In this section, we summarize the variational form of the continuum mechanical theory that serves
as a starting point for the derivation of the beam formulation in the subsequent section. In addition to
that we present a derivation of the symmetry condition of the stress vector from the variational form
of the law of interaction which is in this form completely new as far as it is known to the authors.

We consider a three-dimensional body B as a three-dimensional smooth manifold with boundary
that can be covered by a single chart �, see Figure 1. Hence, every material point p 2 B can
be described by three coordinates

�
�1, �2, �3

�
2 B � R3 where B D �

�
B
�
. A configuration

� W B! E3 is an embedding of the body manifold into the Euclidean three-space E3. Because the
configuration maps the material points p to the Euclidean three-space, which is a vector space, the

Figure 1. Schematic overview of the kinematics of the body manifold B.
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placement of a material point �.p/ can be represented by the position vector x 2 E3. A motion
�t W B � R ! E3 of the body is a differentiable parametrization of configurations with respect
to time t 2 R. Thus, at a given instant of time t , the subset �t D �t

�
B
�
� E3 is covered by

the body manifold. Using the chart �, the coordinate representation of the motion is the vector
valued function

x W B�R! E3, .�k , t / 7! xD �t ı ��1.�k/D x.�k , t / , (1)

also denoted as the position field. Note that we are using the same symbol for the variables x as
for the functions whose results they are. In the following sections, we will work mainly with the
coordinate representation of the motion x

�
�k , t

�
and will treat motion and coordinate representa-

tion of the motion synonymously. A variational family of the motion of the body is a differentiable
parametrization of motions Ox

�
�k , t , "

�
with respect to a parameter " 2 R. The actual time behavior

is obtained for "D "0, that is, x
�
�k , t

�
D Ox

�
�k , t , "0

�
. Insofar the variation of the position field x is

given as

ıx.�k , t /D
@Ox
@"

ˇ̌̌
ˇ
"D"0

ı" . (2)

Furthermore, we introduce the covariant base vectors gi , its variation ıgi , and its associated
contravariant base vectors gi for i 2 ¹1, 2, 3º according to

gi D x,i , ıgi D ıx,i , gi D g�1=2.gj � gk/ , g1=2 D g1 � .g2 � g3/ , (3)

where partial derivatives @.�/=@�k are abbreviated by .�/,k . The construction of the contravariant
basis is valid for even permutations of ¹i , j , kº D ¹1, 2, 3º. The contravariant base vectors fulfill the
reciprocity condition gi � gj D ıij . In the following, all vector triads will tacitly be equipped with
a contravariant triad as defined in (3). In the remainder of this article, we call quantities with lower
index .�/i covariant and quantities with upper index .�/i contravariant.

The virtual work principle states that the body B is in the dynamical equilibrium if and only if the
virtual work ıW vanishes for all virtual displacements ıx at any instant of time t , that is,

ıW.x, ıx/D ıW intC ıW dyn � ıW ext � ıW z D 0 8ıx,8t . (4)

Here, ıW int represents the contribution of the internal virtual work, which is formulated in the body
chart � as

ıW int D

Z

B

� W .ıgi ˝ gi /g1=2d3� D
Z

B

ti � ıgi d3� , (5)

where d3� D d�1d�2d�3 and summation convention for repeated indices is applied. The stress
vector ti

�
�k , t

�
can be recognized in the Cauchy stress tensor �

�
x
�
�k
�

, t
�
D g�1=2 ti ˝ gi .

Hence, the stress vector ti is the traction in the current configuration that acts at the surface ele-
ment gj � gkd�jd�k D gig1=2d�jd�k for even permutations of the indices ¹i , j , kº D ¹1, 2, 3º.
An analogous formulation of the internal virtual work (5) can be found, for example, in Chapter 16
of Antman [15].

The contributions of the inertia terms, the external forces df, and the perfect bilateral constraint
forces dz are

ıW dyn D

Z

B

ıx � Rx dm , ıW ext D

Z

B

ıx � df , ıW z D

Z

B

ıx � dz , (6)

where .�/Pdenotes the total time derivative. We consider the mass distribution dm and the force dis-
tributions df and dz as measures allowing for Dirac-type contributions as well. The perfect bilateral
constraint forces dz are defined by the principle of d’Alembert-Lagrange, stating that the virtual
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work of the perfect bilateral constraint forces integrated over the total mechanical system, that is the
body B, vanishes for all admissible virtual displacements ıxadm. Virtual displacements are called
admissible if they do not violate the perfect bilateral constraints. Hence, the principle of virtual
work can be expressed in the body chart as follows.

