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Abstract This article intends to present a concise theory of spatial nonlinear clas-
sical beams followed by a special treatment of the planar case. Hereby the consid-
ered classical beams are understood as generalized one-dimensional continua that
model themechanical behavior of three-dimensional beam-like objects.While a one-
dimensional continuum corresponds to a deformable curve in space, parametrized
by a single material coordinate and time, a generalized continuum is augmented by
further kinematical quantities depending on the very same parameters. We introduce
the following three nonlinear spatial beams: The Timoshenko beam, the Euler–
Bernoulli beam and the inextensible Euler–Bernoulli beam. In the spatial theory, the
Euler–Bernoulli beam and its inextensible companion are presented as constrained
theories. In the planar case, both constrained theories are additionally described
using an alternative kinematics that intrinsically satisfies the defining constraints of
these theories.

1 Introduction

One particular reason for confusion in beam theory is the lack of a consistent
naming in literature. Hence, whenever talking and writing about beam theory, it is
crucial to clarify this ambiguity by defining the kinematics of the discussed theory.
In this article, a Timoshenko beam is considered as a generalized one-dimensional
continuum described by a spatial curve, its centerline, augmented in each point of
the curve by an orthonormal director triad. For beam-like three-dimensional elastic
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bodies the director triads model the cross sections, which remain plane and rigid for
all configurations. Alternative names given in literature are “special Cosserat rod”,
see Antman (2005), “Simo–Reissner beam” referring to Simo (1985) and Reissner
(1981), “geometrically exact beam”, see (Betsch and Steinmann, 2003; Eugster et al,
2014), or “poutres naturelle” (“natural beam”) in French literature as for instance
in Ballard and Millard (2009). If the director triad is constrained such that one of
the directors always algins with the centerline’s tangent, we call the beam an Euler–
Bernoulli beam (Eugster, 2015; Eugster and Steigmann, 2020). Also here alternative
names are around, i.e., “Kirchhoff–Clebsch rod” (Steigmann and Faulkner, 1993),
“Kirchhoff–Love rod” (Greco and Cuomo, 2013), “Kirchhoff rod” (Meier et al,
2014), or “Navier–Bernoulli beam” (Ballard and Millard, 2009). We call the beam
an inextensible Euler–Bernoulli beam if in addition the norm of the centerline’s
tangent remains unchanged throughout the motion.

Since the beginning of continuum mechanics, beam theory has been an om-
nipresent research field that has newly received its attention not only in soft robotics
(Deutschmann et al, 2018; Eugster and Deutschmann, 2018; Till et al, 2019) but
also in the field of mechanical metamaterials (Barchiesi et al, 2019b). Many meta-
materials are composed of networks of beams such as the class of pantographic
materials (dell’Isola et al, 2019a,b, 2020b), which were analyzed in various forms,
see among others (Alibert et al, 2003; Andreaus et al, 2018; Barchiesi et al, 2019a,
2020; Boutin et al, 2017; Capobianco et al, 2018; dell’Isola et al, 2016a,c; dell’Isola
and Steigmann, 2015; Giorgio et al, 2017; Maurin et al, 2019; Rahali et al, 2015;
Shirani et al, 2019; Steigmann and dell’Isola, 2015). The presented beam theories
are formulated in a variational setting, where the principle of virtual work plays the
role of the fundamental postulate in mechanics, see (Eugster and Glocker, 2017;
dell’Isola et al, 2020a; dell’Isola and Placidi, 2011; dell’Isola and Seppecher, 1995;
Eugster and dell’Isola, 2017, 2018). The principle states that the sum of all virtual
work contributions of the modeled mechanical effects must vanish for all virtual
displacements. For static problems, the total virtual work is composed of internal
and external virtual work contributions, which model, respectively, mechanical in-
teractions of material points of the beam among themselves as well as mechanical
interactions of material points of the beam and the environment. For dynamic prob-
lems, virtual work contributions incorporating inertial effects of the beam have to be
added. Moreover, the principle of virtual work must then hold for all time instants.
The main task in the development of a beam theory is the definition of each virtual
work contribution. This task is by no means unique and can be considered as the
modeling procedure in mechanics. Since the (inextensible) Euler–Bernoulli beam
can be considered as a constrained Timoshenko beam, the virtual work contribu-
tions thereof are formulated first in Sections 2–5. We pursue the following strategy
for the internal and external virtual work contributions. The internal virtual work
contributions are related to the variation of a strain energy function that depends on
the kinematical quantities describing the beam (Section 2). The set of strain energy
functions is reduced in Section 3 by the requirement of an invariance principle. More
precisely, we postulate the invariance under superimposed rigid body motions of the
strain energy function. Similar invariance conditions are obtained when advocating
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for a change of observer as discussed in Steigmann (2017). This leads us not only
to the most general strain energy function that guarantees the invariance principle,
but also to the internal virtual work of the Timoshenko beam. The suitable exter-
nal virtual work contributions are subsequently obtained by an integration by parts
procedure. Accordingly, the form of the internal virtual work defines the external
force effects that the beam can resist. These are for the classical theories, distributed
forces and couples as well as point forces and couples at both ends of the beam.
The virtual work contributions of the inertial effects are derived in the sense of an
induced theory in which the beam is considered as a constrained three-dimensional
body, see (Antman, 2005; Eugster, 2015). The total virtual work of the (inextensi-
ble) Euler–Bernoulli beam is obtained in Section 6 by augmenting the strain energy
function in the sense of a Lagrange multiplier method (Bersani et al, 2019; dell’Isola
et al, 2016b). In Section 7, the motion of the beams are restricted to be planar. For the
Timoshenko beam, the parametrization of the required rotation fields becomes triv-
ial. For both the Euler–Bernoulli beam and the inextensible Euler–Bernoulli beam, a
minimal set of kinematical descriptors can be found. In these minimal formulations,
the virtual work contributions of the constraints vanish.

2 Notation and Kinematics

We regard tensors as linear transformations from a three-dimensional vector spaceE3

to itself and use standard notation such asAT,A−1, det(A). These are, respectively,
the transpose, the inverse, and the determinant of a tensor A. The set of tensors is
denoted by L(E3;E3). The tensor 1 stands for the identity tensor, which leaves every
vector a ∈ E3 unchanged, i.e. a = 1a. We use Skw to denote the linear subspace of
skew tensors and Orth+ = {A ∈ L(E3;E3)|ATA = AAT = 1∧ det(A) = +1}
to identify the group of rotation tensors. The tensor product of three-vectors is
indicated by interposing the symbol ⊗. Latin and Greek indices take values in
{1, 2, 3} and {2, 3}, respectively, and, when repeated, are summed over their ranges.
Furthermore, we abbreviate the arguments in functions depending on the three
components (a1, a2, a3) or merely on the last two components (a2, a3) of a vector
a ∈ E3 by (ai) or (aα), respectively. Derivatives of functions f = f(s, t) with
respect to s and t are denoted by a prime f ′ = ∂f/∂s and a dot ḟ = ∂f/∂t,
respectively. The variation of a function f = f(s, t), denoted by a delta, is the
derivative with respect to the parameter ε of a one-parameter family f̂ = f̂(s, t; ε)

evaluated at ε = 0, i.e. δf(s, t) = ∂f̂/∂ε(s, t; 0). The one-parameter family satisfies
f(s, t) = f̂(s, t; 0).

