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Abstract: Using the non-standard geometric structure proposed by Loos [29],
we present a coordinate-free formulation of the theory for time-dependent finite-
dimensional mechanical systems with n degrees of freedom. The state space
containing the system’s information on time, position and velocity is defined
as a (2n+1)-dimensional affine bundle over an (n+1)-dimensional generalized
space-time. The main goal is to present a geometric postulate that character-
izes a second-order vector field whose integral curves describe the motions of a
time-dependent finite-dimensional mechanical system. The core objects of the
postulate are differential two-forms on the state space, called action forms, which
are in a bijective relation with second-order vector fields. The requirements for
a differential two-form to be an action form allow for a coordinate-free definition
of non-potential forces, which may depend on time, position and velocity. Fi-
nally, we show that not only Lagrange’s equations but also Hamilton’s equations
follow directly as mere coordinate representations of the same coordinate-free
postulate.

1 Introduction

In a coordinate-free description of time-independent finite-dimensional mechan-
ical systems the n-dimensional configuration manifold Q and its 2n-dimensional
tangent or cotangent bundles TQ and T ∗Q, respectively, play a central role. For
time-dependent mechanical systems, however, time needs to be included in the
space on which the related physical theory is formulated. A straightforward ap-
proach to incorporate explicit time-dependence is to consider the extended state
space R×TQ, or to extend the phase space as R×T ∗Q. Both are spaces on which
time-dependent Lagrangian and Hamiltonian formalisms have been established,
see [9, 33, 36] and [1, 2], respectively. However, the physical interpretation of
these spaces is problematic because their structure as Cartesian product as-
sumes the existence of an absolute space Q, which is independent of time. This
assumption can be dropped when using the concept of a Galilean manifold as
introduced by Dombrowski and Horneffer [10, 11]. Therein the Galilean man-
ifold M is defined as an (n+1)-dimensional smooth manifold equipped with a
time-structure and a Galilean metric. While the time-structure allows to mea-
sure the temporal distance between two points of the space-time manifold, the
Galilean metric captures the inertia of the mechanical system.

It was Loos in [29, 30], who seized the idea of the Galilean manifold and
defined the state space of a mechanical system as a (2n+1)-dimensional affine
subbundle of the tangent bundle of M . Following Souriau [40], Loos character-
izes the motion of a finite-dimensional mechanical systems using a differential
two-form defined on this state space. The general approach of using two-forms
in this context can be traced back to Élie Cartan’s lectures on integral invariants
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[7]. Including the study of bilaterally and unilaterally constrained mechanical
systems, Gallissot [14] demonstrates that the use of differential two-forms leads
to a far-reaching approach in the description of finite-dimensional mechanical
systems. Souriau’s book [40] clearly pursues the way taken by Élie Cartan and
François Gallissot. Indeed, the link can be formally made because the work of
Gallissot is one of the few references given by Souriau.

By his “Maxwell’s principle”, Souriau [40] focuses on the study of mechani-
cal systems that are subjected exclusively to potential forces. In [29, 30], Loos
recognizes this principle as too restrictive and proposes a geometric theory for
time-dependent finite-dimensional systems that can also deal with nonpotential
forces, i.e., a rigorous differential geometric formulation that can cope with the
requirements from the classical formulations of analytical mechanics, cf. pp. 79
of [35]. For the time-independent case, already Godbillon [15] incorporated non-
potential forces in his theory by studying the geometry of the double tangent
bundle of the configuration manifold. Much of the mathematical structures ex-
posed by Godbillon reappear in the description of time-dependent systems. The
works of Lichnerowicz [28] and of his student Klein [18] deal with the descrip-
tion of mechanical systems involving nonpotential forces within the calculus of
variations.

An alternative branch of research that applies and explores the geometric
structures of the Galilean space-time has emerged under the name Newton–
Cartan theory [44, 16, 11, 20, 12, 31, 38]. Newton–Cartan theory formulates
Newton gravity within an intrinsic geometric framework in an analogue way to
general relativity. More recently, Bekaert [3] has come up with a generalization
of the Newton-Cartan theory in which an extensive discussion on different space-
time models is presented.

Let us come back to Loos’ theory, whose transmission has been quite an
odyssey. In fact, his contributions have almost fallen into oblivion. The main
source [29], which is written in German, is a typescript related to a seminar
held in the winter semester 1981/1982 by Ottmar Loos and Josef Rothleitner at
the University of Innsbruck in Austria. Since the script has never been officially
published, it can only be found at an antiquarian bookseller or one can get it
accidentally from one’s PhD advisor; this is what happened to the first author
of this publication. Ironically, the declared objective of the script [29] was
to make the results known in the French school of mechanics available to the
German-speaking scientific community. With the rigorous definition of time-
dependent nonpotential forces, the typescript written by Loos goes definitively
beyond the French school in those times and also beyond recent findings. Among
other results, only parts of the script are contained in the paper [30] that was
published in English. Nevertheless, until the submission of this work in 2019,
the latter paper has been ignored anyway.1 To the authors’ knowledge, the
discussed results have only partly made their way into the English literature
centered around the standard textbook [1] and the English references therein.
Many of the mathematical results are available in English in [27] and [33]. More
recent publications on the subject such as [32], [34], [6], [39], [4] or [8] ignore the
contributions of Loos. It is not astonishing that one can find recent publications
such as [5], which claim to extend the theory while ignoring the existing results.

One aim of this paper is therefore to communicate and popularize the con-
1According to Google Scholar it has been cited only three times until December 2019.
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tributions of Loos; an objective that has started with the PhD thesis [45]. The
theory of Loos provides a geometric description of finite-dimensional mechani-
cal systems that does not involve restrictive assumptions such as the limitation
to time-independent systems or the exclusion of nonpotential forces. Another
goal is to establish a single postulate from which various classical results about
finite-dimensional mechanical systems can be deduced. In particular, we show
in this paper how Lagrange’s and Hamilton’s equations follow directly as dif-
ferent coordinate representations of the same coordinate-free postulate. In the
time-dependent case, we can thus unite the Lagrangian and the Hamiltonian
side which often appear as “separate” worlds in time-independent formulations.

The present paper uses the language of differential geometry as presented
for example in [26, 25, 42]. In Sect. 2, we introduce frequently-used notation to
facilitate reading and to avoid ambiguities. In Sect. 3, we define the generalized
space-time as Galilean manifold. The state space and the motion of a mechan-
ical system are discussed in Sect. 4. Thereafter, the main achievements of Loos
are presented in the Sects. 5 – 9. In Sect. 10, we study the appearance of inertia
forces when changing the frame of reference in a generalized sense. Moreover,
we give a distinct condition for which a force two-form is a potential force. Sub-
sequently, the Lagrangian and the Cartan one-form are discussed in Sect. 11.
Finally, in Sect. 12, we give a coordinate-free postulate that describes the dy-
namics of a time-dependent finite-dimensional mechanical system subjected to
nonpotential forces.

2 Notation

Let M be a smooth manifold, then TpM denotes the tangent space of M in p.
The tangent bundle of M is denoted as TM . The set of all smooth sections of
a vector bundle E over M is Γ(E), such that the set of all vector fields on M is
given by Vect(M) := Γ(TM). The evaluation of a vector field v ∈ Vect(M) in a
point p ∈M gives

v(p) = (p, vp), where vp ∈ TpM .

We will use an analog notation for tensor fields. To distinguish the evaluation
v(p) of a vector field v in a point p ∈ M from its action as a derivation on a
smooth function f ∈ C∞(M), we write the latter as v[f ]. We denote by Lv
the Lie derivative with respect to the vector field v ∈ Vect(M). Using d for the
exterior derivative, we have the identity

Lvf = v[f ] = df(v)

for any smooth function f ∈ C∞(M). The space Vect(M) is equipped with the
Lie bracket [·, ·] defined as the commutator of derivations on smooth functions.
The space of (differential) k-forms is denoted as Ωk(M) and the set of differential
forms of arbitrary degree as Ω?(M). By v¬ω we denote the interior product
between a vector field v ∈ Vect(M) and a differential form ω ∈ Ω?(M).

We use Einstein’s summation convention implying a summation from 1 to n
whenever an index i appears once as an upper and once as a lower index, e.g.

vi
∂

∂xi
=

n∑
i=1

vi
∂

∂xi
or ∂

∂ui
⊗ ηi =

n∑
i=1

∂

∂ui
⊗ ηi .
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3 Space-time

To model the generalized space-time of an n-dimensional time-dependent finite-
dimensional mechanical system, we introduce an (n+1)-dimensional smooth
manifold M . We assume M to be endowed with a non-vanishing closed one-
form ϑ, which we refer to as time structure on M . By the Poincaré lemma, the
time structure defines local time functions t : M ⊇ U → R such that dt = ϑ

∣∣
U
.

