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Definitions

With the minimum total potential energy principle, the question concerning equi-
librium configurations of beam systems can be formulated as minimization prob-
lems. After postulating a particular form of the potential energy for a conservatively
loaded system, the calculus of variations leads to necessary and sometimes even
sufficient conditions for energy-minimizing equilibrium configurations.

Introduction

Intrinsic beam theory makes use of one-dimensional generalized continua to model
the mechanical behavior of three-dimensional beam-like objects. While a one-
dimensional continuum corresponds to a deformable curve in space, parameterized
by a single parameter, say s ∈ I ⊂ R, a generalized continuum is augmented by
further kinematical quantities whose state depends merely on the very same param-
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eter. Accordingly, a configuration of a beam is fully described by a set of functions
{yi(s)} where i = 1, . . . ,m. In this article the Euler–Bernoulli beam theory is ad-
dressed as a representative of the simplest nonlinear spatial beam theories. In this
theory, the spatial curve, called the centerline, is augmented by an orthonormal di-
rector triad modeling the cross-sections of a thin three-dimensional elastic body as
sections which remain plane and rigid for all configurations. Furthermore, the di-
rectors are restricted such that the centerline’s tangents remain always orthogonal to
these sections. The special theory considered here requires relatively modest empir-
ical input with regard to constitutive equations, and incorporates a reasonably broad
range of applications, ranging from flexible cables to beams with significant flexu-
ral and torsional rigidity. A system of n beams is called lattice, when the beams are
interconnected such that they span a two-dimensional surface in space.

Let E[yi] be the postulated total potential energy functional of a conservatively
loaded beam. The minimum total potential energy principle defines a stable equilib-
rium as minimizers of E in some suitable class of competing configurations {y∗i }. In
particular, a configuration {yi} with energy E[yi] is stable if and only if

E[yi]≤ E[y∗i ] , for all admissible y∗i . (1)

Admissibility does not only account for conditions such as e.g. fixed boundary con-
ditions, but also for the specification of the function class from which the configu-
rations are chosen. Minimizing configurations {yi} for which competing configura-
tions {y∗i } satisfy ∑i |y∗i − yi|< δ for some δ > 0 and for all s ∈ I are called strong
relative minimizers. Alternatively, configurations are called weak relative minimiz-
ers if ∑i |y∗i −yi|+∑i |y∗′i −y′i|< δ , where prime denotes here and henceforth deriva-
tives with respect to s. Among others, the calculus of variations aims to give neces-
sary and sufficient conditions for (1). The most widespread necessary condition for
a minimizer {yi} of (1) is that the first variation of the total potential energy evalu-
ated at {yi} vanishes for all admissible variations. In beam theory this corresponds
to the static equilibrium equations of a beam. However, there are also alternative
conditions which give rise to requirements for constitutive parameters.

The minimum total potential energy principle is not only a method to derive
conditions for energy-minimizing equilibrium configurations but also a heuristic
method to develop beam theories. Especially, the additional requirement of the in-
variance under superimposed rigid body motions of the internal strain energy pro-
vides a suitable guideline for modeling the internal force effects within a beam.

Kinematics and constitutive hypothesis for beams

Configurations of spatial beams within the Euclidean vector space E3 are defined
by mappings r,ei : I→ E3, i = 1,2,3, where the closed interval I ⊂ R parametrizes
the set of beam points, the centerline r typically represents the line of centroids
of the body, and the ei are vector-valued functions that specify the orientations of
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the cross-sections for each beam point, cf. Fig. 1. The reference placement is a
configuration in which the functions r and ei take the values x and Ei, respectively.
A convenient choice to parametrize the set of beam points is the arclength parameter
s ∈ I = [0,L] of the reference centerline curve x with total arclength L. In order that
the set {Ei} specifies the orientations of the cross-sections, they are assumed to
form an orthonormal triad for every s ∈ I. Furthermore, E1 is identified with the
unit tangent to the centerline x, i.e. E1 = x′. The vectors E2(s) and E3(s) span the
plane normal to the centerline at x(s). Without loss of generality, E1 · (E2×E3) = 1
and E2(s) and E3(s) are identified with the geometric principle axes of the cross-
sections.

Fig. 1 Reference placement {x,Ei} and configuration {r,ei} of a spatial Euler-Bernoulli beam.