Next, we introduce the required kinematical quantities for the spatial nonlinear
Timoshenko beam theory. The motion of the centerline is the mapping r : I ×R→
E3, (s, t) 7→ r(s, t), where, for each instant of time t ∈ R, the closed interval
I = [l1, l2] ⊂ R parametrizes the set of beam points. We make the convenient
choice to use as material coordinate the arc length parameter s of the reference
centerline r0 : I → E3. To capture cross-sectional orientations of beam-like bodies,
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the kinematics of the centerline is augmented by the motion of positively oriented
director triads di : I × R → E3. The directors dα(s, t) span the plane and rigid
cross section of the beam for the material coordinate s at time t. The positively
oriented director triads in the reference configuration are given by the mappings
Di : I → E3. While D1 is identified with the unit tangent to the reference centerline
r0, i.e., D1 = r′0, the vectors D2(s) and D3(s) are identified with the geometric
principal axes of the cross sections.

Fig. 1 Kinematics of a spatial Timoshenko beam.

With the reference and current rotation fields R0 : I → Orth+ and R : I ×R→
Orth+, respectively, the reference and current director triads are related to a fixed
right-handed inertial frame {e1, e2, e3} by

Di(s) = R0(s)ei , di(s, t) = R(s, t)ei . (1)

Using the identity tensor in the form 1 = ei ⊗ ei together with the relations (1), the
current and reference rotation fields can be expressed as

R0 = R01 = R0(ei ⊗ ei) = (R0ei)⊗ ei = Di ⊗ ei , (2)
R = R1 = R(ei ⊗ ei) = (Rei)⊗ ei = di ⊗ ei . (3)

With the inverse relations of (1) at hand and exploiting the equivalence of the inverse
and the transpose for rotations, we can relate all bases by

ei = RT
0 (s)Di(s) = RT(s, t)di(s, t) . (4)

To capture the deformation between the reference and the current configuration, we
introduce the rotation fieldΛ : I×R→ Orth+, (s, t) 7→ Λ(s, t) = R(s, t)R0(s)T,
which rotates the reference director triads to the current director triads, i.e.,

di(s, t) = Λ(s, t)Di(s) . (5)
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Using the identity tensor in the form 1 = Di ⊗Di and repeating the steps as in (3),
we can represent the rotation between reference and current configuration as

Λ = Λ1 = Λ(Di ⊗Di) = (ΛDi)⊗Di
(5)
= di ⊗Di . (6)

Using (1) and (4), the rate of change of the reference director triad with respect to
the arc length s is expressed as

D′i(s) = (R0(s)ei)
′ = R′0(s)ei

(4)
= R′0(s)RT

0 (s)Di(s) = κ̃0(s)Di(s) , (7)

where we have introduced the reference curvature κ̃0(s) = R′0(s)RT
0 (s). Taking

the derivative with respect to s of (2), the reference curvature can be expressed with
respect to the Di ⊗Dj-basis as

κ̃0 = κ̃0ijDi⊗Dj = (Di⊗ei)
′(Dj⊗ej)T = D′i⊗Di = (Di ·D′j)Di⊗Dj . (8)

The reference curvature κ̃0 is skew-symmetric, i.e., κ̃T
0 = −κ̃0. This follows

straightforwardly from

0 = (1)′ = (R0RT
0 )′ = R′0R

T
0 + R0R

′
0
T = R′0R

T
0 + (R′0R

T
0 )T . (9)

Thus κ̃0(s) has an associated axial vector ax(κ̃0(s)) = κ0(s) ∈ E3 defined by the
relation κ̃0(s)a = κ0(s) × a ∀a ∈ E3. The reference curvature can thus also be
expressed by the vector valued function

κ0 = κ0iDi = ax(κ̃0) =
1

2
εijkκ

0
kjDi =

1

2
εijk(Dk ·D′j)Di , (10)

where εijk denotes the Levi-Civita permutation symbol, which is ±1 for even and
odd permutations of {1, 2, 3}, respectively, and zero otherwise.

The current curvature w̃(s, t) = R′(s, t)RT(s, t) ∈ Skw and its axial repre-
sentation w(s, t) ∈ E3 capture the rate of change of the current director triad with
respect to the arc length parameter s and emerge in the relation

d′i = (Rei)
′ = R′ei

(4)
= R′RTdi = w̃di = w × di . (11)

The skew symmetry of w̃(s, t) follows from the analogous computations as carried
out in (9). The current curvature can be represented with respect to the di⊗dj-basis
as

w̃ = w̃ijdi ⊗ dj = (di ⊗ ei)
′(dj ⊗ ej)T = d′i ⊗ di = (di · d′j)di ⊗ dj , (12)

or as vector-valued function

w = widi = ax(w̃) =
1

2
εijkw̃kjdi =

1

2
εijk(dk · d′j)di . (13)
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The rate of change of the current directors with respect to time t is described by
the angular velocity ω̃(s, t) = Ṙ(s, t)RT(s, t) = Λ̇(s, t)ΛT(s, t) ∈ Skw, which
appears together with the corresponding axial vector ω(s, t) ∈ E3 in

ḋi = (Rei)̇ = Ṙei
(4)
= ṘRTdi = ω̃di = ω × di . (14)

The angular velocity can thus be represented as

ω̃ = ω̃ijdi ⊗ dj = (di ⊗ ei)̇(dj ⊗ ej)T = ḋi ⊗ di = (di · ḋj)di ⊗ dj , (15)

or as vector-valued function in the form

ω = ωidi = ax(ω̃) =
1

2
εijkω̃kjdi =

1

2
εijk(dk · ḋj)di . (16)

The skew-symmetry of ω̃ can be verified similar to (9).
The rate of change of the current directors under a variation of the current

configuration is captured by the skew symmetric virtual rotation δφ̃ = δRRT =
δΛΛT with its axial vector δφ(s, t) ∈ E3. Both representations can be recognized
in

δdi = δ(Rei) = δRei = δRRTdi = δφ̃di = δφ× di . (17)