The temporal distance of two events p, q ∈ U is then t(q)− t(p).
A chart (U, φ) of M given by

φ : M ⊇ U → Rn+1, p 7→ φ(p) = (x0, . . . , xn) (1)

is adapted to the time structure if ϑ
∣∣
U

= dx0, i.e., the first coordinate function
x0 is a time function. In this case, the coordinate x0 is a local time coordinate
and we will often use t instead of x0 to denote it. In what follows, we will
restrict our considerations to adapted charts. The existence of adapted charts
is guaranteed by the existence of time functions and the fact that ϑ is nowhere
zero. Therefore, the adapted charts provide an atlas of M . The change of
coordinates

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ), (x0, . . . , xn) 7→ (y0, . . . , yn)

between two adapted charts (U, φ) and (V, ψ) of M with U ∩ V 6= ∅ is given by

y0 = x0 + const.,
yi = ψi ◦ φ−1(x0, . . . , xn

)
, i = 1, . . . , n,

where ψi : V → R denotes the i-th coordinate function of the chart ψ.
The (n+1)-dimensional manifold M is foliated by the time structure ϑ. To

see this, we introduce the space of spacelike vectors in p ∈M as

A0
pM := kerϑp =

{
vp ∈ TpM

∣∣ϑp(vp) = 0
}
⊂ TpM (2)

and the corresponding subbundle of the tangent bundle TM to the generalized
spacetime M as

A0M :=
⋃
p∈M

({
p
}
×A0

pM
)
⊂ TM , (3)

which we call the spacelike bundle of M . Indeed, A0M is a subbundle of the
vector bundle TM because each chart

(
U, φ

)
of an adapted atlas of M induces

the smooth local sections
∂

∂x1 , . . . ,
∂

∂xn
: U → TM (4)

that provide a basis for A0
pM at each p ∈ U . Consequently, A0M is a distribution

of rank n on M defined by the time structure ϑ. This distribution is involutive
by Proposition 19.8 in [26] as dϑ = 0 annihilates the distribution trivially.
By the Frobenius theorem (see Theorem 19.12 in [26]), the distribution (3)
is completely integrable. Moreover, A0M defines a foliation according to the
global Frobenius theorem (Theorem 19.21 in [26]). The leafs of this foliation
are just the codimension-one submanifolds of synchronous events that can be
distinguished in classical mechanics.
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In order to model the inertia of the system, the vector bundle A0M is
equipped with a bundle metric2 g called Galilean metric. The Galilean met-
ric is a tensor field, for which in each p ∈ M the tensor gp is symmetric and
positive definite.

The above construction can be summarized in the following definition.

Definition 1 ([29], pp. 5–6). An (n+1)-dimensional smooth manifoldM with a
time structure ϑ and a bundle metric g that endows the subspaces A0

pM with an
inner product for all p ∈M is called a Galilean manifold denoted as (M,ϑ, g).

4 State space and motion

In the previous section, we defined the spacelike bundle A0M of a manifold
M equipped with a time structure ϑ ∈ Ω1(M). Similarly, we define the time-
normalized bundle as the affine subbundle of TM given by

A1M :=
⋃
p∈M

({
p
}
×A1

pM
)
⊂ TM , (5)

where in each point p ∈ M , the affine space of time-normalized vectors in p is
defined as

A1
pM :=

{
vp ∈ TpM

∣∣ϑp(vp) = 1
}
⊂ TpM. (6)

The evolution of the configuration of a mechanical system is a time-para-
metrized curve

γ : R ⊇ I →M, τ 7→ γ(τ) (7)

in the Galilean manifold (M,ϑ, g). A time-parametrized curve is defined as a
smooth sequence of events with ϑ(γ̇) = 1, where γ̇ denotes the tangent field
along γ. The local time coordinate t increases monotonically along a time-
parametrized curve because locally

1 = ϑ(γ̇) = dt(γ̇) = γ̇[t] = d
dτ
(
t ◦ γ(τ)

)
. (8)

Consequently, the time coordinate is an affine function along γ, i.e.,

t ◦ γ(τ) = τ + τ0,

where τ0 ∈ R is a constant. The condition ϑ(γ̇) = 1 motivates the following
definition of the state space of a mechanical system.

Definition 2. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional
mechanical system. The state space of the mechanical system is the time-
normalized bundle A1M .

2If the fibers of a vector bundle are equipped with an inner product that smoothly depends
on the point in the base manifold, one speaks of a bundle metric. See Definition 1.8.11 in
[17]. A bundle metric is the generalization of a Riemannian metric on a manifold to arbitrary
vector bundles. Indeed, a Riemannian metric on a manifold is just a bundle metric on its
tangent bundle. For this reason some authors, see Definition 6.42 in [25] or p. 308 in [42],
designate a bundle metric as Riemannian metric. We abstain from doing so since it might
lead to confusion.
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The coordinate vector fields induced by an adapted chart φ : p 7→
(
t, x1 . . . , xn

)
can be used to express a time-normalized vector vp ∈ A1

pM as

vp = ∂

∂t

∣∣∣∣
p

+ ui
∂

∂xi

∣∣∣∣
p

. (9)

Accordingly, any adapted chart φ induces a corresponding natural chart of the
state space A1M as

Φ: A1M ⊇ π−1(U)→ R2n+1,
(
p, vp

)
7→
(
t, x1, . . . , xn, u1, . . . , un

)
, (10)

where
π : A1M →M, (p, vp) 7→ p (11)

is the natural projection of the affine bundle A1M . The state space A1M is
canonically endowed with the time structure

ϑ̂ := π∗ϑ , (12)

which is the pullback of the time structure of M by the natural projection (11).
The natural chart (10) is an adapted chart with respect to the time struc-
ture (12) of A1M because it holds that

ϑ̂
∣∣
π−1(U) = dt.

A second-order curve is a curve

β : R ⊇ I → A1M, τ 7→ β(τ) (13)

in the state space A1M that is time-parametrized with respect to ϑ̂, i.e. ϑ̂(β̇) = 1,
and satisfies the condition

β =
(
π ◦ β

).
. (14)

Hence, the curve β corresponds to the (time-normalized) tangent field along its
(time-parametrized) projection γ := π ◦ β onto the base manifold M , i.e., by
condition (14) it follows that

β = γ̇ : I → A1M, τ 7→
(
γ(τ), γ̇γ(τ)

)
. (15)

Definition 3. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional
mechanical system and let A1M be the corresponding state space. A motion of
the mechanical system is a second-order curve in the state space.

Let a second-order curve β : I → A1M be the integral curve of a local vector
field Z ∈ Vect

(
A1M

)
, i.e.,

β̇(τ) = Z
(
β(τ)

)
, (16)

then the vector field Z cannot be arbitrary. First, the latter needs to be time-
normalized such that

ϑ̂(Z) = 1. (17)

Second, the vector field Z needs to obey the second-order condition

Dπ Z = idA1M . (18)
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Indeed, condition (14) together with (16) lead to

β =
(
π ◦ β

). = Dπ β̇ = Dπ Z ◦ β, (19)

where Dπ : T
(
A1M

)
→ TM denotes the differential of the natural projec-

tion (11). Because condition (19) has to hold for arbitrary integral curves
β : I → A1M , the second-order condition (18) follows.

A vector field Z ∈ Vect(A1M) that satisfies conditions (17) and (18) is
called a second-order (vector) field. Second-order fields can be equivalently
characterized using local coordinates by requiring a vector field Z ∈ Vect(A1M)
to be locally expressible in every natural chart (10) as

Z = ∂

∂t
+ ui

∂

∂xi
+ Zi

∂

∂ui
, (20)

with n smooth functions Zi. From the local expression (20) it is apparent
that second-order fields can only differ by the coefficients of their ∂/∂ui part.
Moreover, the differential equation (16) related to a second-order field Z is a
system of second-order differential equations in first-order form

ṫ(τ) = 1,
ẋ(τ) = u(τ),
u̇(τ) = Z

(
t(τ),x(τ),u(τ)

)
,

(21)

where we adopt the notation that quantities a1, . . . , an are gathered as Rn-tuples
a := (a1, . . . , an). The first equation of (21) can be solved to

t(τ) := t ◦ β(τ) = τ + τ0, (22)

where τ0 ∈ R denotes a constant. The remaining equations of (21) are equivalent
to the second-order differential equations

ẍ(τ) = Z
(
t(τ),x(τ), ẋ(τ)

)
.

In the study of finite-dimensional mechanical systems, we are interested in
modeling the second-order field Z, which characterizes all possible motions of the
system by (16). Differential forms are particularly useful for the characterization
of vector fields. With the time structure ϑ, we have already used a differential
one-form to define the sets of spacelike (2) and of time-normalized vectors (6)
on M , respectively. Furthermore, we have used the pullback ϑ̂ of the time
structure ϑ on M to characterize time-normalized vector fields on A1M (see
equation (17)). From the local expression (20), we deduce a characterization
of second-order fields using differential forms. We define the local one-forms
θ1, . . . , θn ∈ Ω1(π−1(U)) as

θi := dxi − uidt, with i = 1, . . . , n (23)

and formulate the second-order condition as

Z ∈ ker(θ1) ∩ · · · ∩ ker(θn) and ϑ̂(Z) = 1,

i.e., on π−1(U) ⊆ A1M the vector field Z on A1M needs to be time-normalized
and it has to lie in the distribution defined by the differential one-forms (23).
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The remaining n free coefficients in the local representation of Z can be pre-
scribed by requiring Z to lie in the distribution on A1M defined by the n one-
forms

λi := dui − Zidt, with i = 1, . . . , n. (24)

Vector and covector fields (or one-forms) on the state space A1M are sections
of the bundles T (A1M) and T ∗(A1M), respectively. Therefore, we start by
studying the geometric structure of these two vector bundles following [29].

5 Galilean manifolds and their related bundles

The differential of the natural projection (11), Dπ : T (A1M)→ TM , defines the
vertical bundle

Ver(A1M) := ker Dπ =
⋃

a∈A1M

(
{a} × ker Dπa

)
, (25)

which is a subbundle of the tangent bundle T (A1M). For any point a ∈ A1M
the space of vertical vectors in a is denoted by

Vera(A1M) = ker Dπa =
{
w ∈ Ta(A1M)

∣∣ Dπa(w) = 0
}
. (26)

A section V ∈ Γ
(
Ver(A1M)

)
of the vertical bundle is called a vertical vector field.