Theorem 1 (Principle of Virtual Work)
A body B is in the dynamical equilibrium if and only if the virtual work expression vanishes for all
admissible virtual displacements ıxadm at any instant of time t , that is,

ıW D

Z

B

ti � ıgi d3� C
Z

B

ıx � Rx dm�
Z

B

ıx � dfD 0 8ıxD ıxadm,8t . (7)

Besides the virtual work principle, the law of interaction for internal forces has to be respected
(cf. Section 2 of Glocker [16]), which coincides in its variational form with the ‘Axiom of Power of
Internal Forces’ formulated by Germain [17]. The variational form of the law of interaction states
that the internal virtual work (5) of any subbody B0 � B is unaffected and therefore invariant with
respect to all Euclidean transformations. The transformed position field takes the form xC DQxCc
where Q 2 SO.3/ is a special orthogonal tensor satisfying QTQ D QQT D I, where I is the
second order identity tensor, and c is a vector of the Euclidean vector space E3. The rotation Q and
the translation c are homogenous for the whole subbody B0. Hence, the virtual displacement of the
transformed position field is ıxC D ıQxCQıxC ıc. The transformed stress vector

�
ti
�C

and the
partial derivative of the virtual displacement are given by

�
ti
�C
DQti , ıgCi D

�
ıxC

�
,i D ıQgi CQıgi . (8)

Hence, we write the law of interaction for an arbitrary subbody B0 � B in the body chart � asZ
B0

ti � ıgi d3� D
Z
B0

�
ti
�C
� ıgCi d3� D

Z
B0

�
Qti

�
� .ıQgi CQıgi /d3�

D

Z
B0

ti �QTıQ gid3� C
Z
B0

ti � ıgi d3�

D ıw �
Z
B0

gi � ti d3� C
Z
B0

ti � ıgi d3� ,

(9)

where B 0 D �.B0/. Because QTıQ is a skew-symmetric tensor, we introduce in the last line of
(9) the associated axial vector ıw 2 E3, defined by the cross product as ıw � a D QTıQa for all
a 2 E3. The law of interaction requires now the first term on the last line of (9) to vanish for all ıQ
and consequently for all ıw. Because the considered mechanical system is a continuous body and
the law of interaction has to be fulfilled for any subsystem B0 � B, the law of interaction in the body
chart � coincides with the symmetry condition of the Cauchy stress tensor.

Theorem 2 (Law of Interaction)
As an internal force the stress vector ti has to fulfill the symmetry condition in every material point
�k , that is,

gi � ti D 0 8�k 2 B . (10)

3. GEOMETRICALLY EXACT BEAM

In this section, we treat the theory of the geometrically exact beam, also known as the special
Cosserat beam, introduced by [2] and [1]. The theory is developed by restricting the kinematics
of the three-dimensional continuum to a beam-like kinematic. By inserting the reduced kinematics
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DIRECTOR-BASED BEAM FINITE ELEMENTS IN SKEW COORDINATES 115

into the virtual work of the continuum, we deduce the virtual work of the beam. From the virtual
work of the beam, we then obtain directly the equations of motion of the beam and the correspond-
ing boundary conditions. Throughout our developments, we pay attention to distinguish properly
between covariant and contravariant base vectors. As will be shown through the numerical examples
presented in Section 5, the newly proposed approach yields a significant improvement over previ-
ously developed finite element formulations that do not rely on the distinction between covariant
and contravariant base vectors.

3.1. Kinematical assumptions

We define the geometrically exact beam B as a structural element that has a special configuration,
that is a reference configuration, where the beam is a three-dimensional body with the position field

X.�˛ , s/D '0.s/C �
˛D˛.s/ . (11)

In this configuration, as depicted in Figure 2, an appropriate chart � gives us the body coordinates
� i D .�˛ , s/ 2 B .i D 1, 2, 3 I ˛ D 1, 2/, which are referred to as convected coordinates. The space
curve '0.s/ D X.0, 0, s/ is the reference curve of the beam and is bounded by its ends s D s1 and
s D s2 for s2 > s1. At every material point s of the reference curve '0, we have attached a positively
oriented orthonormal director triad ¹Dkº. The two directors D˛ span the plane cross section of the
beam. The area of the cross section is parametrized by the coordinates .�1, �2/ 2 NA.s/. The director
triad ¹Dkº can be related to an orthonormal basis ¹ekº fixed in space by introducing the rotation
tensor R0.s/ 2 SO.3/ such that

Dk.s/D R0.s/ek , with R0 D Dk ˝ ek . (12)

According to Section 2, the beam is in its reference configuration, a three-dimensional body. This
implies bijectivity of the position field X.�˛ , s/. Because of the kinematical constraints (11), it can
happen that interpenetration occurs when the beam is curved too much or the cross sections are too
large, compare with Chapter 5 of Rubin [18]. As in the three-dimensional theory, we exclude for the
reference configuration interpenetration that is expressed mathematically as X,1 �.X,2 �X,3 / > 0

for all � i 2 B. That is the reason why beam theories are generally related to slender bodies.

The motion of the geometrically exact beam is the restricted position field

x.�˛ , s, t /D '.s, t /C �˛d˛.s, t / . (13)

We call the space curve '.s, t /D x.0, 0, s, t /, which is a bijective function of s and time t , the center
line of the beam. At each material point of the center line ', we have attached a positively oriented
orthonormal director triad ¹dkº, which is related to the basis ¹ekº by introducing the rotation tensor
R.s, t / 2 SO.3/ such that

dk.s/D R.s, t /ek , with RD dk ˝ ek . (14)

Figure 2. Reference and current configuration of the beam.
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The directors d˛ describe the current state of the cross section x. NA.s/, t /. In the current configu-
ration, we merely ask the center line ' to be a bijective function. That means, interpenetration of
the cross sections may occur. Insofar, the beam is strictly speaking not a three-dimensional body
anymore but a one-dimensional body. Because every material point can be addressed by the con-
vected coordinates �k and the variations ıx have to comply with the restricted kinematics (13), the
dynamics of the constrained system can be derived by the principle of virtual work (7).