As before, the virtual rotation can be represented either as the tensor function

δφ̃ = δφ̃ijdi⊗dj = δ(di⊗ei)(dj⊗ej)T = δdi⊗di = (di ·δdj)di⊗dj , (18)

or as the vector-valued function

δφ = δφidi = ax(δφ̃) =
1

2
εijkδφ̃kjdi =

1

2
εijk(dk · δdj)di . (19)

Due to the symmetry of second derivatives, the partial derivative with respect to
s and the variation δ commute, i.e., δ(d′i) = (δdi)

′ = δd′i. This identity can be
reformulated by using (11), (17) and subtracting the left-hand side from the right-
hand side, yielding δ(w × di) − (δφ × di)

′ = 0. Application of the product rule,
applying once again (11) and (17) as well as making use of the skew-symmetry of
the cross product, i.e., a× b = −b× a ,∀a,b ∈ E3, we get

δw × di + w × (δφ× di)− δφ′ × di + δφ× (di ×w) = 0 . (20)

Using the Jacobi identity a×(b×c)+b×(c×a) = −c×(a×b) ∀a,b, c ∈ E3 and
applying twice the skew-symmetry of the cross-product, the above equation reduces
to

(δw − δφ′ − δφ×w)× di = 0 . (21)

Since (21) must hold for arbitrary di ∈ E3, we can conclude that

δφ′ = δw − δφ×w . (22)
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3 Strain energy functional

Following Shirani et al (2019), we assume the strain energy E stored in a beam
segment [s1, s2] ⊂ I to be expressed as

E =

∫ s2

s1

U ds , (23)

where U , the strain energy function per unit reference arc length s, is a function of
the list {r, r′,Λ,Λ′} and possibly depends explicitly on s, i.e.,

U = U(r, r′,Λ,Λ′; s) . (24)

The explicit s-dependence may arise from an initial curvature of the beam, or from
nonuniform material properties.

By the requirement that strain energy functions must ensure invariance under
superimposed rigid body motions, we can reduce the set of possible strain energy
functions. Thus, for Q(t) ∈ Orth+ and c(t) ∈ E3, the strain energy function U
must be invariant under the transformations

r 7→ r+ = Qr + c , r′ 7→ (r+)′ = Qr′ ,

Λ 7→ Λ+ = QΛ , Λ′ 7→ (Λ+)′ = QΛ′ .
(25)

By choosing Q(t) = 1 and c(t) ∈ E3 arbitrary, we get the condition

U(r, r′,Λ,Λ′; s) = U(r+, (r+)′,Λ+, (Λ+)′; s) = U(r + c, r′,Λ,Λ′; s) , (26)

from which we conclude thatU(r, r′,Λ,Λ′; s) = Ũ(r′,Λ,Λ′; s) has to be indepen-
dent of the centerline r. For a particular material coordinate s ∈ I , we choose the
rotation Q(t) = ΛT(s, t) together with a vanishing displacement c(t) = 0, which
yields the condition

Ũ(r′,Λ,Λ′; s) = Ũ(ΛTr′,ΛTΛ,ΛTΛ′; s) = Ũ(ΛTr′,1,ΛTΛ′; s) . (27)

Due to ΛTΛ = 1, the strain energy per unit arc length Ũ may not depend on
the argument Λ either. Hence, we conclude that if the strain energy function U
is invariant under superimposed rigid body motions then there is a strain energy
function W̃ which is related to U by

U(r, r′,Λ,Λ′; s) = W̃ (ΛTr′,ΛTΛ′; s) . (28)

The reverse direction, which implies from condition (28) the invariance of U , is
obtained immediately since the kinematic quantities ΛTr′ = (Λ+)T(r+)′ and
ΛTΛ′ = (Λ+)T(Λ+)′ are invariant under the transformations (25). For that reason,
we take these kinematic quantities as generalized strain measures of the beam, where

Γ(s, t) = Γi(s, t)Di(s) = ΛT(s, t)r′(s, t) = (r′(s, t) · di(s, t))Di(s) (29)
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incorporates in its Di-components the projection of the centerline’s tangent r′ onto
the current directors di. Identifying R′ = w̃R in (11), the second generalized
strain measure Λ(s, t)TΛ(s, t)′ ∈ Skw can be related to the reference and current
curvature by

ΛTΛ′ = (RRT
0 )T(RRT

0 )′ = R0RTR′RT
0 + R0R

′T
0

= ΛTw̃Λ− κ̃0 = κ̃− κ̃0 ,
(30)

where we have introduced the current curvature pulled-back to the reference config-
uration κ̃ = ΛTw̃Λ. Making use of (6) and the definition of w̃ given in (12), κ̃ can
be represented as

κ̃ = κ̃ijDi ⊗Dj = ΛTw̃Λ = w̃ijΛT(di ⊗ dj)Λ = w̃ijDi ⊗Dj , (31)

which shows that the components of κ̃ in the Di ⊗Dj-basis and w̃ in the di ⊗ dj-
basis coincide, i.e., κ̃ij = w̃ij . The skew symmetry of ΛTΛ′ allows us to write the
strain measure also as the vector-valued function

κ− κ0 = (κi − κ0i )Di = ax(κ̃)− ax(κ̃0) (32)

with their corresponding components in the Di-basis given by

κi =
1

2
εijkκ̃kj =

1

2
εijk(dk · d′j) , κ0i =

1

2
εijkκ̃

0
kj =

1

2
εijk(Dk ·D′j) . (33)

Replacing ΛTΛ′ with its axial vector (32) and putting the dependence of the
strain energy function on a pre-curved reference configuration indicated by a non-
vanishingκ0 into the explicit s-dependence, we obtain the final form of the objective
strain energy function per unit arc length

U(r, r′,Λ,Λ′; s) = W (Γ,κ; s) (34)

which solely depends on (29) and the current parts of (32).
Whenever an explicit strain energy function is required in the following,we choose

the quadratic strain energy function of the form

W (Γ,κ; s) =

3∑
i=1

{
1

2
Ei(Γi − δi1)2 +

1

2
Fi(κi − κ0i )2

}
. (35)

Note that there is a possible s-dependence in the axial stiffness E1, the shear stiff-
nesses E2 and E3, the torsional stiffness F1 as well as the flexural stiffnesses F2 and
F3.

If the beam models a body that could also be described as a three-dimensional
continous bodywith isotropicmaterial, the stiffnesses are often related to thematerial
properties and the geometry of the body. Then, the axial stiffness E1 is given by the
Young’s modulus times the cross-sectional area, the shear stiffnesses E2 and E3 are
shear modulus times the cross-sectional area multiplied with an appropriate shear
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correction factor (Timoshenko and Goodier, 1951; Cowper, 1966), the torsional
stiffness F1 is shear modulus times the polar moment of the cross section and the
flexural stiffnesses F2 and F3 are Young’s modulus times the appropriate second
moment of area of the cross section.