Let
(
U, φ

)
be an adapted chart of M and consider the corresponding natural

chart (10) on the neighbourhood π−1(U) of A1M . A vertical vector field V can
then be expressed as

V = V i
∂

∂ui
,

because the vectors
∂

∂u1

∣∣∣∣
a

, . . . ,
∂

∂un

∣∣∣∣
a

(27)

provide a basis of Vera(A1M) for points a ∈ π−1(U) ⊆ A1M . The vertical
subbundle (25) naturally appears in the study of second-order fields because
the difference of two second-order fields is always a vertical vector field. This
can be seen from the local expression (20) of a second-order field.

The space Vera(A1M) defined by (26) can be also seen as the tangent space to
A1
pM at the point a ∈ A1M with p = π(a). Since A1

pM is the affine hyperplane
in TpM defined by the equation ϑp(v) = 1 for all v ∈ TpM , the tangent space
to A1

pM can be identified with kerϑp = A0
pM defined in (2). Accordingly, we

have the pointwise isomorphism

Vera
(
A1M

) ∼= A0
π(a)M (28)

for all a ∈ A1M . This isomorphism can be locally expressed as

∂

∂ui

∣∣∣∣
a

7→ ∂

∂xi

∣∣∣∣
π(a)

(29)

using the basis vectors from (27) and (4).
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By the isomorphism (28), the bundle metric g (see Definition 1) on the bun-
dle A0M of spacelike vectors induces a bundle metric ĝ on the bundle Ver(A1M)
of vertical vectors that is defined as

ĝa

(
∂

∂ui

∣∣∣∣
a

,
∂

∂u j

∣∣∣∣
a

)
:= gπ(a)

(
∂

∂xi

∣∣∣∣
π(a)

,
∂

∂x j

∣∣∣∣
π(a)

)
, (30)

for all a ∈ A1M . While the bundle metric g on A0M can be locally written as

g = gij dxi ⊗ dx j (31)

it follows by (30) that
ĝ = gij◦π dui ⊗ du j . (32)

For the sake of brevity, we will often write gij instead of gij◦π for the coefficients
in (32).

An arbitrary tangent vector w ∈ Ta(A1M) is mapped to a spacelike vector
at the point π(a) by the map

ξ : Ta(A1M)→ A0
π(a)M, w 7→ Dπa(w)− ϑπ(a)

(
Dπa(w)

)
a . (33)

To see this, we need to check if ξ(w) lies in the kernel of the time structure ϑ.
Using p = π(a), we calculate that

ϑp
(
ξ(w)

)
= ϑp

(
Dπa(w)

)
− ϑp

(
Dπa(w)

)
ϑp
(
a
)

= 0

because ϑp(a) = 1. Using the concatenation of the isomorphism (28) and the
map (33), we can define a vector bundle homomorphism over A1M

µ : T (A1M)→ Ver(A1M), (34)

which we call the vertical homomorphism of the state space A1M . Its local
expression with respect to the natural chart (10) is given by

µ
∣∣
π−1(U) = ∂

∂ui
⊗ θi = ∂

∂ui
⊗
(
dxi − uidt

)
,

where the θi are the one-forms of (23). Apparently, the map (34) is surjective
and it holds that µ(V ) = 0 for all local sections V of Ver(A1M) and that
µ(Z) = 0 for all second-order fields Z.3 The map (34) defines an endomorphism
of the bundle T (A1M) when considered as map

µ : T (A1M)→ T (A1M).

There is no canonically defined ‘horizontal’ subbundle

Hor(A1M) :=
⋃

a∈A1M

(
{a} ×Hora(A1M)

)
⊂ T (A1M) (35)

3A theory for time-independent mechanical systems can be formulated on the tangent
bundle of a time-independent configuration manifold. We refer to the work of Godbillon [15]
for such a presentation. Godbillon uses a similar homomorphism as (34) that canonically
exists on the double tangent bundle of any differentiable manifold. It is known as the vertical
endomorphism of the double tangent bundle (see [15, Chapter X] or [33, Section 2]).
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that would complement the vertical bundle Ver
(
A1M

)
such that the tangent

bundle T
(
A1M

)
would split as

T (A1M) = Hor(A1M)⊕Ver(A1M) . (36)

In the study of tangent bundles (and double tangent bundles), it is well-known
that the choice of a particular second-order field induces such a splitting, see
for example [46] or [33]. There are several ways to define the horizontal bundle
that results from the selection of a second-order field Z ∈ Vect(A1M).

Following [30, p. 280], we consider the vector bundle homomorphism

η : T (A1M)→ T (A1M) (37)

defined by
η(X) = 1

2
(
[Z, µ(X)]− µ([Z,X]) +X − ϑ̂(X)Z

)
(38)

for all X ∈ Vect
(
A1M

)
. Indeed, one easily verifies that

η
(
fX + gY

)
= fη

(
X
)

+ gη
(
Y
)

for all f, g ∈ C∞(A1M) and all X,Y ∈ Vect
(
A1M

)
such that (38) defines a

vector bundle homomorphism over A1M . The local coordinate expression of η
reads

η = ∂

∂ui
⊗ ηi = ∂

∂ui
⊗
(

dui − Zidt− 1
2
∂Zi

∂u j
(
dx j − u jdt

))
,

where we have introduced the one-forms

ηi := dui − Zidt− 1
2
∂Zi

∂u j
(
dx j − u jdt

)
.

Note that the coefficients Zi denote the defining coefficients of the second-order
field Z from (20). The vector bundle homomorphism η has the property that

η
∣∣
Ver(A1M) = idVer(A1M).

Hence, it holds that η ◦ η = η such that η is a projection onto Ver
(
A1M

)
and

consequently
T
(
A1M

)
= ker η ⊕Ver

(
A1M

)
.

In view of (36), the kernel of η defines a horizontal subbundle

Hor(A1M) := ker η .

One can easily convince oneself, that kerµ∩ker η is a line bundle that is spanned
by the second-order field Z.

6 Basic and semi-basic differential forms

We have already seen that differential forms can be used to characterize vector
fields. There are two types of differential forms that will reveal useful in the
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definition of forces, the so-called basic and semi-basic forms. The natural pro-
jection π : A1M → M is a surjective submersion. Hence, the pullback by the
natural projection

π∗ : Ω?(M)→ Ω?(A1M)
is an injection of the differential forms on M to those on A1M . These forms
on A1M that are given by im π∗ ⊂ Ω?(A1M) are called basic differential forms,
because they result from pulling differential forms on the base manifoldM back
to A1M .

A differential l-form ω on A1M is called semi-basic if ω
(
X1, . . . , Xl

)
= 0 as

soon as one of the vector fields Xi is vertical, or differently said, if the interior
product V ¬ω vanishes for any vertical vector field V . An equivalent statement
is that the local representation of ω with respect to the dual basis induced
by the natural chart (10) does not contain terms in du1, . . . ,dun. The chart
representations of the coefficients however may depend on u1, . . . , un, contrary
to those of basic forms. Note that basic forms are semi-basic.

The vertical homomorphism (34) allows us to define a differentiation oper-
ation4 on differential forms on A1M with the property that the subalgebra of
semi-basic forms is closed under its operation. Using the vertical homomor-
phism, we first define the derivation

Dµ : Ω?(A1M)→ Ω?(A1M)

by the condition

(Dµω)(X1, . . . , Xl) :=
l∑
i=1

ω
(
X1, . . . , µ(Xi), . . . , Xl

)
, (39)

where X1, . . . , Xl are arbitrary vector fields on A1M . The operator Dµ is linear,
does not alter the degree of the form, is distributive over the wedge product and
satisfies

Dµ f = 0, Dµ(dxi) = Dµ(dt) = 0, Dµ(dui) = dxi − uidt,

where f is a smooth function on A1M . Using (39) and the exterior derivative d,
we define the linear operator

∂ := Dµ ◦ d− d ◦ Dµ.

The operator ∂ is an anti-derivation on the exterior algebra of differential forms,
increases the degree of a form by one and obeys the following rules

∂f = ∂f

∂ui
(dxi − uidt), ∂(dxi) = ∂(dt) = 0, ∂(dui) = dui ∧ dt, (40)

where again f denotes a smooth function on A1M . Moreover, it holds that

∂ ◦ d = −d ◦ ∂ (41)
4The vertical homomorphism is an example of a vector-valued differential form. It holds

in general that vector-valued differential forms come along with certain derivations. We refer
to [13] for the general theory. We will make use of the differential concomitant of the vertical
homomorphism (34) while in time-independent mechanics, the differential associate of the
vertical endomorphism of the double tangent bundle is of interest (see [15, Chapters X and
XI] as well as [33, Section 2]). See also [19].
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because of d2 = 0. However, ∂2 6= 0 but

∂2ω = ϑ̂ ∧ ∂ω, (42)

where ϑ̂ denotes the time structure on A1M . To prove (42), it is enough to see
that ∂2 and ω 7→ ϑ̂ ∧ ∂ω are derivations that coincide on zero- and one-forms.
By induction (42) holds for forms of arbitrary degree. From the rules (40), it
becomes obvious that ∂ maps semi-basic forms to semi-basic forms. Let Z be a
second-order field and let ω be a semi-basic l-form. Then Z¬ω is a semi-basic(
l−1

)
-form that is independent of the specific choice of Z. Indeed, if Z ′ denotes

another second-order field, then it holds that Z ′ = Z + V where V is a vertical
vector field. The following formula holds

∂
(
Z¬ω)+ Z¬∂ω + ϑ̂ ∧

(
Z¬ω) = lω. (43)

To prove (43), one considers that the left-hand and the right-hand side represent
derivations of the algebra of semi-basic differential forms that agree on the
semi-basic zero-forms (smooth functions) and on the semi-basic one-forms and,
therefore, are equal by induction.