A spatial Euler-Bernoulli beam is characterized by its constrained kinematics
which demands the set {ei} to be orthonormal for every s, with e1 · (e2× e3) = 1,
and further requires e1 to coincide with the unit tangent, t, to the centerline r. Thus

r′ = λ t , (2)

where the local stretch λ is recognized, which in turn is defined as

λ := ‖r′‖=
√

r′ · r′ . (3)

Sometimes it is convenient to parametrize the beam configurations with respect to
a non-arclength parameter ν ∈ Ī. The choice of a strictly increasing function φ :
Ī → I,ν 7→ s = φ(ν) then induces the reparametrizations x̄ = x ◦ φ , r̄ = r ◦ φ and
λ̄ = λ ◦ φ of the mappings x, r and λ , respectively. Using the properties of the
arclength parametrization, the local stretch λ̄ then takes the form

λ̄ =
‖dr̄/dν‖
‖dx̄/dν‖

. (4)

According to (4), the local stretch of a configuration can be interpreted as the ratio
between the lengths of the centerline’s tangent vectors in the actual configuration
and the reference placement.

The constraints on {Ei} and {ei} allow for the relation
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ei(s) = R(s)Ei(s) , (5)

where R(s) is a rotation, thus satisfying R(s)TR(s) = R(s)R(s)T = 1 (1 denotes
the identity tensor for E3) and detR =+1. Making here and in what follows use of
Einstein’s summation convention, the rotation can explicitly be written as

R = R1 = R(Ei⊗Ei) = (REi)⊗Ei = ei⊗Ei . (6)

The kinematical description is completed by introducing a tensor W defined by

W = e′i⊗ ei =Wi jei⊗ e j , Wi j = ei · e′j . (7)

This furnishes the rate of change of {ei} with respect to s:

e′i = Wei . (8)

The differentiated orthonormality condition (ei · e j)
′ = e′i · e j + ei · e′j = 0 together

with (7b) implies that Wi j =−Wji and that W is consequently skew, i.e. WT =−W.
Thus W(s) has an associated vector-valued function w(s), in the sense that W(s)u=
w(s)×u for any u ∈ E3. The use of w allows (8) to be written in the form

e′i = w× ei (9)

The relation between the components wi = w · ei and Wi j is well known:

wi =
1
2 ei jkWk j , Wk j = wiei jk , (10)

where ei jk is the Levi-Civita permutation symbol, i.e. e123 = e231 = e312 = +1,
e213 = e132 = e321 = −1, and zero else. It follows from (9) that the components
wα (α ∈ {2,3}) account for the rate of change of the unit tangent t(= e1) with re-
spect to s, while w1 measures the projection onto the cross-section of the rate of
change of the cross-sectional axes e2 and e3.

Let ΩΩΩ be the skew tensor defined by

ΩΩΩ = RTWR =Wi jEi⊗E j (11)

with its associated vector-equivalent

κκκ = κiEi , with κi =
1
2 ei jkWk j =

1
2 ei jkek · e′j . (12)

Evidently κi = wi and w = Rκκκ . A reparametrization of the beam configuration with
respect to a non-arclength parameter ν ∈ Ī induces additionally to x̄, r̄, λ̄ also ēi =
ei ◦φ and κ̄i = κi ◦φ for which

κ̄i =
1
2

ei jkēk ·
dē j

dν

1
‖dx̄/dν‖

. (13)
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If the beam has a precurved reference configuration this results in the presence
of non-zero values of the functions

κ
0
i = 1

2 ei jkEk ·E′j , (14)

which are the values of κi in the configuration {x,Ei}.
Strain measures must guarantee two invariance properties. Their values should

neither change under reparametrization of the kinematic functions nor under super-
imposed rigid deformations. Invariance with respect to reparametrization is obtained
for both strain measures λ and κκκ , since they have been introduced with the aid of the
reference arclength s being an invariant property of the reference centerline x. When
deciding for a non-arclength parametrizations ν , the strain measures have to be in-
troduced in the sense of (4) and (13). Invariance of λ and κκκ under superimposed
rigid deformations

r(s) 7→Qr(s)+ c , ei(s) 7→Qei(s) , e′i(s) 7→Qe′i(s) , (15)

where Q is an arbitrary fixed rotation and c is an arbitrary fixed vector, follow
straightforward from inserting (15) into (3) and (12).