In the following, we introduce the effective curvature, the angular velocity, and the virtual rota-
tion. All three objects describe the change of the directors when changing a single parameter as, for
example, the parameter s. Using (14), the effective curvature Qk is obtained by

.dk/,sD .R.s, t /ek/,sD R,s R�1dk D Qkdk , with QkD R,s R�1 . (15)

Because the present finite element formulation (see Section 4) relies on the nodal interpolation of
the director frame, the directors generally do not span an orthornormal basis anymore. That is, on
element level the metric coefficients d ij D di � dj and dij D di � dj in general do not coincide with
the Kronecker delta ıij . In other words, on element level, the tensor R introduced in (14) generally
does not belong to the special orthogonal group. Inspired by this observation, we relax the orthonor-
mality condition on the director frame and consider metric coefficients that are merely assumed to
be constant. Under this condition, the tensor Qk still remains skew-symmetric. This is shown in the
Appendix. Hence, the skew-symmetric effective curvature Qk has an associated axial vector k 2 E3

so that

.dk/,sD Qkdk D k� dk , with QkD R,s R�1 D di ,s˝di . (16)

Later in this paper, we are interested in the contravariant components of the effective curvature,
which can be written as (cf. Schade & Neemann [19])

ki D
1

2
eijk. Qk/kj D

1

2
eijk.dk � dj ,s / , with eijk D d�1=2"ijk , (17)

where "ijk are the alternating symbols and

d1=2 D d1 � .d2 � d3/ . (18)

Analogously to (16), we introduce the angular velocity Q! and its associated axial vector ! as

.dk/,t D Q!dk D!� dk , with Q!D R,t R�1 D di ,t ˝di . (19)

In the same manner, as for the effective curvature and the angular velocity, we obtain the virtual
rotation ı Q� when changing the variational parameter ".

ıdk D ı Q�dk D ı� � dk , with ı Q�D ıRR�1 D ıdi ˝ di , ı�D
1

2
di � ıdi . (20)

The last expression of the virtual rotation vector is motivated by the following identity and is used
in the sequel for the director formulation.

di � ıdi D di � .ı� � di /
.A.3/
D .di � di /ı�� .di � ı�/di D 3ı�� ı�D 2ı� . (21)

The velocity and acceleration fields are introduced by taking the total time derivative of the position
field (13) and the kinematical relation introduced in (19).

PxD P'C!� .x�'/D P'C!� � , with �D x�'D �˛d˛ , (22)

RxD R'C P!� �C!� .!� �/ . (23)

With regard to (13) and (16), the partial derivatives of the position field assume the form

g˛ D x,˛D d˛ , g3 D x,sD ',sCk� � . (24)
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Using (13), (20) and (24), the variation of the position field and its partial derivatives are given by

ıxD ı'C ı� � � , ıg˛ D ı� � g˛ , ıg3 D ı',sC ık� �C k� .ı� � �/ . (25)

In the Appendix, we verify the important identity

.ı�/,sD ık� ı� � k , (26)

which is obtained by the fact that the derivative with respect to s and the variation commute, that is,
.ıdk/,sD ı.dk/,s .

3.2. Virtual work and equations of motion

With the kinematical assumption (13), we impose in fact infinitely many perfect bilateral constraints
ˆ.�˛ , s, t / D x� ' � �˛d˛ D 0 on the system. The admissible virtual displacements ıxadm are all
variations of the reduced kinematics x, that is, ıxadm D ıx. Because the variations of x are admis-
sible with respect to the constraints ˆ D 0, all corresponding constraint forces are projected out
and will not appear in the equations of motion. In the following, we reformulate the virtual work
expression (7) by taking into account the reduced kinematics of the beam. In this way, we identify
the kinematic quantities of the beam and the corresponding kinetic quantities, that is, the resultant
contact force n and the resultant contact torque m. Furthermore, by assuming a hyperelastic material
behavior, appropriate strain measures are identified.

Using (5), (25), and the property of the cross product of (A.2), the internal virtual work density
can be written as

ti � ıgi D ı� � .g˛ � t˛/C t3 � ı',sC ık �
�
�� t3

�
C t3 � Œk� .ı� � �/� . (27)

Employing the symmetry condition (10), we can rewrite the first term in (27) as follows.

ı� � .g˛ � t˛/
.10/
D �ı� �

�
g3 � t3

� .24,A.2/
D �t3 � Œı� �',sC ı� � .k� �/� . (28)

Using the relation (28) and the Jacobi identity (A.1), we can manipulate (27) further to obtain

ti � ıgi D�t3 � Œı� �',sC ı� � .k� �/�C t3 � ı',s

C ık �
�
�� t3

�
C t3 � Œk� .ı� � �/�

D t3 � Œı',s �ı� �',s �C ık �
�
�� t3

�
C t3 � Œk� .ı� � �/C ı� � .�� k/�

.A.1/
D t3 � Œı',s �ı� �',s �C ık �

�
�� t3

�
C t3 � Œ�� .ı� � k/�

.A.2/
D t3 � Œı',s �ı� �',s �C

�
�� t3

�
� Œık� ı� � k� .