7 Action form of a second-order field

In the study of finite-dimensional mechanical systems, we are interested in mod-
eling the second-order field Z, whose integral curves define the motions of the
mechanical system. As mentioned at the end of Section 4, differential forms are
particularly useful for the characterization of vector fields. For this purpose, as
it was suggested by [29, p. 20],5 the surjective vector bundle homomorphisms
η : T (A1M) → Ver(A1M) and µ : T (A1M) → Ver(A1M) together with the bun-
dle metric (30) can be used to define a differential two-form Ω on A1M as

Ω(X,Y ) := ĝ
(
η(X), µ(Y )

)
− ĝ
(
η(Y ), µ(X)

)
, (44)

for all X,Y ∈ Vect
(
A1M

)
. Because η depends on the choice of a second-order

field Z, we call Ω the action form of Z. The local expression of the action
form (44) reads

Ω
∣∣
π−1(U) = gij η

i ∧ θ j

= gij

(
dui − Zidt− 1

2
∂Zi

∂uk
(
dxk − ukdt

))
∧
(
dx j − u jdt

)
.

(45)

The following theorem gives necessary and sufficient conditions for a two-form
to be the action form of a second-order field.

Theorem 1 ([29], p. 21 and p. 24). Let
(
M,ϑ

)
be a manifold with time structure.

A two-form Ω on A1M is the action form of a second-order field Z if and only
if it satisfies the following conditions:

(i) Ω vanishes on kerµ, i.e.,
Ω
(
X,Y

)
= 0

for all X, Y with µ(X) = µ(Y ) = 0.
5See also p. 280 in [30].
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(ii) Ω defines a bundle metric g on A0M , i.e., the matrix

gij = Ω
(

∂

∂ui
,
∂

∂x j

)
is symmetric and positive definite for all charts.

(iii) ∂Ω = 0.

The second-order field Z is the only vector field on A1M for which

Z¬Ω = 0, ϑ̂
(
Z
)

= 1.

Proof. The necessity of (i) is clear by definition (44) and the necessity of (ii)
follows directly from the local expression (45). Direct calculation with (45) and
the rules (40) shows that ∂Ω = 0. We have just proven, that the action form of
Z defined by (44) has the properties (i)–(iii).

To prove sufficiency of (i)–(iii), we assume the two-form Ω to satisfy these
conditions. Consider the vector bundle homomorphism

f̂ : T (A1M)→ T ∗(A1M) (46)

defined by
f̂(X) = X¬Ω. (47)

for all X ∈ Vect(A1M). By property (i), the homomorphism (47) cannot have
full rank 2n+1. Because the 2n one-forms ∂/∂ui¬Ω, ∂/∂xi¬Ω are linearly
independent, the homomorphism has constant rank 2n. Indeed, by properties
(i) and (ii), it follows from ai∂/∂ui¬Ω + bi∂/∂xi¬Ω = 0 that

0 =
(
ai

∂

∂ui
¬Ω
)(

∂

∂u j

)
+ bi

(
∂

∂xi
¬Ω
)(

∂

∂u j

)
= ai Ω

(
∂

∂ui
,
∂

∂u j

)
+ bi Ω

(
∂

∂xi
,
∂

∂u j

)
= 0− bigij ,

i.e., that bi = 0, and thereby that

0 =
(
ai

∂

∂ui
¬Ω
)(

∂

∂x j

)
= ai Ω

(
∂

∂ui
,
∂

∂x j

)
= aigij ,

i.e., that ai = 0. For reasons of brevity, we also say that Ω has rank 2n.
Consequently,

ker Ω := ker f̂ =
{

(a,Xa) ∈ T (A1M)
∣∣ Xa
¬Ωa = 0

}
is a line bundle.

For a subspace W ⊆ Ta(A1M), the orthogonal complement with respect to
the bilinear form Ωa is defined as

W⊥ =
{
Xa ∈ Ta(A1M)

∣∣ Ωa(Xa, Ya) = 0 ∀Ya ∈W
}
.

By condition (i) kerµa ⊆ (kerµa)⊥, which implies

n+ 1 = dim kerµa ≤ dim(kerµa)⊥ .

13



By definition, the orthogonal complement
(
Ta(A1M)

)⊥ coincides with the one-
dimensional subspace ker Ωa. This leads to an upper bound of

dim(kerµa)⊥ = dimTa(A1M)− dim kerµa + dim kerµa ∩
(
Ta(A1M)

)⊥
≤ (2n+ 1)− (n+ 1) + 1 = n+ 1 ,

where we have used the dimension formula of Proposition 2.13 in [45]. By
dimension, we conclude that

kerµa = (kerµa)⊥ .

It is easy to see, that any Za ∈ ker Ωa is an element of (kerµa)⊥ and therefore

ker Ωa ⊆ (kerµa)⊥ = kerµa .

By (ii), Za cannot be a vertical vector. Moreover, since kerµa is spanned by
Vera(A1M) and ∂/∂t|a + ui(a)∂/∂xi|a, there exists an element Za in ker Ωa of
the form

Za = ∂

∂t

∣∣∣∣
a

+ ui(a) ∂

∂xi

∣∣∣∣
a

+ Zi(a) ∂

∂ui

∣∣∣∣
a

. (48)

which is the sole vector in ker Ωa satisfying ϑ̂a(Za) = 1. Thus, the conditions
Z¬Ω = 0 and ϑ̂(Z) = 1 characterize the unique second-order field Z pointwise
given by (48).

It remains to be shown that Ω is the action form of the second-order field
Z defined by (44). For this, we consider the basis Z, ∂/∂xi, ∂/∂ui and its dual
one-forms dt, θi = dxi − uidt, λi = dui − Zidt. By (i) and (ii), Ω has the form

Ω = Ω
(

∂

∂ui
,
∂

∂x j

)(
dui − Zidt

)
∧
(
dx j − u jdt

)
+ 1

2Ω
(

∂

∂xi
,
∂

∂x j

)(
dxi − uidt

)
∧
(
dx j − u jdt

)
= gij

(
dui − Zidt

)
∧
(
dx j − u jdt

)
+ 1

2Ω
(

∂

∂xi
,
∂

∂x j

)(
dxi − uidt

)
∧
(
dx j − u jdt

)
.

Direct calculation of ∂Ω = 0 shows that

Ω
(

∂

∂xi
,
∂

∂x j

)
= 1

2

(
gik

∂Zk

∂u j
− gjk

∂Zk

∂ui

)
and, by (45), proves the assertion.

In view of (23) and (24), one might be tempted to use the locally defined
two-form

Ω′ = gij λ
i ∧ θj = gij

(
dui − Zidt

)
∧
(
dx j − u jdt

)
, (49)

to characterize the second-order field Z. Computations in local coordinates show
that Ω′ has the properties (i) and (ii) of Theorem 1 and defines a second-order
field Z by Z¬Ω′ = 0 and ϑ̂(Z) = 1. As discussed in [30] however, this two-form
is not well-defined as it is not independent of the choice of the adapted chart.

Note that the two-form (49) can essentially be found in [14], p. 153, and [40],
p. 132 (respectively on p. 129 of [41]). As the authors of the references do not
work on Galilean manifolds, some caution is advised here. Nevertheless, both
authors define a two-form which looks like (49).
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8 Forces

Consider two second-order fields Z1 and Z2 on the state space A1M of a me-
chanical system. As two second-order fields can only differ by a vertical vector
field, it holds that

Z2 = Z1 + V, (50)

where V is a smooth section of the vertical bundle Ver(A1M). This vertical
vector field can be interpreted as (relative) acceleration between Z1 and Z2.
The bundle metric ĝ defined in (30) induces the bijection

ĝ · : Γ
(
Ver(A1M)

)
→ Γ

(
Ver∗(A1M)

)
, V 7→ F = ĝ · V (51)

between smooth sections of the vertical bundle Ver(A1M) and sections of the
dual of the vertical bundle Ver∗(A1M), where ĝ · V is the one-form ĝ( · , V ).

If we consider the Galilean metric to model the mass of a finite-dimen-
sional mechanical system and if we interpret vertical vector fields as (relative)
accelerations, then with the bijection (51) we are facing Newton’s second law
that says “force F is equal to mass ĝ times acceleration V ”. This motivates the
following definition.

Definition 4. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional
mechanical system and let A1M be the corresponding state space. A force is a
smooth section of the dual of the vertical bundle Ver∗(A1M), i.e., a force is a
C∞(A1M)-linear map

F : Γ(Ver(A1M))→ C∞(A1M) (52)

on the space of vertical vector fields.

Consider the action forms Ω1 and Ω2 of the respective second-order fields
Z1 and Z2. We introduce the differential two-form Φ by which the action forms
Ω1 and Ω2 differ, i.e.,

Ω2 = Ω1 + Φ. (53)

It is clear that ∂Φ = 0 because ∂Ω1 = ∂Ω2 = 0 by Theorem 1. In terms of
the coordinate fields induced by a natural chart, the coefficients of the force
F = Fidui, which is associated to V = Z2 − Z1 by (51), are given by

Fi = gijV
j = gij(Zj2 − Z

j
1) .