Due to the latter invariance property, which is also required for the internal strain
energy function, it is natural to formulate a theory for elastic beams by introducing a
strain energy w per unit length of the reference placement, that depends on λ and κκκ:

w = w(λ ,κκκ) . (16)

Note that possible dependence on arclength s are suppressed which may arise due to
nonuniformity of the material properties, or to the presence of non-zero values of the
functions κ0

i (s). This dependence is left tacit, as it does not affect the considerations
in the upcoming statements.

A model of elastic cables may be obtained by eliminating κi (and κ0
i ) from the

list of arguments of the strain energy function. Alternatively, if dependence on λ is
eliminated by constraining the local stretch such that λ ≡ 1, the theory of inexten-
sible beams is obtained.

Total strain energy and its first variation

The strain energy of the beam is the functional of the configuration {r,ei} defined
by

S[r,ei] =
∫ L

0
w(λ (r′(s)),κκκ(ei(s),e′i(s)))ds . (17)

Let ε ∈ (−ε0,ε0) for some positive number ε0, and consider a smooth one-parameter
family of kinematically admissible configurations {r∗(s,ε),e∗i (s,ε)}, with {r∗(s,0),
e∗i (s,0)}= {r(s),ei(s)}. Here kinematic admissibility means that, for each fixed ε ,
r∗(·,ε) and e∗i (·,ε) are at least piecewise C2 on [0,L] and satisfy (2) and (3), i.e.
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r∗′ = λ
∗t∗ , λ

∗ = ‖r∗′‖ , t∗ = e∗1 , (18)

as well as the orthogonality condition e∗i · e∗j = δi j. It is possible to relax the con-
tinuity hypothesis if equilibria with discontinuities in λ or κκκ are of interest, see
Weierstrass–Erdmann corner conditions and Weierstrass inequality below. Consid-
ering (12), the variation of the configuration {r∗,e∗i } induces a variation of the
change of orientation along s:

κκκ
∗ = κ

∗
i Ei , with κ

∗
i = 1

2 ei jke∗k · e∗′j . (19)

Let superimposed dots denote the derivatives of functions with respect to ε , eval-
uated at ε = 0. For h(ε) = S[r∗(·,ε),e∗i (·,ε)], the first variation of S at the configu-
ration {r,ei} is

dh
dε

(0) = ḣ =
∫ L

0
[(∂w/∂λ )λ̇ ∗+(∂w/∂κi)κ̇

∗
i ]ds . (20)

To analyze the structure of the first variation near ε = 0, the one-parameter fam-
ilies r∗,e∗i can be written as

r∗(s,ε) = r(s)+ εu(s)+o(ε) , where u = ṙ∗ , (21)

and
e∗i (s,ε) = ei(s)+ ε ė∗i +o(ε) . (22)

Similar to W of (7), the virtual rotation is defined as the skew tensor

ααα
∗ =

d
dε

e∗i ⊗ e∗i = α
∗
i je
∗
i ⊗ e∗j , α

∗
i j = e∗i ·

d
dε

e∗j , (23)

which has its vector-equivalent a∗(s,ε) such that

d
dε

e∗i = ααα
∗e∗i = a∗× e∗i . (24)

Consequently, the admissible variation of ei in the sense of (22) is

ė∗i = a× ei , where a = a∗(·,0) . (25)

The smooth one-parameter family of the local stretch introduced by

λ
∗(s,ε) = λ (s)+ εa(s)+o(ε) , where a = λ̇

∗ , (26)

is not independent and must satisfy the compatibility condition

u′ = at+λa× t = at+a× r′ . (27)

This compatibility follows from inserting (21), (22), (25) and (26) into the condition
(18a). By multiplying (27) with t = e1 and eα (α = 2,3), the condition can also be
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written as

λ̇
∗ = a = t ·u′ , u′ · eα + r′ ·a× eα = 0 , for α = 2,3 . (28)

The variation of κ∗i (s,ε) follows directly from (19) together with (22) and (25):

κ̇
∗
i = 1

2 ei jk(ė∗k · e′j + ek · ė∗′j ) = 1
2 ei jk[a× ek · e′j + ek · (a′× e j +a× e′j)] . (29)

The terms involving a cancel. Making use of the relation ei jke jkm = 2δim the result
can be simplified further to

κ̇
∗
i = 1

2 ei jka′ · e j× ek = a′ · ( 1
2 ei jke jkmem) = ei ·a′ . (30)

Introducing M = Miei with Mi(s) = ∂w/∂κi(λ (s),κκκ(s)), the relation (30) allows
to rewrite the first variation (20) as