4 Virtual work contributions

With the objective strain energy function (34), we define the internal virtual work
contributions of the beam using the first variation of the beam’s total strain energy
E in accordance with

δW int = −δE = −
∫ l2

l1

δW ds = −
∫ l2

l1

{
∂W

∂Γi
δΓi +

∂W

∂κi
δκi

}
ds . (36)

In the following, the variations of the generalized strain measures are derived. The
variations of the components of (29) can be computed using (17) together with the
invariance of the triple product with respect to even permutations, i.e., a · (b× c) =
b · (c×a) = c · (a×b) ∀a,b, c ∈ E3, and the skew-symmetry of the cross product

δΓi = δ(r′ · di) = (δr′ − δφ× r′) · di . (37)

Again using the properties of the triple product, the relation of the permutation
symbol and the Kronecker delta εijkεjkl = εijkεljk = 2δil as well as (17), the
variation of the first equation in (33) is given as

δκi =
1

2
εijkδ(dk · d′j)

(17)
=

1

2
εijk[(δφ× dk) · d′j + dk · (δφ× dj)

′]

=
1

2
εijk[(δφ× dk) · d′j + dk · (δφ′ × dj + δφ× d′j)]

=
1

2
εijkdk · (δφ′ × dj) =

1

2
εijkδφ

′ · (dj × dk)

=
1

2
εijkεjkl(δφ

′ · dl) = δφ′ · di .

(38)

Substituting (22) and the variation of the two generalized strain measures (37) and
(38) into the internal virtual work (36), their final form is given by

δW int = −
∫ l2

l1

{
∂W

∂Γi
δΓi +

∂W

∂κi
δκi

}
ds

= −
∫ l2

l1

{(δr′ − δφ× r′) · n + δφ′ ·m} ds

= −
∫ l2

l1

{(δr′ − δφ× r′) · n + (δw − δφ×w) ·m} ds ,

(39)
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where the generalized internal forces n = ∂W
∂Γi

di and m = ∂W
∂κi

di have been
introduced. The interpretation of these generalized forces is postponed to the next
section. However, note that in the case of inelastic behavior, where no strain energy
function might be available, the internal virtual work could be defined by (39)
in which the generalized forces n and m follow different constitutive laws than
here. According to Germain (1973) or Eugster and Glocker (2017), the internal
virtual work must vanish for all rigid virtual displacements, i.e., for δr(s, t) =
δc(t)+δϕ(t)×r(s, t) and δφ(s, t) = δϕ(t), where δc(t), δϕ(t) ∈ E3. Independent
of the constitutive assumption, this is granted when using the internal virtual work
(39).

Using integration by parts in the second line of (39), we can rewrite the internal
virtual work as

δW int =

∫ l2

l1

{δr · n′ + δφ · (m′ + r′ × n)} ds

−
2∑
i=1

(−1)i {δr · n + δφ ·m} |s=li .
(40)

For the static case, where only the internal virtual work contributions equilibrate the
external virtual work contributions, (40) gives us the form of the external forces that
we allow in our beam theory. These are distributed external forces n : I × R→ E3

and distributed external couples m : I × R→ E3. In addition we allow point-wise
defined external forces n1,n2 : R → E3 and couples m1,m2 : R → E3 to be
applied on the boundaries l1 and l2 of the beam. This leads to the virtual work
contributions of the external forces of the form

δW ext =

∫ l2

l1

{δr · n + δφ ·m} ds+

2∑
i=1

{δr · ni + δφ ·mi} |s=li . (41)

If we want to allow countable many point forces inside the beam, the open set (l1, l2)
has to be divided into further open sets, where the point forces are applied on the
corresponding boundaries.

In order to formulate the virtual work contributions of inertial effects, we pro-
ceed differently as before. For a meanwhile, we assume that the beam is a three-
dimensional continuous body whose points in the reference configuration occupy
the positions

X(s, θα) = r0(s) + θαDα(s) . (42)

Hence, every material point in the reference configuration is addressed by the co-
ordinates (s, θ2, θ3) ∈ B ⊂ R3. We assume that the cross sections of the beam are
spanned by the reference directors D2 and D3 such that θ2 and θ3 are the cross
section coordinates. In the sense of an induced theory, we assume the beam to be a
constrained three-dimensional continuum whose current configuration is restricted
to

x(s, θα, t) = r(s, t) + θαdα(s, t) . (43)
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In fact the kinematical ansatz (43) restricts the motion of the cross sections to
remain plane and rigid for any motion. The virtual work of the inertial forces of a
three-dimensional continuum is commonly defined as

δW dyn = −
∫
B

δx · ẍ dm = −
∫
B

δx · ẍ ρ0 dAds , (44)

where ρ0 : B → R is the beam’s mass density per unit volume in its reference
configuration and dA is the cross-sectional surface element in the beam’s refer-
ence configuration. For convenience, we introduce ρ(s, θα, t) = θαdα(s, t) with its
corresponding skew-symmetric tensor ρ̃(s, θα, t) ∈ Skw. Using (17), the virtual
displacements admissible with respect to the position field (43) are obtained as

δx = δr + δφ× θαdα = δr + δφ× ρ = δr− ρ̃δφ . (45)

Making use of the kinematic relation (14) and by taking the first and second time
derivative of the position field (43), the velocity and acceleration fields are

ẋ = ṙ + ω × θαdα = ṙ + ω × ρ ,
ẍ = r̈ + ω̇ × ρ+ ω × (ω × ρ) = r̈− ρ̃ω̇ + ω̃ω̃ρ .

(46)

For the next steps, we introduce some abbreviations for integral expressions that
will appear in the upcoming derivation and which are related to the zeroth, first and
second moment with respect to the mass density ρ0. The cross section mass density
per unit of s is defined as

Aρ0(s) :=

∫
A(s)

ρ0 dA , (47)

where A(s) = {(θ2, θ3) ∈ R2|(s, θ2, θ3) ∈ B}. In case that the centerline does not
coincide with the line of centroids rc : I × R → E3, (s, t) 7→ rc(s, t) a coupling
term

c = Aρ0(rc − r) =

∫
A(s)

ρρ0 dA =

∫
A(s)

θαdαρ0 dA (48)

will remain. Using (14) and (48), the second time derivative of the coupling term is

c̈ = (ω × c)̇ = ω̇ × c + ω × (ω × c) = −c̃ω̇ + ω̃ω̃c . (49)

Note that we denoted the skew-symmetric tensor corresponding to c by c̃. The last
required integrated quantity is the cross section inertia density defined as

Iρ0 =

∫
A(s)

ρ̃ρ̃Tρ0 dA . (50)

Furthermore, the time derivative of h = Iρ0ω, i.e., the product of the cross section
inertia density Iρ0 and the angular velocity ω is
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ḣ(s, t) = (Iρ0ij ωjdi)̇ = Iρ0ij (ω̇jdi + ωjḋi) . (51)