Using the representation of the action form in the natural chart (45), the two-
form Φ = Ω2 − Ω1 is given as

Φ = gij(Zi2 − Zi1) dx j∧dt+ 1
2gij

(
∂Zi2
∂uk

− ∂Zi1
∂uk

)
(dx j−u jdt)∧(dxk−ukdt)

= Fj dx j∧dt+ 1
2
∂Fj
∂uk

(dx j−u jdt
)
∧(dxk−ukdt),

(54)

where the last equality uses that the coefficients gij = gij ◦π are independent of
u1, . . . , un and form a symmetric matrix. The local expression shows that the
two-form Φ is semi-basic and that it can be associated with the force F .
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Definition 5. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional
mechanical system and let A1M be the corresponding state space. A force two-
form is a differential two-form Φ ∈ Ω2(A1M) that is semi-basic and satisfies
∂Φ = 0.

The following theorem establishes a bijective relation between forces (52)
and force two-forms (54).

Theorem 2 ([29], p. 32). Let Z ∈ Vect(A1M) be any second-order field. The
formulae

ϕ = F ◦ µ, ϕ = −Z¬Φ, Φ = − 1
2
(
∂ϕ+ ϑ̂ ∧ ϕ

)
define bijections between

(i) the forces, i.e., smooth sections F ∈ Γ(Ver∗(A1M)),

(ii) the semi-basic one-forms ϕ with Z¬ϕ = 0,

(iii) the force two-forms, i.e., the semi-basic two-forms Φ with ∂Φ = 0.

In local coordinates given by a natural chart (10), it holds that

F = Fi dui, (55)
ϕ = Fi(dxi − uidt), (56)

Φ = Fi dxi ∧ dt+ 1
2
∂Fi
∂u j

(dxi − uidt) ∧ (dx j − u jdt). (57)

Proof. Because for any vertical vector field V it holds that µ
(
V
)

= µ(Z) = 0,
F ◦ µ is a semi-basic one-form with Z¬(F ◦ µ) = 0. Conversely, a semi-basic
one-form ϕ with Z¬ϕ = 0 vanishes on kerµ and, therefore, defines a linear form
on

T (A1M)/ kerµ ∼= imµ = Ver(A1M). (58)

The isomorphism (58) follows by the first isomorphism theorem [37, Theo-
rem 3.5]. This proves the bijection between (i) and (ii). According to the
properties (40) and (42), it holds that

∂(∂ϕ+ ϑ̂ ∧ ϕ) = ∂2ϕ+ ∂ϑ̂ ∧ ϕ− ϑ̂ ∧ ∂ϕ

= ϑ̂ ∧ ∂ϕ− ϑ̂ ∧ ∂ϕ = 0

and Z¬(−Z¬Φ) = −Φ(Z,Z) = 0. Finally, since Z¬ϕ = 0, it holds that

−Z¬(− 1
2 (∂ϕ+ ϑ̂ ∧ ϕ)

)
= 1

2
(
Z¬∂ϕ+ (Z¬ ϑ̂) ∧ ϕ− ϑ̂ ∧ (Z¬ϕ)

)
= 1

2 (Z¬∂ϕ+ ϕ) = ϕ,

where in the last equality we have used Z¬∂ϕ = ϕ induced by the rule (43).
Using the same rule we have

− 1
2
(
∂(−Z¬Φ) + ϑ̂ ∧ (−Z¬Φ)

)
= 1

2
(
∂(Z¬Φ) + ϑ̂ ∧ (Z¬Φ)

)
= Φ .

This proves the assertion. The coordinate expressions (55) to (57) follow by
straightforward computation.
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Theorem 3 ([29], p. 33). Let Ω denote the action form of a mechanical system,
let Z be its related second-order field and let F be a force. By the one-to-one
correspondence (51), F is associated with a vertical vector field V . Moreover, F
can be uniquely related to a force two-form Φ by Theorem 2. It then holds that
the vector field Z ′ = Z + V is the second-order field related to the action form
Ω′ = Ω + Φ.

Proof. One easily verifies that Ω′ = Ω+Φ is an action form, i.e., that it respects
the properties from Theorem 1. Furthermore, one observes that Ω′ and Ω induce
the same Galilean metric g. It remains to be shown that Z ′¬Ω′ = (Z+V )¬(Ω+
Φ) = 0. Because Z¬Ω = 0 and V ¬Φ = 0, it holds that

Z ′¬Ω′ = (Z + V )¬(Ω + Φ) = V ¬Ω + Z¬Φ.

By definition (44), it holds for V ¬Ω that(
V ¬Ω

)
(Y ) = ĝ

(
η(V ), µ(Y )

)
− ĝ
(
η(Y ), µ(V )

)
= ĝ
(
V, µ(Y )

)
= F ◦ µ(Y ),

where we have used the properties µ(V ) = 0 and η(V ) = V of the vector bundle
homomorphisms µ and η. The last equality follows by (51) and the symmetry
of ĝ. By Theorem2, it holds that Z¬Φ = −F ◦ µ and consequently

Z ′¬Ω′ = V ¬Ω + Z¬Φ = 0.

9 Modeling inertia – the kinetic energy

We experience that whenever we perceive the motion of a mechanical system,
we do this relative to some reference. For instance, we observe the motion of a
car relative to the street or the motion of the sun relative to the horizon. To
account for this when modeling the inertia of a mechanical system, we introduce
a reference field as a time-normalized vector field R defined on a neighborhood
UR of M , i.e.,

R : M ⊇ UR → A1M

with π ◦ R = idM , where again (M,ϑ, g) denotes the Galilean manifold of the
mechanical system. For an adapted chart φ(p) = (t, x1, . . . , xn) of M , the
reference field R = ∂/∂t is said to be the resting field induced by the chart.

In (13), we have defined the motion of a mechanical system to be a second-
order curve β = γ̇ : I → A1M , where γ = π ◦ β : I → M denotes a time-
parametrized curve in the Galilean manifold (M,ϑ, g). We define the relative
velocity of the motion γ̇ with respect to the reference field R as the vector field
along γ which is pointwise given by

γ̇γ(τ) −Rγ(τ) ∈ A0
γ(τ)M.

As a difference of time-normalized vectors, the relative velocity is spacelike and
can therefore be measured by the Galilean metric g, which models the mass of
a mechanical system. This is accounted for in the following definition.
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Definition 6. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional me-
chanical system and let A1M be the corresponding state space. The kinetic en-
ergy of the mechanical system with respect to a reference fieldR : M ⊇ UR → A1M
is the function

TR : π−1(UR)→ R, (p, vp) 7→ 1
2 gp(vp −Rp, vp −Rp) , (59)

with vp ∈ A1
pM and R(p) = (p,Rp).

The kinetic energy of the motion (15) with respect to the reference field R
is then given by

TR
(
γ̇(τ)

)
= 1

2 gγ(τ)
(
γ̇γ(τ) −Rγ(τ), γ̇γ(τ) −Rγ(τ)

)
.

Let (U, φ) be an adapted chart of M and let us assume for simplicity that
U ⊆ UR. Moreover, let R = ∂/∂t+Ri∂/∂xi be an arbitrary reference field. In
the natural chart induced by φ, the kinetic energy (59) locally reads

TR = 1
2giju

iu j − gijuiR j + 1
2gijR

iR j , (60)

where we have used the local expression of the metric (31) and the symmetry
of the bilinear map g. By equation (60), the kinetic energy is the sum of

TR,2 := 1
2giju

iu j , TR,1 := −gijuiR j , and TR,0 := 1
2gijR

iR j .

The number in the subscript describes the respective degree of positive homo-
geneity6 of each term with respect to (u1, . . . , un). In the special case where R
is a resting field, i.e. R = ∂/∂t, the local expression of the kinetic energy (60)
reduces to

TR = 1
2giju

iu j .

Definition 7. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional
mechanical system and let ϑ̂ = π∗ϑ be the time structure of the state space
A1M . The kinetic energy TR with respect to a reference field R of the mechanical
system induces the action form

ΩR := d(TRϑ̂+ ∂TR) . (61)

The following proposition justifies Definition 7.

Proposition 1 ([29], p. 35). The differential two-form ΩR defined by (61) is
indeed an action form that induces a bundle metric g on A0M . The difference
between an (arbitrary) action form Ω and ΩR is a force two-form ΦR := Ω−ΩR.

Proof. To check that (61) defines an action form, we have to check the properties
(i) to (iii) from Theorem 1. According to the rules (40), (41), and (42) of ∂, it
holds that

∂ΩR = −d(∂TR ∧ ϑ̂+ ∂2TR) = −d(∂TR ∧ ϑ̂+ ϑ̂ ∧ ∂TR) = 0,
6Let f : Rn → R be differentiable. The function f is called positively homogeneous of

degree k if f(αx) = αkf(x) for all α ∈ R+
0 and all x ∈ Rn.
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which shows that ΩR enjoys property (iii). To prove properties (i) and (ii), we
use the rules (40) to arrive at the local expression

TRϑ̂+ ∂TR = TR dt+ ∂TR
∂ui

(dxi − uidt). (62)

With (62), definition (61) leads to

ΩR = ∂TR
∂xi

dxi ∧ dt+ d
(
∂TR
∂ui

)
∧
(
dxi − uidt

)
=
(

d
(
∂TR
∂ui

)
− ∂TR
∂xi

dt
)
∧
(
dxi − uidt

)
,

(63)

It is clear from the expression (63) that ΩR vanishes on kerµ. Moreover, it
follows that

ΩR
(

∂

∂ui
,
∂

∂xj

)
= ∂2TR
∂ui∂uj

= gij .