ḣ =
∫ L

0
[(∂w/∂λ )a+M ·a′]ds (31)

In particular, when the constraints of (28) are satisfied, ḣ coincides with the aug-
mented functional

I =
∫ L

0
[(∂w/∂λ )t ·u′+M ·a′+Fα(u′ · eα + r′ ·a× eα)]ds

=
∫ L

0
[F ·u′+M ·a′+ r′ ·a× (Fα eα)]ds ,

(32)

where Fα(s),α ∈ {2,3}, are Lagrange multipliers taking explicitly into account that
the variations u(s) and a(s) are not independent, and

F = (∂w/∂λ )t+Fα eα . (33)

For an inextensible beam the impressed force ∂w/∂λ also becomes a Lagrange
multiplier and the force F is then interpreted as the constraint forces guaranteeing
r′ = t whose variation is obtained from (27) for λ ≡ 1 and a = 0, i.e. u′ = a× r′.

Equilibrium conditions for beams

For the sake of illustration, a beam is considered being clamped at s = 0 such that
r(0) and ei(0) are the only assigned kinematical data. Furthermore, the beam is
subjected to dead forces f, applied at the end s = L, together with a dead distributed
force b(s) per unit reference length of the beam. The distributed force b is at least
piecewise continuous. The associated negative potential is

−P[r,ei] =−P[r]≡
∫ L

0
b · rds+ f · r(L) . (34)
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The one-parameter families r∗ and e∗i are in accordance with (21) and (22) to-
gether with the requirements u(0) = a(0) = 0. A necessary condition for (1) and a
sufficient for static equilibrium is that the associated first variation of the total poten-
tial energy functional E[r,ei] = S[r,ei]−P[r] vanishes for all admissible variations
of the kinematical variables. Introducing f (ε) = E[r∗(·,ε),e∗i (·,ε)], this yields the
condition ḟ = 0. This variation can be computed explicitly using the result of (32)
together with (34) and (21) under consideration that u(0) = a(0) = 0:

0 =
∫ L

0
[F ·u′+M ·a′+ r′ ·a×F]ds−

∫ L

0
b ·uds− f ·u(L) (35)

Since r′ is parallel to t, the last term in (32) has been replaced with r′ ·a×F. Inte-
gration by parts of (35) directly leads to

0 =−
∫ L

0
[u · (F′+b)+a · (M′−F×r′)]ds+u(L) · (F(L)− f)+a(L) ·M(L) . (36)

According to the fundamental lemma of calculus of variations, (36) is only fulfilled
if M(L) and F(L) satisfy the natural end conditions

M(L) = 0 , F(L) = f (37)

and only if the Euler-Lagrange equations

F′+b = 0 (38)
M′−F× r′ = 0 (39)

are satisfied for 0 < s < L.
Equation (37b) identifies F(L) as the force supplied at the end s = L by an exter-

nal agency. Integration of (38) yields

F(s) = F(L)−
∫ L

s
F′(s̄)ds̄ = f+

∫ L

s
b(s̄)ds̄ . (40)

Integration of (39), together with (37a) and subsequent integration by parts leads to

M(s) = M(L)−
∫ L

s
M′(s̄)ds̄ =

∫ L

s
r′(s̄)×F(s̄)ds̄

=−
∫ L

s
r(s̄)×F′(s̄)ds̄+ r(L)×F(L)− r(s)×F(s) .

(41)

For a fixed s ∈ [0,L], let ρρρ(s̄) = r(s̄)− r(s) be the vector connecting the point r(s)
with r(s̄) for an arbitrary s̄ ∈ [0,L]. Inserting r(s̄) = r(s)+ ρρρ(s̄), (38) and (40) in
(41), M(s) can be manipulated further to
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M(s) =
∫ L

s
(r(s)+ρρρ(s̄))×b(s̄)ds̄+(r(s)+ρρρ(L))× f− r(s)×F(s)

=
∫ L

s
ρρρ(s̄)×b(s̄)ds̄+ρρρ(L)× f .