Note that the components of cross section inertia density Iρ0 = Iρ0ij di ⊗ dj in the
di ⊗ dj-basis are constant with respect to time t. Since the cross product of two
collinear vectors vanishes, i.e., 0 = ω × ω = ω × ωkdk, we can extend the above
equation, which leads together with (14) to the compact form

ḣ = Iρ0ij di ⊗ dj(ω̇kdk + ω × ωkdk) + ω × Iρ0ij ωjdi = Iρ0ω̇ + ω̃Iρ0ω . (52)

With the acceleration vector (46) and the virtual displacements (45), the contributions
of the inertial forces to the virtual work are given by

δW dyn = −
∫
B

δx · ẍ dm = −
∫
B

(δr− ρ̃δφ) · (r̈− ρ̃ω̇+ ω̃ω̃ρ)ρ0 dAds . (53)

The integration over the body B can be split in an integration over the cross section
A(s) and an integration along the arc length s. Together with the integrated quantities
defined above, the properties of the triple product, the skew symmetry ρ̃ = −ρ̃T, as
well as the relation ãb̃b̃a = −b̃ããb for ã, b̃ ∈ Skw, where a = ax(ã), b = ax(b̃),
we obtain

δW dyn = −
∫ l2

l1

{
δr ·

(
r̈

∫
A(s)

ρ0dA−
∫
A(s)

ρ̃ρ0dAω̇ + ω̃ω̃

∫
A(s)

ρρ0dA

)
+ δφ ·

(∫
A(s)

ρ̃ρ0dAr̈ +

∫
A(s)

ρ̃ρ̃Tρ0dAω̇ + ω̃

∫
A(s)

ρ̃ρ̃Tρ0dAω

)}
ds

= −
∫ l2

l1

{δr · (Aρ0 r̈− c̃ω̇ + ω̃ω̃c)+δφ · (c̃r̈ + Iρ0ω̇ + ω̃Iρ0ω)}ds.

(54)

Using (49) and (52), the virtual work contributions of the inertial terms can be
written in the compact form

δW dyn = −
∫ l2

l1

{
δr · (Aρ0 r̈ + c̈) + δφ · (c× r̈ + ḣ)

}
ds . (55)

5 Principle of virtual work and equations of motion

The principle of virtual work can be stated as following. For all admissible virtual
displacements and for any instant of time t, the total virtual work of the beam must
vanish, i.e.,

δW tot = δW dyn + δW int + δW ext = 0 ∀δr, δφ, t . (56)

Inserting the individual contributions of the virtual work (39), (41) and (55) into the
principle of virtual work (56) leads to the weak variational formulation of the spatial
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nonlinear Timoshenko beam

δW tot =

∫ l2

l1

{δr · (n−Aρ0 r̈− c̈)+δφ · (m− c× r̈−ḣ)− (δr′ − δφ× r′) · n

− δφ′ ·m} ds+

2∑
i=1

{δr · ni + δφ ·mi} |s=li = 0 ∀δr, δφ, t . (57)

Using the internal virtual work in the form (40), i.e., after integration by parts, we
end up with the strong variational formulation of the spatial nonlinear Timoshenko
beam

δW tot =

∫ l2

l1

{δr · (n′ + n−Aρ0 r̈− c̈)

+ δφ · (m′ + r′ × n + m− c× r̈− ḣ)} ds (58)

+

2∑
i=1

{
δr · (ni−(−1)in)+δφ · (mi−(−1)im)

}
|s=li = 0, ∀δr, δφ, t.

By the fundamental lemma of calculus of variations, (58) can only be fulfilled if the
equations of motion of the Timoshenko beam

n′ + n = Aρ0 r̈ + c̈

m′ + r′ × n + m = c× r̈ + ḣ
(59)

are satisfied in the interior of the beam, s ∈ (l1, l2), together with the boundary
conditions n(l1, t) = −n1(t), m(l1, t) = −m1(t) and n(l2, t) = n2(t), m(l2, t) =
m2(t), see also (Antman, 2005; Dill, 1992). Certainly appropriate initial conditions
in time have to be stated.

For getting an interpretation of the generalized internal forcesn andm introduced
in the internal virtual work contributions (39), we consider the static problem of a
cantilever beam with reference length L, i.e., I = [0, L]. The beam is clamped at
s = 0 and subjected to distributed forces n and couples m as well as a point force
and a couple n2, m2 at s = L. For the clamped end, the boundary conditions and
the admissible virtual displacements and rotations read

r(0) = 0 , δr(0) = 0 , φ(0) = 0 , δφ(0) = 0 . (60)

Disregarding inertial effects and applying the admissible virtual displacements at
the boundary (60), the equations of motion (59) turn into the equilibrium conditions

n′ + n = 0

m′ + r′ × n + m = 0 ,
(61)
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together with the force boundary conditions n(L) = n2 and m(L) = m2 at the
end of the beam. The boundary condition n(L) = n2 identifies n(L) as the force
applied at the end s = L; the same holds for the couple.

For s ∈ I , the fundamental theorem of calculus allows us to write
∫ L
s

n′ds =
n(L)−n(s). Using the first equilibrium equation in (61) together with the boundary
condition n(L) = n2, we get

n(s) = n(L)−
∫ L

s

n′ ds = n2 +

∫ L

s

n ds . (62)

Accordingly, n(s) corresponds to the force exerted by the segment (s, L] on the part
[0, s]. We consequently identify n = Nd1 +Q2d2 +Q3d3 as the resultant contact
force, where N = ∂W/∂Γ1 and Qα = ∂W/∂Γα correspond to the axial force and
the shear forces, respectively.

Using the relation
∫ L
s

m′ds = m(L)−m(s) togetherwith the second equilibrium
equation in (61), the boundary condition m(L) = m2 and subsequent integration
by parts, we obtain

m(s) = m(L) +

∫ L

s

{r′ × n + m} ds

= m2 + r(L)× n(L)− r(s)× n(s) +

∫ L

s

{m− r× n′} ds .

(63)

For a fixed s ∈ I , let ∆r(s) = r(s) − r(s) be the vector connecting the point r(s)
with r(s) for an arbitrary s ∈ I . Substituting r(s) = r(s) + ∆r(s) in the above
equation, using the first equilibrium equation in (61) and the identity (62), the terms
with r(s) cancel and we get

m(s) = m2 +∆r(L)× n2 +

∫ L

s

{m +∆r× n} ds . (64)

From (64), it becomes apparent thatm(s) is the couple exerted by the segment (s, L]
on the part [0, s]. We identify m = Td1 +M2d2 +M3d3 as the resultant contact
couple, where T = ∂W/∂κ1 andMα = ∂W/∂κα correspond to the twisting couple
and the bending couples, respectively.