Therefore, ΩR is an action form by Theorem 1. As seen in (54), the difference
of two action forms Ω − ΩR is semi-basic. The assertion that ΦR = Ω − ΩR is
a force two-form follows because ∂(Ω− ΩR) = ∂Ω− ∂ΩR = 0.

10 Classification of forces

10.1 Inertia forces
If in classical mechanics the motion of a particle is studied with respect to a
non-inertial frame of reference,7 additional force effects appear in the equations
of motions. These forces that result from the use of a non-inertial frame of
reference instead of an inertial one are referred to as fictitious, apparent or as
inertia forces. Two examples are the Coriolis force and the centrifugal force.
In our presentation, these forces are provided by the inertia force two-form
stemming from a change in reference field.

Let R and R̃ be two reference fields and Ω be a given action form. By
Proposition 1, we know that Ω decomposes as

Ω = ΩR + ΦR = ΩR̃ + ΦR̃

and, therefore,
ΩR̃ − ΩR = ΦR − ΦR̃.

Being the difference of ΦR and ΦR̃, the two-form ΩR̃ − ΩR is a force two-form

ΨR,R̃ := ΩR̃ − ΩR , (64)

which we call the inertia force two-form between the reference fields R and R̃.
The force ΦR with respect to R is composed of the force ΦR̃ with respect to
R̃ and of the inertia force two-form (64). As force two-form, the latter is a
kinematic quantity because it does not depend on the motion Z. It depends
only on the Galilean manifold (M,ϑ, g) and on the reference fields R and R̃, as
can be seen from the following considerations.

7See Section 39 in [24] or Sections IV.4–5 in [22].
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Because the inertia force two-form (64) is given by the difference of two exact
two-forms, it is exact. This means that there exists a one-form α̂R,R̃ such that

ΨR,R̃ = ΩR̃ − ΩR = dα̂R,R̃ .

By definition (61) and the linearity of the differential operators d and ∂, we
know that

α̂R,R̃ = (TR̃ − TR)ϑ̂+ ∂(TR̃ − TR) .

Let the reference field R be defined on UR such that R = ∂/∂t + Ri∂/∂xi and
let the field R̃ be given by R̃ = ∂/∂t+ R̃i∂/∂xi on UR̃ such that UR ∩ UR̃ 6= ∅.
Equations (60) and (62) lead to

α̂R,R̃ = (TR̃ − TR)ϑ̂+ ∂(TR̃ − TR)
= 1

2gij(R̃
iR̃ j −RiR j)dt+ gij(R j − R̃ j)dxi .

(65)

on π−1(UR) ∩ π−1(UR̃). The local expression (65) reveals that α̂R,R̃ is a basic
form. This motivates the following alternative definition of the one-form α̂R,R̃.
Indeed, let αR,R̃ be the one-form on UR ∩ UR̃ defined by requiring

αR,R̃
(
R
) != 1

2g
(
R− R̃, R− R̃

)
,

αR,R̃
(
v
) != g

(
v,R− R̃

)
for all spacelike vector fields v, i.e., for all local sections of the spacelike bun-
dle A0M . Then the one-form α̂R,R̃ is the pullback of αR,R̃ with the natural
projection, i.e.,

α̂R,R̃ = π∗αR,R̃ .

This shows that the inertia force two-form (64) for the reference fields R and R̃
does indeed depend only on the Galilean manifold (M,ϑ, g) and, therefore, is a
kinematic quantity.

10.2 Potential and nonpotential forces
We say that a force FR is a potential force if the related force two-form Φp

R is
closed, i.e. if

dΦp
R = 0. (66)

According to the Poincaré lemma there exists a neighborhood W ⊆ A1M and a
one-form φR defined on W such that

Φp
R

∣∣
W

= dφR . (67)

The closedness (exactness) of the force two-form implies the closedness (exact-
ness) of the action form. Indeed, with Proposition 1, we have seen that an action
form is the sum of an exact form (61) and the force two-form ΦR. Therefore, it
makes sense to speak of a closed (exact) mechanical system if the force two-form
is closed (exact).
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Using the local coordinates of the force two-form (57), condition (66) gives

0 = d
[(
− Fi + 1

2u
j

(
∂Fi
∂u j

− ∂Fj
∂ui

))
dt ∧ dxi + 1

2
∂Fi
∂u j

dxi ∧ dx j
]

=
(
− ∂Fi
∂xk

+ 1
2
∂2Fi
∂t∂uk

+ 1
2u

j

(
∂2Fi

∂xk∂u j
− ∂2Fj
∂xk∂ui

))
dt ∧ dxi ∧ dxk

+
(
− ∂Fi
∂uk

+ 1
2

(
∂Fi
∂uk
− ∂Fk
∂ui

)
+ 1

2u
j

(
∂2Fi

∂uk∂u j
− ∂2Fj
∂uk∂ui

))
dt ∧ dxi ∧ duk

+ 1
2

∂2Fi
∂xk∂u j

dxi ∧ dx j ∧ dxk + 1
2

∂2Fi
∂uk∂u j

dxi ∧ dx j ∧ duk,

where we have dropped the R by writing F instead of FR for notational conve-
nience. The above condition leads to restrictions on the coefficient functions Fi
of F . The last term disappears if and only if

Fi = Ei +Biju
j , (68)

with functions Ei and Bij which do not depend on (u1, . . . , un). The vanishing
of the dt∧ dxi∧ duk-term requires that

Bij = −Bji.

The annihilation of the dxi∧ dx j∧ dxk-term leads to

∂Bij
∂xk

+ ∂Bki
∂xj

+ ∂Bjk
∂xi

= 0. (69)

Finally, the annihilation of the first term imposes that

∂Bij
∂t

= ∂Ei
∂x j

− ∂Ej
∂xi

. (70)

Consequently, a closed two-form Φp
R has the local form

Φp
R = Ei dxi ∧ dt+ 1

2Bij dxi ∧ dx j , (71)

where the component functions only depend on (t, x1, . . . , xn). The suggestive
use of the letters B and E lets us identify (69) and (70) as a generalized version
of Maxwell’s equations. We see from the local expression (71) that a closed force
two-form is basic. Therefore, as a one-form φR satisfying (67), we consider the
locally defined basic one-form

φR = −VRdt+ARi dxi , (72)

with functions8 VR and ARi which only depend on (t, x1, . . . , xn). With the
one-form (72) it holds that

Ei = −
(
∂VR
∂xi

+ ∂ARi
∂t

)
, Bij = 2

∂ARj
∂xi

.

8In the context of a charged particle moving in an electromagnetic field the function VR is
known as scalar potential of the field and the R3-tuple (AR

1 , A
R
2 , A

R
3 ) is said to be its vector

potential. See p. 45 in [23].
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It is important to notice that the Poincaré lemma guarantees the existence of a
one-form φR and not its uniqueness. Indeed, two one-forms φR and

φ′R = φR + df ,

differing by the differential df of a function f = f(t, x1, . . . , xn), lead to the
same force two-form (67) because d ◦ d = 0. This implies that the coefficient
functions of φR from (72) are related to those of

φ′R = −V ′dt+A′idxi

by
V ′ = V − ∂f

∂t
, and A′i = Ai + ∂f

∂xi
, (73)

without changing the resulting force two-form ΦR. Note that we dropped the let-
ter R in equation (73) for notational convenience. The invariance property (73)
of the coefficient functions of the one-form φR is known as gauge invariance.9

In classical mechanics (no electromagnetism), one assumes Bij = 0 such that
the coefficient functions (68) are independent of (u1, . . . , un). In this case, the
closed force two-form (71) reduces to

Φp
R = Ei dxi ∧ dt.

Accordingly, the one-form φR from (72) reduces to

φR = −VR(t, x1, . . . , xn)dt+ARi (t)dxi.

Because of the gauge invariance (73), we can add a differential df without
changing the resulting force two-form. We choose f(t, x1, . . . , xn) = −ARi (t)xi
such that

φ′R = φR + df =
(
− VR −

dARi
dt xi

)
dt =: −V ′Rdt.

This proves that in classical mechanics the force two-form of a potential force
can be locally derived from a one-form

φ′R = −V ′R(t, x1, . . . , xn) dt (74)

without loss of generality. The coefficient function V ′R in (74) is known as
potential energy with respect to the reference field R. In what follows, we will
consider one-forms of the form (72) because they comprise the form (74) used
in classical mechanics.

The previous considerations allow us to split a given force two-form

ΦR = Φp
R + Φnp

R

into a part Φp
R = dφR that is defined by a one-form (72) and the remaining

part Φnp
R which we will refer to as nonpotential force two-form.

9See Section 18 in [23].