(42)

From (40) and (42) it becomes apparent that F(s) and M(s) are, respectively, the
force and moment exerted by the segment (s,L] on the part [0,s]. Equation (37a) then
requires that the moment vanishes at the unrestrained end. With these interpretations
of F and M, (38) and (39) are the classical equilibrium equations of beam theory,
cf. (Antman 2005; Love 1944). In view of (33), for the Euler–Bernoulli beam, it
is only the tangential component of the force that is determined by a constitutive
equation. The transverse components Fα are shear reactions that do no virtual work
for any variation of the configuration compatible with (28). They are determined
by equilibrium considerations alone. For inextensible beams, even the tangential
component is determined only by equilibrium considerations.

Further necessary conditions for beams (Steigmann and Faulkner 1993)

For the special case of an inextensible Euler–Bernoulli beam with the strain energy
density w=w(κκκ) the continuity assumptions on ei can be relaxed such that the func-
tions may have discontinuous derivatives at a finite number of points in the interval
(0,L) i.e. ei ∈ C1, piecewise. The terminology used in the calculus of variations
denotes the points of discontinuity of the derivatives e′i as corners. This terminol-
ogy is a bit misleading in the present context as the configurations considered have
continuously turning tangents. The corners are points of discontinuity of the curva-
tures and twist. For such relaxed assumptions, minimizing configurations must also
satisfy, besides the stationarity condition (35), further conditions.

Weierstrass–Erdmann corner conditions: Denoting the left and the right limit
of a function with superscript− and +, the Weierstrass–Erdmann corner conditions

M(s+)−M(s−) = 0 , w(κκκ(s+))−w(κκκ(s−)) = M · (κ j(s+)−κ j(s−))e j , (43)

must hold at the corners.
Weierstrass inequality: Let κ̂κκ = κ̂iEi with κ̂i = κi +

1
2 ei jkek ·αααe j for a skew ααα .

A necessary condition for configurations with corners that minimize the energy with
respect to strong variations is the Weierstrass inequality

w(κ̂κκ)−w(κκκ)− (κ̂ j−κ j)∂w/∂κ j ≥ 0,∀s ∈ (0,L) . (44)

Legendre condition: For the stiffness Ci j = ∂ 2w/∂κi∂κ j, which is evaluated
at the configuration of the weak relative minimizer, the Weierstrass inequality (44)
implies the Legendre condition

Ci jaia j ≥ 0,∀ai,a j . (45)
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Equilibrium conditions for lattices

A system of n beams is called lattice, when the beams are interconnected such that
they span a two-dimensional surface in space. Let the jth beam have arclength L j
in its reference configuration. Suppose these are joined together at l nodes located
at the positions xk with k = 1, . . . , l. After deformation, the nodes displace to the
(unknown) positions yk. Let the collection of index labels of these nodes be the set
K. At each node k ∈ K, a dead load qk is prescribed. In addition, we suppose that m
nodes are fixed at the locations zh with h = 1, . . . ,m. Their labels belong to the set
H. The collection of all node labels is K∪H.

Let s j ∈ [0,L j] measure the reference arclength along the jth beam. The position
function in a typical configuration is r j(s j) and the director triad is {ei(s j)} j. It is
convenient to introduce the sets

Ik = { j : s j = 0 at node k ∈ K}, Ek = { j : s j = L j at node k ∈ K} ,
Ih = { j : s j = 0 at node h ∈ H}, Ek = { j : s j = L j at node h ∈ H} .

(46)

Henceforth superscripts 0 and L denote the values of functions at s j = 0 and s j = L j,
respectively, such that r0

j = r j(0) and rL
j = r j(L). These are subject to the conditions

r0
j = yk, j ∈ Ik ; rL

j = yk, j ∈ Ek ; r0
j = zh, j ∈ Ih ; rL

j = zh, j ∈ Eh , (47)

which ensure the continuity of the lattice at the nodes.
The total potential energy, E, of a configuration of the entire lattice is

E[r j,{ei} j,yk] =
n

∑
j=1

S[r j,{ei} j]−
l

∑
k=1

qk ·yk , (48)

where S is the total strain energy functional (17). Let f (ε) = E[r∗j(·,ε),{e∗i (·,ε)} j,
y∗k(·,ε)]. A configuration of the lattice is equilibrated if and only if, for all admissible
variations of the kinematical variables,

0 = ḟ =
n

∑
j=1

∫ L j

0
[F ·u′+M ·a′+ r′ ·a×F]ds−

l

∑
k=1

qk ·uk , uk = ẏ∗k , (49)

where (32) has been invoked, in which the last term has been replaced with r′ ·
a×F, and the index j has been suppressed in the integrand for the sake of clarity.
Integration by parts of the first two terms in (49) leads to