(29)

Because the kinematical quantities in the squared brackets depend merely on s, we split the integra-
tion over B in an integration over the cross section in the body chart NA.s/ and an integration along
s 2 Œs1, s2�.

ıW int D

Z

B

ti � ıgi d3�
.29/
D

s2Z
s1

¹n � Œı',s �ı� �',s �Cm � Œık� ı� � k�º ds . (30)

The integrated kinetic quantities n and m are the resultant contact force and the resultant contact
torque of the current configuration defined by

n.s, t /D
Z
NA

t3 d2� , m.s, t /D
Z
NA

�
�� t3

�
d2� , (31)

with the surface element d2� D d�1d�2. For the sake of clarity, the contributions due to external
forces and inertia are developed in compact form in the Appendix.
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Taking all the modified contributions of the virtual work (30), (A.13), and (A.18), the principle of
virtual work (7) leads to

ıW D

s2Z
s1

°
n � Œı',s �ı� �',s �Cm � Œık� ı� � k�C ı' �

�
A� R'C Rq� n

�

C ı� �
�

q� R'C Ph�m
�±

ds � .ı' � nC ı� �m/js2s1 D 0 8ı', ı�, t .

(32)

Using the identity (26) and integration by parts, the virtual work can be expressed as

ıW D

s2Z
s1

°
ı' �

�
A� R'C Rq� n� n,s

�
C ı� �

�
q� R'C Ph�m�m,s �',s � n

�±
ds

C .ı' � .n� n/C ı� � .m�m//
ˇ̌
s2
s1
D 0 8ı', ı�, t .

(33)

This is the variational expression of the BVP in the current configuration of the geometrically exact
beam as derived from the balance laws in Chapter 8 of Antman [15], that is,

n,sCnD A� R'C Rq ,

m,sC',s � nCmD q� R'C Ph .
(34)

with the boundary conditions nD n and mDm for s D ¹s1, s2º.

3.3. Constitutive law

We assume the constitutive law to be hyperelastic. Thus, there exists an elastic potential W.s/
such that

ıW int D ı

s2Z
s1

W.s/ds . (35)

We formulate the elastic potential as an additive split of two potentials

W.s/DW
�
�i , k

i
�
DW1.�i /CW2

�
ki
�

, (36)

each of which depends on the strain measures �i and ki , respectively. The effective reference
curvature is defined as Qk0.s/D R0,s R�10 D Di ,s˝Di . The covariant strain

�i .s, t /D di �',s �Di �'0,s , (37)

measures the difference between the deformation of the center line in the direction di and the defor-
mation of the reference curve in direction Di . When measuring the difference between the effective
curvature and the effective reference curvature in the direction dk , dj and Dk , Dj , respectively, we
obtain the covariant components Qkkj�. Qk0/kj . Because these components are skew-symmetric, there
is an associated axial vector with contravariant components

ki .s, t /D
1

2
eijk

�
dk � Qkdj �Dk � Qk0Dj

�
D
1

2
d�1=2"ijk.dk � dj ,s �Dk �Dj ,s / (38)

which is the second strain measure. In the following, we prove that we obtain the internal virtual
work expression (30) when varying the elastic potential (36). Using (20) and (A.2), the variation of
the first potential takes the form

ıW1 D
@W1

@�i
ı�i

.37/
D

@W1

@�i
.ı',s �di C',s � ıdi /D n � .ı',s �ı� �',s / , (39)
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where we recognize the resultant contact force n D nidi D
@W1
@�i

di . By expansion with the

reciprocity condition ıij D di � dj and using (20), the variation of the second potential yields

ıW2 D
@W2

@ki
ıki D

@W2

@ki
di � ıkjdj Dm � .ık� ı� � k/ . (40)

Here, we identify the contact torque as m D midi D
@W2
@ki

di . Comparing (39) and (40) with (30)
proves the choice of the strain measures and their corresponding elastic potentials.

Remark 3
The contact force n and the contact torque m are naturally represented by covariant directors di and
by contravariant directors di , respectively. According to the property of the cross product, (3), and
the definition of the generalized contact forces (31), these representations are completely reasonable.

We assume the following quadratic form as the elastic potential

W
�
�i , k

i
�
D
1

2
d1=2�i . OD1/ij �j C

1

2
d1=2ki . OD2/ij kj , (41)

with

Œ OD1�D DiagŒGA1,GA2,EA� and Œ OD2�D DiagŒEI1,EI2,GJ � , (42)

where Œ OD1� and Œ OD2� contain the collection of the stiffness components . OD1/ij and . OD2/ij ,
respectively. Consequently, the contact force and the contact torque are

nD nidi D d1=2. OD1/ij �jdi , mDmidi D d1=2. OD2/ijkjdi . (43)

The elastic potential (41) differs from the elastic potential mentioned in Simo & Vu-Quoc [20] by
the factor d1=2, which is 1, in the case of an orthonormal frame ¹diº. As it is shown in Auricchio
et al. [21], the small-strain constitutive law (43) is motivated by inserting a three-dimensional linear
constitutive law into (31), omitting the quadratic terms of the strain, and integrating over the cross
section NA. Because d1=2 is constant over the cross section NA, the following law for the contact force
is obtained

nD
Z
NA

t3d2� D
Z
NA

� .g1 � g2/d2�
.24/
D

Z
NA

� .d1 � d2/ d2�
.3/
D

Z
NA

�d3d1=2d2�

D d1=2
Z
NA

�d3d2� D d1=2. OD1/ij �j di .
(44)

The derivation of the contact torque law works analogously.