22



11 Lagrangian and Cartan one-form

Definition 8. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional
mechanical system, ϑ̂ = π∗ϑ be the time structure of the state space A1M ,
and let TR be the kinetic energy of the mechanical system with respect to a
reference field R. Let Φp

R be the (locally) exact potential force two-form given
in the natural chart (10) by

Φp
R = dφR with φR = −VRdt+ARi dxi ,

where the component functions VR and AiR of φR only depend on (t, x1, . . . , xn),
see (72). The Lagrangian of the mechanical system with respect to the reference
field R is the function

LR := TR − VR +ARi u
i (75)

on the state space and induces the Cartan one-form

ωR = LRϑ̂+ ∂LR . (76)

In the local coordinates induced on the neighborhood π−1(U) ⊆ A1M by the
natural chart (10), the Cartan one-form reads

ωR = LRdt+ ∂LR
∂ui

(
dxi − uidt

)
=
(
LR − ui

∂LR
∂ui

)
dt+ ∂LR

∂ui
dxi , (77)

from which we can see that the Cartan one-form determines the Lagrangian by

LR = Z¬ωR, (78)

where Z is an arbitrary second-order field on the state space.
Using the rules (40), it can be seen that the chart representation of φR used

in Definition 8 is equivalent to

φR = (−VR +ARi u
i)dt+ ∂(−VR +ARi u

i). (79)

By comparing (79) to the definition (61) of the action form ΩR induced by the
kinetic energy TR of the mechanical system, it is clear that the sum ΩR + Φp

R

can be written as

ΩR + Φp
R = ΩR + dφR = d[(TR − VR +ARi u

i)ϑ̂+ ∂(TR − VR +ARi u
i)]

= d(LRϑ̂+ ∂LR) = dωR .
(80)

By Proposition 1, the sum of the action form ΩR and a force two-form is again
an action form, which in view of equation (80) implies that dωR is an action
form.

If two Cartan one-forms ωR and ω′R define the same action form

Ω = dωR = dω′R,

they may still differ by the differential of a function f ∈ C∞(A1M), i.e.

ω′R − ωR = df (81)
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because d ◦ d = 0. Since the difference ω′R − ωR is semi-basic, the function f
in (81) needs to satisfy

f = π∗h = h ◦ π

for some function h ∈ C∞(M). The fact that the same action form can be
determined by different Cartan one-forms transfers to the Lagrangians by equa-
tion (78). The Lagrangians LR and L′R defining the Cartan one-forms ωR and
ω′R can locally differ by

L′R − LR = Z¬(ω′R − ωR) = Z¬df = ∂f

∂t
+ ui

∂f

∂xi
(82)

and still define the same action form Ω. If the difference (82) is evaluated along
a second-order curve γ̇, then we retrieve the classical statement10 that (the
chart representations of) the Lagrangians LR and L′R may differ by the total
derivative with respect to t of a function f , which depends on time t and the
positions (x1, . . . , xn). Note that the statement (82) is directly related to the
gauge invariance (73). This can be seen by using (73) in the definition of the
Lagrangian (75).

The following considerations allow us to pin down the form of Lagrangians.
First, a Lagrangian needs to define the bundle metric by

gij = Ω
(

∂

∂ui
,
∂

∂x j

)
= ∂2LR
∂ui∂u j

,

according to Theorem 1(ii), where the second equality follows from straight
forward computations in a natural chart. Because it holds for the bundle metric
that ∂gij/∂uk = 0, the Lagrangian needs to satisfy

∂3LR
∂uk∂ui∂u j

= 0,

and it therefore has the local form

LR = 1
2giju

iu j + aiu
i + a0 (83)

with coefficients a0, . . . , an that do not depend on u1, . . . , un. This means that
there are functions ā0, . . . , ān : U → R defined on the neighborhood U ⊆ M
such that

aα := π∗āα = āα ◦ π

with α = 0, . . . , n. With the local expression (60) of the kinetic energy the
Lagrangian (75) can be written as

LR = TR − VR +ARi u
i = 1

2giju
iu j + (ARi − gijR j)ui + 1

2gijR
iR j − VR.

The comparison with (83) leads to the equalities

a0 = 1
2gijR

iR j − VR,
ai = Ai − gijR j ,

(84)

with i = 1, . . . , n.
10See [24] p. 4.
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The case of classical mechanics where the one-form φR reduces to (74) can
be studied by setting Ai = 0. It follows from equation (84) that the reference
field R and the potential VR can be determined from the coefficients a0, . . . , an
of a given Lagrangian (83) as

Ri = −gijaj and VR = 1
2 gijR

iR j − a0. (85)

The coefficients gij in equation (85) are given by the inverse matrix to the
coefficient matrix of the Galilean metric g.

12 Dynamics of finite-dimensional mechanical systems

Postulate 1. Let (M,ϑ, g) be the Galilean manifold of a finite-dimensional
mechanical system and let ϑ̂ = π∗ϑ be the time structure of the state space
A1M . Moreover, let ωR be the Cartan one-form induced by a Lagrangian LR of
the mechanical system and let Φnp

R be the nonpotential force two-form, each one
with respect to the reference field R.

A motion β of the mechanical system is an integral curve of the vector field
X ∈ Vect(A1M) characterized by

ϑ̂(X) = 1 and X¬Ω = 0, (86)

where
Ω := dωR + Φnp

R (87)

is the action form of the mechanical system. Consequently, the motion β is a
solution of the equations of motion

β̇(τ) = X(β(τ)) . (88)

This postulate is fundamental to the description of the dynamics of finite-
dimensional mechanical systems, as it links the motion of the mechanical system
to a Lagrangian and the nonpotential force two-form of the system. This means
that for a specific finite-dimensional mechanical system, e.g., an industrial robot,
the modeling process consists in finding an appropriate Lagrangian together with
a nonpotential force two-form. Postulate 1 then links these two quantities to
the motion of the system.

In Section 11 we showed that dωR is an action form, which by Proposition 1
implies that the action form Ω defined in (87) is indeed an action form. More-
over, Theorem 1 guarantees that the vector field X is uniquely characterized by
(86) and that it is a second-order field, such that its integral curves are motions
of the mechanical system.

Using (80), equation (87) allows to write the action form Ω of the mechanical
system as

Ω = ΩR + Φp
R + Φnp

R , (89)

where ΩR is the action form (61) induced by the kinetic energy TR of the system
and Φp

R is the potential force two-form of the system. Equation (89) shows, that
the action form ΩR describes the motion of a mechanical system which with
respect to the reference field R is not subjected to forces (i.e., Φp

R = Φnp
R = 0).
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12.1 Lagrange’s equations of the second kind
Using the coordinate representation of Postulate 1 with respect to the local
coordinates provided by the natural chart (10), we show that the equations of
motion (88) take the form of Lagrange’s equations of the second kind.

Consider that by equation (77), the action form dωR is locally given by

dωR = d
(
L− ui ∂L

∂ui

)
∧ dt+ d

(
∂L

∂ui

)
∧ dxi (90)

and, by equation (57), the nonpotential force two-form Φnp
R in (87) reads

Φnp
R = Fidxi ∧ dt+ 1

2
∂Fi
∂u j

(
dxi − uidt

)
∧
(
dx j − u jdt

)
. (91)

Note that we lightened the notation by suppressing the reference field R when
writing the Lagrangian in (90).

By Postulate 1, we know that for the action form Ω = dωR + Φnp
R , the

conditions
ϑ̂
(
X
)

= 1, and X¬Ω = 0 (92)

determine the vector field X ∈ Vect
(
A1M

)
that describes the motion of the

mechanical system. Condition (92) requires the vector field X to be time-
normalized such that it can be locally written as

X = ∂

∂t
+Ai

∂

∂xi
+Bi

∂

∂ui
, (93)

where the coefficients Ai and Bi with i = 1, . . . , n are smooth functions. More-
over, condition (92) can be rewritten as

0 = X¬Ω = X¬dωR +X¬Φnp
R . (94)

Using equations (90), (91) and (93), together with the relation LXf = df(X) for
f ∈ C∞(A1M), we compute both terms separately. The first term of equation
(94) can be written as

X¬dωR = LX
(
L− ui ∂L

∂ui

)
dt− d

(
L− ui ∂L

∂ui

)
+ LX

(
∂L

∂ui

)
dxi −Aid

(
∂L

∂ui

)
=

[
LX
(
L− ui ∂L

∂ui

)
− ∂L

∂t
− ∂2L

∂t∂ui
(
Ai − ui

)]
dt

+
[
LX
(
∂L

∂ui

)
− ∂L

∂xi
− ∂2L

∂xi∂u j
(
A j − u j

)]
dxi

+ ∂2L

∂ui∂u j
(
u j −A j

)
dui .

(95)

The second term of equation (94) reads as

X¬Φnp
R =

[
AiFi −

1
2u

i
(
A j − u j

)(∂Fj
∂ui
− ∂Fi
∂u j

)]
dt

+
[
− Fi + 1

2
(
A j − u j

)(∂Fj
∂ui
− ∂Fi
∂u j

)]
dxi .

(96)
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By equation (94), the sum of (95) and (96) has to vanish. In particular, the
dui-component of (95) must be zero. This implies that

A j = u j for j = 1, . . . , n (97)

because the matrix
∂2L

∂ui∂u j
= gij

is positive definite and thus has full rank. Equation (97) requires the vector
field X to be a second-order field, which in consideration of Theorem 1 is no
surprise. The annihilation of the dxi-part of the sum (94) together with (97)
leads to Lagrange’s equations of the second kind

LX
(
∂L

∂ui

)
− ∂L

∂xi
= Fi. (98)

Let us consider a motion β : I → A1M , τ 7→ β(τ) of the mechanical system,
which by Postulate 1 is an integral curve of the vector field X defined by equa-
tion (98). Since X is a second-order field by (93) and (97), we know that the
integral curve β of X is a second-order curve. Hence, the motion has the chart
representation Φ ◦ β(τ) = (t(τ),x(τ), ẋ(τ)) and needs to satisfy equation (98)
such that

d
dτ

(
∂L

∂ui
◦ β(τ)

)
− ∂L

∂xi
◦ β(τ) = Fi ◦ β(τ) (99)

by the definition of the Lie derivative. We recognize (99) as Lagrange’s equations
of the second kind in their classical form.11 Note, t(τ) = τ + τ0 by (22).