0 =−
n

∑
j=1

∫ L j

0
[F′ ·u+a · (M′−F× r′)]ds−

l

∑
k=1

uk ·
[
qk−

(
∑
j∈Ek

FL
j − ∑

j∈Ik

F0
j

)]
+

l

∑
k=1

(
∑
j∈Ek

ML
j ·aL

j − ∑
j∈Ik

M0
j ·a0

j

)
+

m

∑
h=1

(
∑

j∈Eh

ML
j ·aL

j − ∑
j∈Ih

M0
j ·a0

j

)
(50)
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wherein the following constraints have been imposed

u0
j = uk, j ∈ Ik ; uL

j = uk, j ∈ Ek ; u0
j = 0, j ∈ Ih ; uL

j = 0, j ∈ Eh , (51)

wherein restrictions on the virtual rotations a0
j and aL

j must also be imposed in ac-
cordance with the particular type of nodal connection under consideration.

Now (50) must be satisfied for all admissible uk, a0
j and aL

j . Null values of these
variations are admissible in all lattice types, and for this choice, the first sum of (50)
must vanish. By choosing u(s) and a(s) to be non-zero in each of the n beams in
succession, the fundamental lemma of calculus of variations then immediately leads
in each beam to the equilibrium equations (38) and (39) in the absence of distributed
load

F′ = 0 , M′ = F× r′ . (52)

With (52) satisfied in each beam all integral expressions in (50) vanish, and the
remaining expression must be satisfied for all uk and for all admissible a0

j and aL
j .

On setting a0
j = 0 and aL

j = 0 and taking all but one of the uk to be zero in succession,
one obtains the nodal force balance equations

∑
j∈Ek

FL
j − ∑

j∈Ik

F0
j = qk , k ∈ K . (53)

If the rotations are unrestricted in a particular node k′ ∈ K, the a0
j and aL

j may be
specified independently for each j ∈ Ek′ ∪ Ik′ . Consequently, the node is equilibrated
only if it transmits no moment to any of the attached beams:

M0
j = 0 , j ∈ Ik′ , ML

j = 0 , j ∈ Ek′ . (54)

Alternative restrictions, such as constrained rotations or concurrent axes of rotation,
can be found in (Steigmann 1996).

Further necessary conditions for lattices (Steigmann 1996)

The second variation of (48) is defined as f̈ = d2 f/dε2(0). Considering weak rela-
tive minimizers, for an equilibrium to be stable, it is necessary that the second vari-
ation of the energy, evaluated at that configuration, is nonnegative. Introducing for
the jth beam M = ∂w/∂κi ei, D = ∂ 2w/∂λ∂κi ei, C = ∂ 2w/∂κiκ j ei⊗ e j together
with the integral expressions

Fj =
∫ L j

0
(∂ 2w/∂λ

2)a2 +a′ ·Ca′+2aD ·a′ds

G j =
∫ L j

0
M ·a′×a−2aF ·a× t−F ·a× (a× r′),

(55)

the non-negativity of the second variation can be written as
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∑
j
(Fj +G j)≥ 0 . (56)

Legendre inequality: Considering local variations a(s) and a(s) in (56) that
vanish identically in all but one of the beams, together with an estimation of the
orders of magnitudes, the Legendre necessary condition is obtained:

(∂ 2w/∂λ
2)e2 + e ·Ce+2eD · e≥ 0 ∀e,e . (57)

This holds at every point s∈ [0,L] in a minimizing configuration. Obvious necessary
conditions for this are

∂
2w/∂λ

2 ≥ 0 and e ·Ce≥ 0 ∀e . (58)

The first requires that the extensional modulus be nonnegative, while the second
states that the tensor of moduli associated with torsion and flexure is nonnegative
definite. The latter result is equivalent to the Legendre necessary condition for inex-
tensible rods for strong relative minimizers (45).

Cable network: For a system of elastic cables, which are modeled by suppress-
ing the dependence of the strain energy (16) on the variable κκκ , the non-negativity of
the second variation induces the conditions

dw/dλ ≥ 0 and d2w/dλ
2 ≥ 0 . (59)

Hence, the cable cannot support a compressive force in stable equilibrium. This
condition is not only necessary but also sufficient.

Cross-References

- Geometrically exact equations for beams
- Principle of virtual work and Lagrange multipliers
- Postulations of continuum mechanics, history of development
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