3.4. Director description

In the subsequent subsection, we describe the rotational degrees of freedom using constraint direc-
tors. This formulation leads to a reparametrization of (32). Hence, we reformulate all virtual work
contributions that include rotational degrees of freedom such as virtual rotations or curvatures. The
internal virtual work due to the contact force is

ıW int
1 D

s2Z
s1

n � Œı',s �ı� �',s �ds
.20/
D

s2Z
s1

n �
�
ı',sC',s �

�
1

2
di � ıdi

�	
ds

.A.3/
D

s2Z
s1

²
n � ı',sC

1

2


�
n � di

�
.',s �ıdi /� .ıdi � n/

�
di �',s

��³
ds .

(45)
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With regard to the variation of (17), the internal virtual work of the contact torque takes the form

ıW int
2 D

s2Z
s1

m � Œık� ı� � k�ds D
Z s2

s1

m � ıkidids

D

s2Z
s1

²
1

2
.m � di /"ijk

h
ı.d�1=2/.dk � dj ,s /C d

�1=2ıdk � dj ,sCd
�1=2.dk � ıdj ,s /

i³
ds .

(46)
The virtual work contribution of the external torques is

ıW ext
m D

s2Z
s1

²
ıdi �

�
1

2
di �m

�³
dsC ıdi �

�
1

2
di �m

�ˇ̌̌
ˇ
s2

s1

. (47)

For the reparametrization of the virtual work contribution of the dynamical forces, it is easier to start
directly from the contribution in (6) than from (A.18). Hence,

ıW dyn D

Z

B

ıx � RxdmD

s2Z
s1

²Z
NA

h
.ı'C �˛ıd˛/ �

�
R'C �ˇ Rdˇ

�i
dm

³
ds

D

s2Z
s1

°
ı' �A� R'C ıd˛ � q˛� R'C ı' � q

ˇ
�
Rdˇ C ıd˛ �M

˛ˇ
�
Rdˇ
±
ds ,

(48)

with the abbreviation of the time constant inertia coefficients

A�.s/D

Z
NA

dm , q˛� .s/D

Z
NA

�˛dm , M ˛ˇ
� .s/D

Z
NA

�˛�ˇdm . (49)

As mentioned before, the director description coincides with the geometrically exact beam theory if
the director frame remains an orthonormal frame, that is, the following perfect bilateral constraints
have to be satisfied at any instant of time

gij .s, t /D
1

2
.di � dj � ıij /D 0 . (50)

By the principle of d’Alembert-Lagrange, this will lead to an additional Lagrange multiplier
�ij .s, t / in the virtual work expression. The virtual work principle of the geometrically exact beam
reparametrized for the variation of directors takes the following form.

ıW D

s2Z
s1

²
ı' �

h
A� R'C q

ˇ
�
Rdˇ � n

i
C ıd˛ �

h
M ˛ˇ
�
Rdˇ C q

˛
� R'
i
� ıdi �

1

2

�
di �m

�

C �ij ıdi � dj C n � ı',sC
1

2


�
n � di

�
.',s �ıdi /� .ıdi � n/

�
di �',s

��

C
1

2
.m � di /"ijk

h
ı.d�1=2/.dk � dj ,s /C d

�1=2ıdk � dj ,sCd
�1=2.dk � ıdj ,s /

i³
ds

�

�
ı' � nC ıdi �

1

2
.di �m/

�ˇ̌̌
ˇ
s2

s1

D 0 8ı', ıdi , t .

(51)

When we do not distinguish anymore between covariant and contravariant directors, we arrive at the
virtual work expression as proposed in [8].
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4. FINITE ELEMENT FORMULATION

To achieve a numerical solution for the constrained problem under consideration, we subdivide the
center line NS D Œs1, s2� of the beam into a set of finite elements e 2 ED ¹1, : : : , nelº via

NS D
[
e2E

NSe (52)

characterized by associated nodal points A D 1, : : : , n, where the position vector of node A is
denoted by 'A. Then we introduce a polynomial, finite dimensional approximation of the solution
space, that is, of the configuration as well as of the director field, as follows

'h.s, t /D
X
A

NA.s/'A.t/, dh
i .s, t /D

X
A

NA.s/diA.t/ . (53)

Using a standard Galerkin type approach, the space of admissible test functions is approximated
analogously

ı'h.s/D
X
A

NA.s/ı'A, ıdh
i .s/D

X
A

NA.s/ıdiA , (54)

where NA.s/ W NS!R are global, Lagrange-type shape functions.
Taking the definition of the strain measures (37) and (38) into account, we can write

�hi DN
ANB

,s diA �'B �N
ANB

,s DiA �'0B

ki ,h D
1

2
det

�
R�1,h

�
"ijk

�
NANB

,s dkA � djB �N
ANB

,s DkA �DjB
� (55)

for their discrete counterparts. Here, the discrete rotation matrix is given by Rh D


dh
1 , dh

2 , dh
3

�
.