6 Constrained beam theories

In the preceding sections, we have established the governing equations for a spatial
nonlinear Timoshenko beam. To end up with an Euler–Bernoulli or an inextensi-
ble Euler–Bernoulli beam, we have to prescribe further constraints. For the Euler–
Bernoulli beam, the current director d1 must align with the centerline’s tangent r′.
For an inextensible Euler–Bernoulli beam, also the norm of the centerline’s tangent
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must remain constant, i.e., ‖r′‖ = ‖r′0‖ = 1. All required constraint conditions can
be formulated in the form g(s, t) = 0. To incorporate such a constraint into the
variational formulation, i.e., in the principle of virtual work (56), we augment the
strain energy functional of the whole beam (23) in accordance with

E∗ = E + E , E = −
∫ l2

l1

g(s, t)σ(s, t) ds , (65)

where the Lagrange multiplier field σ : I × R → R has been introduced. Again,
the internal virtual work is obtained by the variation of the strain energy functional,
which in the constrained case reads as

δW int,∗ = −δE∗ = −δE − δE = δW int + δW int
c , δW int

c = δW int
c,1 + δW int

c,2 ,

δW int
c,1 =

∫ l2

l1

g(s, t)δσ(s, t) ds , δW int
c,2 =

∫ l2

l1

δg(s, t)σ(s, t) ds . (66)

The first additional internal virtual work contribution δW int
c,1 corresponds to the weak

form of the constraint condition, which is important for a later numerical treatment.
The second contribution δW int

c,2 represents the virtual work of the constraint forces.
For multiple constraints, the contributions are just summed up.

6.1 Nonlinear Euler–Bernoulli beam

If the current director d1 aligns with the centerline’s tangent r′, then the cross
sections spanned by the directors dα remain orthogonal to r′. This restriction can
be formulated by the two conditions

gα(s, t) = Γα(s, t) = dα(s, t) · r′(s, t) = 0 . (67)

For this case, the constraint conditions coincide with vanishing shear deformations,
see (29). Identifying δgα = δΓα = dα · (δr′− δφ× r′), together with its definition
given in (37), the virtual work contributions of the constraints are

δW int
c,1 =

∫ l2

l1

δσαgα ds =

∫ l2

l1

δσα(dα · r′) ds ,

δW int
c,2 =

∫ l2

l1

σαδgα ds =

∫ l2

l1

(δr′ − δφ× r′) · nC ds ,

(68)

where we have introduced nC = σαdα. Hence, the two Lagrange multiplier fields
σα act as shear constraint forces to enforce the vanishing shear deformations Γα in
the Euler–Bernoulli beam.
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6.2 Nonlinear inextensible Euler–Bernoulli beam

If, in addition to (67), we further prescribe an inextensibility constraint, the constraint
condition

g1(s, t) = Γ1(s, t)− 1 = d1(s, t) · r′(s, t)− 1 = 0 (69)

must hold. For the physically reasonable situation thatd1·r′ > 0 and sincedα·r′ = 0,
the constraint condition (69) coincides with the condition that the centerline’s tangent
has unit length. Indeed 0 = ‖r′‖ − 1 = [(di · r′)(di · r′)]1/2 − 1

(67)
= [(d1 · r′)(d1 ·

r′)]1/2 − 1 = d1 · r′ − 1. Identifying δg1 = δΓ1, together with its definition given
in (37), the virtual work contributions of the constraints (67) and (69) are

δW int
c,1 =

∫ l2

l1

δσigi ds =

∫ l2

l1

δσi(di · r′ − δi1) ds ,

δW int
c,2 =

∫ l2

l1

σiδgi ds =

∫ l2

l1

(δr′ − δφ× r′) · nC ds ,

(70)

with nC = σidi. For the inextensible Euler–Bernoulli beam, the resultant contact
forces are pure reaction forces that guarantee unshearability and inextensiblity of the
beam.

7 Constrained and unconstrained planar beam theories

In the previous section, we have shown how to augment the principle of virtual
work to also treat the Euler–Bernoulli beam theory and its inextensible version
as a constrained theory in a variational setting. In this section, we will restrict
the motion of the beams to be planar. Furthermore, we will work out the virtual
work contributions of the constrained theories in detail for a possible finite element
analysis as it is presented in Harsch and Eugster (2020). For the (inextensible)
Euler–Bernoulli beam, we will also choose kinematical descriptions that satisfy
the constraint conditions intrinsically. These formulations are then called minimal
formulations referring to the terminology of minimal coordinates in finite degree of
freedom mechanics.

7.1 Timoshenko beam

For the planar case, the kinematics of the beam’s centerline is restricted to the e1-e2-
plane. The position vector of the centerline, the tangent vector and its derivative with
respect to the arc length parameter s for the reference and current configurations are
given by
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Fig. 2 Graphic illustration of planar position and rotation fields.

r0(s) = X(s)e1 + Y (s)e2 , r(s, t) = x(s, t)e1 + y(s, t)e2 ,

r′0(s) = X ′(s)e1 + Y ′(s)e2 , r′(s, t) = x′(s, t)e1 + y′(s, t)e2 ,

r′′0(s) = X ′′(s)e1 + Y ′′(s)e2 , r′′(s, t) = x′′(s, t)e1 + y′′(s, t)e2 ,

(71)

using the coordinate functionsX,Y : I → R and x, y : I×R→ R. Planar rotations
are given by rotations around D3 = d3 = e3. As depicted in Fig. 2, the reference
and current director triads are

D1 = cos θ0(s)e1+ sin θ0(s)e2 , D2 = − sin θ0(s)e1+ cos θ0(s)e2 ,

d1 = cos θ(s, t)e1+ sin θ(s, t)e2 , d2 = − sin θ(s, t)e1+ cos θ(s, t)e2 ,
(72)

where θ0 : I → R parameterizes the absolute angle of the reference director D1

with respect to the vector e1 and θ : I × R → R the absolute angle of the current
director d1.