Since the action form Ω has rank 2n, the dt-component depends on the 2n
equations (97) and (98), which fully determine the vector field X. Accordingly,
the dt-component must vanish for the vector field X and provides the equation
of energy

LX
(
ui
∂L

∂ui
− L

)
= −∂L

∂t
+ uiFi . (100)

Evaluated along the motion β this relation takes the form

d
dτ

(
ẋi(τ) ∂L

∂ui
◦ β(τ)− L ◦ β(τ)

)
= −∂L

∂t
◦ β(τ) + ẋi(τ)Fi ◦ β(τ) . (101)

We immediately recognize that the Hamiltonian

HR : A1M ⊇ π−1(U)→ R, a 7→ HR(a) :=
(
ui
∂LR
∂ui

− LR
)

(a) (102)

is conserved along the motion β, if the mechanical system is not subjected to
nonpotential forces and its Lagrangian has no explicit time dependence. Note
that π−1(U) denotes as usual the domain of the natural chart (10), for which,
by equations (60) and (75), the Hamiltonian takes the form

HR = ui
∂LR
∂ui

− LR = 1
2giju

iuj − 1
2gijR

iRj + VR . (103)

In the special case where the reference field R is the resting field of the natural
chart, i.e. Ri = 0, the Hamiltonian is the sum of the kinetic energy (59) and
the potential energy VR.

11See [21], p. 24, [43], p. 63, [35], p. 75 or [24], p. 3.
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12.2 Hamilton’s equations
Using a different chart as in the previous section, the equations of motion take
the form of Hamilton’s equations. To show this, we represent Postulate 1 with
respect to the local coordinates provided by the chart

Φ̃ : A1M ⊇ π−1(U)→ R2n+1, (p, vp) 7→ (t̃, x̃1, . . . , x̃n, p1, . . . , pn) . (104)

Denoting the natural chart (10) with Φ, the chart (104) is given by the change
of coordinates Φ̃ ◦ Φ−1 defined as

t̃ = t, x̃i = xi and pi = ∂LR
∂ui

◦ Φ−1(t, x1, . . . , xn, u1, . . . , un) . (105)

We call pi the generalized momentum coordinates, which by equations (75)
and (60) together with ∂VR/∂ui = 0 have the form

pi = gij
(
u j −R j

)
+ARi . (106)

The full rank of the Galilean metric g guarantees that the relation (106) can be
resolved for u1, . . . , un as

ui = gij
(
pj −ARj

)
+Ri, (107)

where gij are the components of the inverse matrix gij . We refer to (t̃, x̃1, . . . , x̃n,
p1, . . . , pn) as canonical coordinates.12 The tildes on t and the xi allow the
distinction between the canonical coordinates and those provided by the natural
chart (10).

With the Hamiltonian (102), we rewrite the Cartan one-form (77) as

ωR =
(
LR − ui

∂LR
∂ui

)
dt+ ∂LR

∂ui
dxi = −HRdt̃+ pidx̃i, (108)

where we have used that dt = dt̃ and dxi = dx̃i for i = 1, . . . , n. Inserting (107)
in (103), the Hamiltonian in canonical coordinates reads as

HR = 1
2g

ij
(
pi −ARi

)(
pj −ARj

)
+R j(pj −ARj

)
+ VR .

This implies that we can rewrite (107) as

ui = ∂HR

∂pi
. (109)

We compute the exterior derivative of the Cartan one-form (108) as

dωR = −dH ∧ dt̃+ dpi ∧ dx̃i , (110)
12These coordinates are by no means canonically defined since they depend on the choice

of a reference field R. Physically, the quantities p1, . . . , pn are generalized momenta. In
the context of time-independent mechanics playing on the cotangent bundle T ∗Q of a time-
independent configuration manifold Q, the position and generalized momentum coordinates
provided by the Darboux theorem are canonical. Moreover, Hamilton’s equations are also
referred to as canonical equations (see [24], p. 132). So we use the adjective canonical because
of tradition.
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where we stick to our policy of dropping the letter R whenever it is hinder-
ing. Expressing the basis vectors ∂/∂ui induced by the natural chart (10) with
respect to the basis vectors induced by the chart (104) gives

∂

∂ui
= ∂t̃

∂ui
∂

∂t̃
+ ∂x̃ j

∂ui
∂

∂x̃ j
+ ∂pj
∂ui

∂

∂pj
= gji

∂

∂pj
,

where we adopt the convention that a lower index appearing in the denominator
is considered to be an upper index. With this relation and equation (109), the
nonpotential force Φnp

R of (57) adopts the local form

Φnp
R = Fidx̃i ∧ dt̃+ 1

2grj
∂Fi
∂pr

[
dx̃i − ∂H

∂pi
dt̃
]
∧
[
dx̃ j − ∂H

∂pj
dt̃
]

(111)

because dt = dt̃ and dxi = dx̃i for i = 1, . . . , n.
The time-normalized field X from (93) that describes the motion can be

locally expressed as
X = ∂

∂t̃
+Ai

∂

∂x̃i
+ Ci

∂

∂pi
. (112)

By Postulate 1, the time-normalized vector field X is determined by

0 = X¬Ω = X¬dωR +X¬Φnp
R .

As before, we compute X¬dωR and X¬Φnp
R separately. With the local expres-

sions (110) and (112), we get

X¬dωR = −LX(H)dt̃+ dH + Ci dx̃i −Aidpi

= −
(
LXH −

∂H

∂t̃

)
dt̃+

(
∂H

∂x̃i
+ Ci

)
dx̃i +

(
∂H

∂pi
−Ai

)
dpi .

(113)

Using (111) and (112), we obtain

X¬Φnp
R =

[
AiFi −

1
2
∂H

∂pi

(
A j − ∂H

∂pj

)(
gri

∂Fj
∂pr
− grj

∂Fi
∂pr

)]
dt̃

+
[
− Fi + 1

2

(
A j − ∂H

∂pj

)(
gri

∂Fj
∂pr
− grj

∂Fi
∂pr

)]
dx̃i.

(114)

The one-form X¬Ω = X¬dωR + X¬Φnp
R is zero if each component vanishes.

Since the coefficient of the dpi-component in (113) has to vanish, it follows that

Ai = ∂H

∂pi
= gij

(
pj −ARj

)
+Ri . (115)

With equation (115), the annihilation of the dx̃i-component of X¬Ω implies

Ci = −∂H
∂x̃i

+ Fi. (116)

Finally, consider a motion β of the mechanical system, which by Postulate 1 is
an integral curve of the vector field X. The tangent field β̇ is time-parametrized
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because of (112). Consequently, using equations (115) and (116) the equations
of motion (88) locally have the form

˙̃xi(τ) = ∂H

∂pi
◦ β(τ),

ṗi(τ) = −∂H
∂x̃i
◦ β(τ) + Fi ◦ β(τ),

(117)

where Φ̃ ◦ β(τ) = (t̃(τ), x̃(τ),p(τ)) with t̃(τ) = τ + τ0 by (22). We recognize
(117) as Hamilton’s equations.13

Similarly to the previous section, the dt̃-component depends on the 2n equa-
tions (115) and (116), which fully determine the vector field X. Accordingly,
the dt̃-component must vanish for the vector field X and provides the equation
of energy

LXH = ∂H

∂t̃
+ ∂H

∂pi
Fi . (118)

Evaluated along the the motion β this relation takes the form

d
dτ H ◦ β(τ) = ∂H

∂t̃
◦ β(τ) +

(
∂H

∂pi
Fi

)
◦ β(τ) . (119)

Also here, we recognize that the Hamiltonian is conserved along the motion β,
if the mechanical system is not subjected to nonpotential forces and its Hamil-
tonian has no explicit time-dependence.

13 Conclusion

We have shown that the Galilean manifold (M,ϑ, g) together with the affine sub-
bundle A1M are appropriate spaces on which the dynamics of time-dependent
finite-dimensional mechanical systems subjected to nonpotential forces can be
formulated. The motion as a curve in the state space is given as an integral curve
of a second-order field on the state space. Theorem 1 is a major result that was
obtained by Loos in [29] and which uniquely connects a differential two-form
Ω with the second-order field Z whose interior product with Ω vanishes. This
theorem justifies to model the dynamics of a mechanical system by stating a
particular action form. Maybe the most original and outstanding contribution of
Loos is the treatment of forces within the time-dependent theory. With the idea
that any force leads to a change of acceleration, forces are introduced as smooth
sections of the dual of the vertical bundle Ver∗(A1M). Theorem 2 then provides
a bijective relation between forces and force two-forms, which are semi-basic
∂-closed differential two-forms on the state space. Eventually, for the dynamics
described by an action form, Theorem 3 guarantees that changing the dynamics
by adding an additional force corresponds with summing up action form and
force two-form. The essential gain within the geometric framework provided
by Loos lies then in the coordinate-free formulation of Postulate 1, which com-
prises the governing equations of a theory for time-dependent finite-dimensional
mechanical systems subjected to nonpotential forces. Most remarkably, this
postulate unifies the Lagrangian and the Hamiltonian approaches, which in this
intrinsic theory just result from different coordinate representations.

13See p. 132 of [24] or p. 63 of [43].
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