Note that the matrix Rh in general is not a proper rotation matrix because of the lack of orthonor-
mality of the discrete director frame caused by interpolation (53). Using the reciprocity condition,
the values of the contravariant directors di ,h can be extracted from the inverse discrete rotation
matrix R�T,h D



d1,h, d2,h, d3,h

�
. The internal virtual work of the contact force (45) reads

ıW
int,h
1 D ı'A �

s2Z
s1

NA
,s nh dsC

3X
iD1

ıdiA �

s2Z
s1

1

2

h�
nh � di ,h

�
NANB

,s 'B �
�
'h,s � d

i ,h
�
NAnh

i
ds .

(56)

Because d�1=2,h D det
�
R�1,h

�
and ı.d�1=2/D ı

�

dh
1 �
�
dh
2 � dh

3

���1�
D�d�1,h ı



dh
1 �
�
dh
2 � dh

3

��
,

the internal virtual work of the contact torques (46) follows as

ıW
int,h
2 D

1

2
ıdiA �

s2Z
s1

det
�
R�1,h

� �
mh � dh

k

�
"kji

�
NANB

,s djB �NA
,s N

BdjB
�
ds

�
1

2
ıd1A �

s2Z
s1

�
det

�
R�1,h

��2
NA

�
dh
2 � dh

3

� �
mh � dh

l

�
"lmn

�
dh
n � d

h
m,s

�
ds

�
1

2
ıd2A �

s2Z
s1

�
det

�
R�1,h

��2
NA

�
dh
3 � dh

1

� �
mh � dh

l

�
"lmn

�
dh
n � d

h
m,s

�
ds

�
1

2
ıd3A �

s2Z
s1

�
det

�
R�1,h

��2
NA

�
dh
1 � dh

2

� �
mh � dh

l

�
"lmn

�
dh
n � d

h
m,s

�
ds .

(57)
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For the numerical implementation, it is convenient to collect the components �hi , ki ,h in the matrices
Œ�h� and Œkh�, respectively. Using the constitutive laws of (43), the local, discrete contact force and
torque are given by

nh D dh
i n
i D Rhdet

�
Rh
�
Œ OD1�



�h
�

,

mh D di ,hmi D R�T,hdet
�
Rh
�
Œ OD2�



kh
�

.
(58)

The external as well as the dynamical contributions can be formulated analogously. Note that we
apply a reduced integration, that is, a one-point Gauss quadrature for the two-node element to avoid
locking effects. At last, we consider the approximation of the Lagrange multipliers associated to the
constraints of orthonormality (50). In particular, these constraints are enforced at the nodal points
AD 1, : : : , n leading to the algebraic constraint equations ˆA D 0. The constraints (50) entail six
independent constraint functions per node, which are collected in the vector

ˆA D

2
66666666664

1
2
.d1A � d1A �D1A �D1A/

1
2
.d2A � d2A �D2A �D2A/

1
2
.d3A � d3A �D3A �D3A/

1
2
.d1A � d2A �D1A �D2A/

1
2
.d1A � d3A �D1A �D3A/

1
2
.d2A � d3A �D2A �D3A/

3
77777777775

(59)

Correspondingly, the Lagrange multipliers are approximated by using Dirac deltas as basis functions
MA.s/. Accordingly,

�hij .s, t /D
X
A

MA.s/�
A
ij .t/ (60)

This procedure is in accordance with the developments in [8].

Remark 4
Instead of using the method of Lagrange multipliers for the enforcement of the nodal constraints
of orthonormality, three nodal rotation parameters could be introduced. This procedure yields a
significant size-reduction of the algebraic system of nonlinear equations to be solved. We refer to
[8], Section 3.2, for further details. Note, however, that this approach merely reduces the num-
ber of unknowns and does not alter the numerical approximation properties of the finite element
formulation at hand.

Remark 5
The discrete strain measures emanating from the present approach are frame-indifferent (or
objective). This can be verified in a straightforward manner in complete analogy to Section 3
in [8].

5. NUMERICAL INVESTIGATIONS

In this section, we evaluate the accuracy and performance of the newly proposed method. All
examples are carried out in a three-dimensional setting, although some of them remain planar.
Because the new contribution of the proposed formulation relies on the formulation of the internal
virtual work, we demonstrate the performance using static benchmark tests and compare the results
with the original director-based formulation in [8]. Throughout all the examples, two-node elements
are used.
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Figure 3. Buckling test, the results of the new approach are marked with o, the results of the original
approach with x.