The rotation of the reference configuration is given by R0 = R0
ijei ⊗ ej , with

the components R0
ij = ei ·Dj . The current rotation field is given analogously by

R = Rijei ⊗ ej with Rij = ei · dj . Both components can be written in matrix
notation as

[R0
ij ] =

cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1

 , [Rij ] =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (73)

The rotation field Λ = RRT
0 = RikR

0
jkei ⊗ ej = Λijei ⊗ ej has the components

in matrix form given by

[Λij ] = [Rik][R0
kj ]

T =

cos(θ − θ0) − sin(θ − θ0) 0
sin(θ − θ0) cos(θ − θ0) 0

0 0 1

 . (74)

Computing the derivatives of the directors (72) with respect to s, we get

D′1 = θ′0D2, D′2 = −θ′0D1, d′1 = θ′d1, d′2 = −θ′d1, D′3 = d′3 = 0 . (75)
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The curvatures κ̃− κ̃0 = (κ̃ij− κ̃0ij)Di⊗Dj and their associated axial vectors κ−
κ0 = (κi−κ0i )di, together with their components are given in (33). The components
can be obtained by inserting the directors (72) and their partial derivatives (75). This
yields the very simple planar curvatures

[κ̃ij ] =

0 −θ′ 0
θ′ 0 0
0 0 0

 , [κ̃0ij ] =

 0 −θ′0 0
θ′0 0 0
0 0 0

 ,

κ = κ3e3 = θ′e3 , κ0 = κ03e3 = θ′0e3 .

(76)

The generalized strainmeasureΓ from (29) is computed using (71) together with (72)
and reads

Γ = Γ1D1 + Γ2D2 = (r′ · d1)D1 + (r′ · d2)D2 . (77)

The third componentΓ3 of the strainmeasure vanishes, because the current tangential
vector has no component in d3-direction.

The velocities and accelerations of the beam’s centerline are easily computed
from (71) as

ṙ = ẋe1 + ẏe2 , r̈ = ẍe1 + ÿe2 . (78)

The rate of change of the director triad ḋi is obtained by replacing the derivative
with respect to s in (75) by the time derivative. The angular velocity (15) can be
easily computed in the ei ⊗ ej-basis as

ω̃ = ṘRT = ω̃ijei ⊗ ej , [ω̃ij ] = [Ṙik][Rkj ]T =

0 −θ̇ 0

θ̇ 0 0
0 0 0

 . (79)

Since d3 = e3, the associated axial vector ω can be represented as

ω = ax(ω̃) = θ̇e3 . (80)

The variation of the beam’s centerline and the variation of the tangent vector are

δr = δxe1 + δye2 , δr′ = δx′e1 + δy′e2 . (81)

Also for the virtual rotation δφ̃ given in (18), it is easiest to compute its compo-
nents in the ei ⊗ ej-basis as

δφ̃ = δΛΛT = δφ̃ijei ⊗ ej , [δφ̃ij ] = [δΛik][Λkj ]T =

 0 −δθ 0
δθ 0 0
0 0 0

 . (82)

The associated axial vector and its partial derivative with respect to the arc length
parameter s read

δφ = ax(δφ̃) = δθe3 , δφ′ = δθ′e3 . (83)
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Dropping the index in the shear force Q2 and the bending coupleM3, the planar
form of the resultant contact forces and couples defined in (39) are

n = Nd1 +Qd2 = (N cos θ −Q sin θ) e1 + (N sin θ +Q cos θ)e2

= n1e1 + n2e2 ,

m = Md3 = Me3 .

(84)

Note the just introduced abbreviations n1 = N cos θ −Q sin θ and n2 = N sin θ +
Q cos θ.

For the sake of compact notation, we define the mapping

⊥ : E3 → E3 , a 7→ a⊥ = Aa , A = e2 ⊗ e1 − e1 ⊗ e2 , (85)

which rotates a vector in the e1-e2 plane around the e3-axis by π/2 in the mathe-
matically positive sense. Accordingly, we can write

δr′ − δφ× r′ = δx′e1 + δy′e2 + δθy′e1 − δθx′e2 = δr′ − δθr′⊥ . (86)

Inserting the variation of the tangent vector (81), the above computed expression,
the variation of the virtual rotation (83) and the planar contact forces and couples
given in (84) into the internal virtual work contributions (39), we obtain its planar
form

δW int = −
∫ l2

l1

{(δr′ − δθr′⊥) · n + δθ′M} ds . (87)

The external forcesn = n1e1+n2e2 only act in the e1-e2-plane and external couples
are of the formm = Me3. Same holds for the external forces ni = ni1e1+ni2e2 and
couplesmi = M ie3 at the boundaries of the beam. The virtual work contributions of
the external forces are straightforwardly obtained by inserting (81) and (83) into (41),
i.e.,

δW ext =

∫ l2

l1

{
δr · n + δθM

}
ds+

2∑
i=1

{
δr · ni + δθM i

}
|s=li . (88)

For the sake of brevity, we assume that the centerline r corresponds with the line
of centroids rc. Hence, the coupling term c = Aρ0(rc − r) and its time derivatives
vanish. Moreover, we assume a homogeneous mass distribution in the cross section
such that the directors dα coincide with the geometric principal axes of the beam’s
cross section. Thus, the components of the cross section inertia density Iρ0 =
Iρ0ij di ⊗ dj can be arranged in matrix form given by the diagonal matrix

[Iρ0ij ] = Diag[I1, I2, I3] =

I1 0 0
0 I2 0
0 0 I3

 . (89)
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The product of the cross section inertia density with the angular velocity and its time
derivative (52) are given by

h = Iρ0ω = I3θ̇e3 , ḣ = Iρ0ω̇ + ω × Iρ0ω = I3θ̈e3 . (90)

Using the above derived simplifications, together with the variation and acceler-
ation of the centerline given in (81) and (78), respectively, the virtual work contri-
butions of the inertial forces (55) reduce to

δW dyn = −
∫ l2

l1

{
δr ·Aρ0 r̈ + δθI3θ̈

}
ds . (91)

The total virtual work of the planar Timoshenko beam is given by assembling the
individual contributions from (87), (88) and (91) which yields

δW tot =

∫ l2

l1

{
δr · (n−Aρ0 r̈) + δθ(M − I3θ̈ + r′⊥ · n)− δr′ · n− δθ′M

}
ds

+

2∑
i=1

{
δr · ni + δθM i

}
|s=li . (92)

By identifying the first set of constraint conditions (67) with the quantities given
in (77), we get

g2(s, t) = Γ2 = r′ · d2 = 0 , g3(s, t) = Γ3 = r′ · d3 = 0 , (93)

where the constraint g3 is trivially fulfilled. With δg2 = δΓ2 = δr′ · d2 − δθr′ · d1,
the spatial virtual work contributions given in (68) reduces to

δW int
c,1 =

∫ l2

l1

δσ2(r′ ·d2) ds , δW int
c,2 =

∫ l2

l1

σ2(δr′ ·d2 − δθr′ ·d1) ds . (94)

Adding the virtual work contributions above to the unconstrained total virtual work
of the Timoshenko beam (92), the Euler–Bernoulli beam model is obtained.