5.1. Planar equilibrium problem

In this example, we consider the buckling of a hinged right angle frame. The geometry of the
reference configuration is given in Figure 3, the material data for the used model are given as
follows: GA D 16.62 � 106, EA D 43.20 � 106, EI D 14.40 � 106, and GJ D 11.08 � 106, see
also [20]. Dirichlet boundary conditions are applied to the translational degrees of freedom at both
ends, such that rotation is possible. Four different loads �1�4 are applied to the frame as dead loads,
using �1 D �15� 103e2, �2 D �17.4� 103e2, �3 D 9.233� 103e2, and �4 D �21.014� 103e2.
The results of the original director formulation are added for comparison for �1 and �2. In both
loading situations, the new formulation reacts stiffer as the original one; this behavior is closer to
the solution as will be shown in a subsequent convergence test, see Section 5.3. Using a standard
Newton-Raphson iteration scheme, the snap-through of the buckling problem for the loading �3
and �4 could only be achieved for the new approach, since the original formulation diverges. An
arc-length method would be necessary for the calculation of the results of the original approach.
Thus, the new approach is more robust than the original director formulation.

5.2. Spatial cantilever problem

The next example consists of a cantilever bending test, see Figure 4. The cantilever is curved
in its stress-free reference configuration. In particular, 1=8 of a circle with radius R D 100 in
z-direction is used as center line. Different constant loads are applied to the tip at the end of the
beam, whereas the other end of the beam at Œ0, 0, 0� is completely clamped in all directions. The
material data are as follows: GA1 D GA2 D 5� 106, EAD 107 and EI1 D EI2 D GJ D 107=12.
Table I shows the corresponding results for different numbers of elements. In addition to that, the
numerical results corroborate the frame-indifference of the present method (cf. [8]).
As can be seen, the new formulation outperforms the original one for coarse meshes. Furthermore,
both approaches converge to the same results.

5.3. Bending test

This example consists of a straight beam, clamped at one end, and a moment applied to it at the
other end. The length of the beam is L D 1 and the material data are as follows: EA D 1

252
,

GA D 1
2.7

1
252

, EI D 1
12

1
254

and GJ D 1
2.7

1
6
1
252

. An analytical solution for a closed curve exists
with Mo D 2	EI=L, see the snapshots in Figure 5.
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Figure 4. Cantilever problem, reference configuration of the center line and the director triads.

Table I. Tip displacement in e2� direction.

Load level Original approach New approach

ŒF1, F2, F3� 8 El. 16 El. 32 El. 8 El. 16 El. 32 El.

Œ�600, 0, 0� 0 0 0 0 0 0
Œ�600, 600, 0� 61.3302 60.1177 59.9022 60.1246 59.9033 59.8510
Œ�600, 600, 600� 40.0323 38.9342 38.7539 38.7966 38.7195 38.7027
Œ0, 600, 600� 38.3769 37.7264 37.5829 37.5228 37.5316 37.5351
Œ0, 0, 600� 0 0 0 0 0 0
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Figure 5. Bending problem, configuration for M D 0, M D 2
5
M0, M D 4

5
M0, M D 6

5
M0, and M DM0.

A convergence plot is shown in Figure 6, where the size of the elements is plotted versus the norm
of the distance kdk between the numerical and the analytical solution of the tip displacement of
the beam.

This convergence test shows once again that the new approach clearly outperforms the original
formulation. We were able to run this example with a minimum number of two elements,
whereas the iterative solution procedure (i.e. Newton’s method) does not converge for the original
formulation if less than 15 elements are employed.
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Figure 6. Convergence results for the bending problem.
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Figure 7. Geometry of the structure and tip displacement versus applied load F .

5.4. Beam with slope discontinuity

This last example demonstrates the capabilities of the proposed approach for non-smooth, three-
dimensional geometries, compare with Romero [22]. The structure consists of three, in their ref-
erence configuration straight beams of unit length, connected at right angels, see Figure 7. To
model the connection of two beams at right angles, we apply six algebraic constraints in com-
plete analogy to the description of shell intersections in [23, Section 6.1]. The material data are as
follows: E D 1 � 106 and G D 5 � 105. Moreover, the beam has a quadratic cross section area
of AD 1� 10�2.

The structure is fully clamped at one end, and two forces with magnitude F D 10 are applied
in negative ex- and e´-direction to the other end. In Figure 7, the displacement of the tip is plotted
versus the load F using a total of 12 elements of uniform length and distribution.

Analogous to the bending test, a convergence plot is given in Figure 8 to compare the
results of the new approach with the original formulation. We established an error indicator
using the distance kdk between the numerical solution of the tip displacement for different
element numbers and a reference solution with 1920 elements. Note that the norm of the dif-
ference in the tip displacement between both approaches for the reference solution is below
2.5� 10�6.

Again, the new approach clearly outperforms the original formulation even for the complex
three-dimensional problem at hand. The original approach diverges using a total of six elements
for the chosen load increment size of 
F D 0.05, whereas the new approach converges without
problems.
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Figure 8. Errors in tip displacements versus h-refinement.

6. CONCLUSIONS

The present approach can be viewed as generalization of the method proposed in [24]. In this
work, the director-based formulation of rigid body dynamics is treated. There, the discretization
in time generally destroys the orthonormality of the director frame, which is inherently connected
to the kinematic assumption of rigidity. It is shown in [24] that the lack of orthonormality of the
director frame distorts the application of external torques and thus destroys the balance of angular
momentum. This deficiency of the discrete rigid body formulation can be resolved by properly
distinguishing between covariant and contravariant directors in much the same way as in the
present work.

In particular, the newly proposed formulation of the beam curvature accounts in a natural way for
the lack of orthonormality of the director frame caused by the nodal interpolation of the directors.
The lack of orthonormality of the director frame can be regarded as a discretization error, which
diminishes if the number of elements is increased.

Consequently, the present approach has an especially pronounced effect when course discretiza-
tions and low-order finite elements are used. The numerical results presented in Section 5 show
indeed a significant improvement over the original implementation of the director-based beam finite
element formulation. It has further been verified, both theoretically and numerically, that the present
approach yields a consistent discretization of the geometrically exact (Simo-Reissner) beam model.
It is also worth noting that in analogy to the original director-based implementation, the present
method retains the property of frame-indifference (or objectivity) in the discrete setting.

APPENDIX

Properties of the cross product

The cross product � as a skew-symmetric operator on R3 has some useful identities that are used
frequently in this paper. In R3, the cross product fulfills the Jacobi identity

a� .b� c/C b� .c� a/C c� .a� b/D 0 8a, b, c 2R3 . (A.1)

The triple product is invariant under even permutation, that is,

a � .b� c/D b � .c� a/D c � .a� b/ 8a, b, c 2R3 . (A.2)

The vector triple product fulfills Grassmann’s identity

a� .b� c/D .a � c/b� .a � b/c 8a, b, c 2R3 . (A.3)
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The quadruple product

.a� b/ � .c� d/D .a � c/.b � d/� .a � d/.b � c/ 8a, b, c, d 2R3 , (A.4)

and another useful identity, where we use the tilde to denote the skew-symmetric tensor to the
associated axial vector, is

a� .b� .b� a//D�b� .a� .a� b//D�QbQaQab 8a, b 2R3 . (A.5)

Skew-symmetry of Qk

For dij D di � dj D constant, we can show that QkD R,s R�1 D dk ,s˝dk in the basis of di ˝ dj is
skew-symmetric. Because RR�1 D I, it follows directly that

dk ,s˝dk D R,s R�1 D�R
�
R�1

�
,sD�dk ˝ dk ,s . (A.6)

By applying di � .�/dj to (A.6) and the fact that the symmetric metric dij D constant, this leads to

di � dj ,sD�dik.d
k ,s �dj /D�.dikdk/,s �dj D�di ,s �dj . (A.7)

Using (A.7),

.�QkT/ij D�di � .dk ˝ dk ,s /dj D�di ,s �dj
.A.7/
D di � dj ,sD . Qk/ij , (A.8)

which shows the skew-symmetry of Qk in the basis of di˝dj . For the basis di˝dj , the proof works
analogously.

Proof of identity (26)

Variation and derivative with respect to s commute .ıdk/,sD ı.dk ,s /. By (16) and (20), this can be
written as

.ı� � dk/,sD ı.k� dk/ . (A.9)

Applying the product rule and using again (16) and (20) yields

.ı�/,s � dk C ı� � .k� dk/D ık� dk C k� .ı� � dk/ . (A.10)

By subtracting the left-hand side from the right-hand side, using the skew-symmetric property of
the cross product and the Jacobi identity (A.1), we obtain

0D ık� dk C k� .ı� � dk/C ı� � .dk � k/� .ı�/,s �dk
.A.1/
D ık� dk � dk � .k� ı�/� .ı�/,s � dk
D .ık� ı� � k� .ı�/,s /� dk .

(A.11)

Because the right-hand side of (A.11) has to vanish for all directors dk 2 E3, we obtain the important
identity

.ı�/,sD ık� ı� � k . (A.12)

Virtual work contributions of external forces

Because the measure df allows for Dirac-type contributions as well, boundary terms do not vanish.
Insofar,

ıW ext D

Z

B

ıx � df
.25/
D

s2Z
s1

.ı' � nC ı� �m/ dsC .ı' � nC ı� �m/
ˇ̌
s2
s1

, (A.13)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 97:111–129
DOI: 10.1002/nme



128 S. R. EUGSTER ET AL.

where the generalized external forces n and m are the integrated quantities

n.s, t /D
Z
NA

df , m.s, t /D
Z
NA

.�� df/ . (A.14)

We want to mention that contact forces on the lateral surfaces contribute on the boundary of NA.s/.

Virtual work contributions of inertia terms

For manipulating the inertia terms, it is convenient to introduce some abbreviations of integral
expressions. With 'c , in the following, the line of centroids is meant.

A�.s/ WD

Z
NA

dm , q WD A�.'c �'/D
Z
NA

�dm , I�.s/ WD
Z
NA

Q� Q�Tdm . (A.15)

Using the fact that

RqD .!�A�.'c �'//PD P!�A�.'c �'/C!� .!�A�.'c �'// (A.16)

and

hD I�! , PhD I� P!C PI�!D I� P!C!� I�! , (A.17)

we modify the virtual work expression as follows. The tilde denotes the skew-symmetric tensor to
the associated axial vector.

ıW dyn D

Z

B

ıx � Rx dm
.23,25/
D

Z

B

¹.ı'� Q�ı�/ � . R'� Q� P!C Q! Q!�/º dm
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(A.18)
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