In addition to (93), the inextensibility condition (69) can be met in the form

g1(s, t) = Γ1(s, t)− 1 = d1 · r′ − 1 = ‖r′‖ − 1 = g − 1 = 0 , (95)

where we have introduced the abbreviation g = ||r′||. The variation of the current
stretch is given by

δΓ1 = δg =
δr′ · r′

g
, (96)

which leads for the inextensible Euler–Bernoulli beam to the additional virtual work
contributions

δW int
c,1 =

∫ l2

l1

δσ1(g − 1) ds , δW int
c,2 =

∫ l2

l1

σ1
δr′ · r′

g
ds . (97)
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Adding the virtual work contributions above, together with (94) to the unconstrained
total virtual work of the planar Timoshenko beam (92), the inextensible planar
Euler–Bernoulli beam model is obtained.

7.2 Euler–Bernoulli beam

In this section, we show how to formulate the planar Euler–Bernoulli beam theory
with coordinates that meet the required constraint conditions and for which the
constraint forces become obsolete. By inserting the planar versions for the tangent
vector (71) and the second director (72) into the first equality given in (93), we can
express the absolute angle of the current cross section as

θ = arctan

(
y′

x′

)
. (98)

Recapitulating the abbreviation g = ‖r′‖ = [(x′)2 + (y′)2]1/2, the variation and the
partial derivative with respect to s of (98) are given by

δθ =
x′δy′ − y′δx′

g2
=

r′⊥ · δr′

g2
, θ′ =

x′y′′ − y′x′′

g2
=

r′⊥ · r′′

g2
, (99)

where we have used d
dx arctan(x) = (1 + x2)−1 and the chain rule of differential

calculus. With the same arguments, the first and second time derivative of (98) are
given by

θ̇ =
r′⊥ · ṙ′

g2
, θ̈ =

r′⊥ · r̈′

g2
− 2θ̇r′ · ṙ′

g2
, (100)

where, for the second identity, we have used the property a⊥ · a = 0 ∀a ∈ E3.
Using the skew symmetry of the rotation operation (85)1 and the linearity of the dot
product, the variation of θ′ is computed straightforwardly as

δθ′ =
1

g2
(δr′′ · r′⊥ − δr′ · [2θ′r′ + r′′⊥]) . (101)

With the above derived relations at hand, we are able to replace all quantities
depending on θ in the virtual work of the Euler–Bernoulli beam. After minor re-
arrangements, this leads to the compact internal virtual work contributions of the
Euler–Bernoulli beam

1 Using the property thatA in (85) is skew symmetric, i.e.,AT = −A, we get a ·b⊥ = a ·Ab =
(ATa) · b = − (Aa) · b = −a⊥ · b and thus the variation of the rotated tangential vector and
the centerline’s second derivative can be swapped by a sign change, i.e., δr′⊥ · r′′ = −δr′ · r′′⊥.
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δW int = −
∫ l2

l1

{δΓ1N + δθ′M} ds

= −
∫ l2

l1

{
1

g
δr′ ·

(
r′N − M

g
[2θ′r′ + r′′⊥]

)
+ δr′′ · r′⊥M

g2

}
ds .

(102)

Note, that the integral of the virtual work has to exist, thus we require the beam’s
centerline to be at least C1-continuous. This has to be kept in mind for a later
discretization.

Inserting the first identity of (99) into the planar virtual work contributions of the
external forces, given in (88), we get

δW ext =

∫ l2

l1

{
δr · n +

r′⊥ · δr′

g2
M

}
ds

+

2∑
i=1

{
δr · ni +

r′⊥ · δr′

g2
M i

} ∣∣∣∣
s=li

. (103)

Using the relations given in (99) and (100), the virtual work contributions of the
inertial forces (91) are given by

δW dyn = −
∫ l2

l1

{
δr ·Aρ0 r̈ + I3

r′⊥ · δr′

g4

(
r′⊥ · r̈′ − 2θ̇r′ · ṙ′

)}
ds . (104)

Note that very often the cumbersome contribution containing I3 is omitted, see
Elishakoff et al (2015) for a discussion about that issue.

Additionally, the inextensibility (96) can be enforced by adding the planar version
of the constraint virtualwork contributions (97) to the total planar virtualwork,which
leads to the mixed formulation (minimal formulation and inextensibility constraint)
of the planar inextensible Euler–Bernoulli beam.

7.3 Inextensible Euler–Bernoulli beam

The third constraint condition (69) can also be satisfied by choosing a new set of
coordinates. Computing the components of the current tangent vector in the di-basis
yields

r′ = (r′ · di)di
(93)
= (r′ · d1)d1 = Γ1d1

(95,72)
= cos θe1 + sin θe2 , (105)

which necessarily fulfills (69). In what follows, r′ = r′(θ) is considered as function
of θ. The position vector at (s, t) is obtained as the integrated quantity

r(s, t) =

∫ s

l1

r′(θ(s̄, t)) ds̄+ r(t) , (106)
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where r(t) is the time dependent reference point at s = l1. Computing the time
derivative of the above equation, we get the velocity vector

ṙ(s, t) =

∫ s

l1

∂r′

∂θ
(θ(s̄, t))θ̇(s̄, t) ds̄+ ṙ(t) . (107)

Accordingly, the acceleration vector is obtained as

r̈(s, t) =

∫ s

l1

{
∂2r′

∂θ2
(θ(s̄, t))θ̇2(s̄, t) +

∂r′

∂θ
(θ(s̄, t))θ̈(s̄, t)

}
ds̄+ r̈(t) . (108)

The variation of the position vector is given as

δr(s, t) =

∫ s

l1

∂r′

∂θ
(θ(s̄, t))δθ(s̄, t) ds̄+ δr(t) . (109)

Using the last identity of (95) and inserting its variation δΓ1 = 0 into the internal
virtual work of the Euler–Bernoulli beam given in (102), we get

δW int = −
∫ l2

l1

δθ′M ds . (110)

The external virtual work contributions of the inextensible Euler–Bernoulli beam
in minimal formulation are given as

δW ext =

∫ l2

l1

{(∫ s

l1

∂r′

∂θ
δθ ds̄+ δr

)
· n + δθM

}
ds

+

2∑
i=1

{(∫ s

l1

∂r′

∂θ
δθ ds̄+ δr

)
· ni + δθM i

} ∣∣∣∣
s=li

. (111)

Inserting (108) and (109) into the virtual work contributions of the inertial forces
given in (55) we obtain the cumbersome relation

δW dyn =−
∫ l2

l1

{
δr ·Aρ0 r̈ + δθI3θ̈

}
ds

=−
∫ l2

l1

Aρ0

{∫ s

l1

δθ
∂r′

∂θ
· ∂

2r′

∂θ2
θ̇2 ds̃+

∫ s

l1

δθ
∂r′

∂θ
ds̃ · r̈

+

∫ s

l1

δθ
∂r′

∂θ
· ∂r′

∂θ
θ̈ ds̃+ δr ·

∫ s

l1

∂2r′

∂θ2
θ̇2 ds̃

+ δr ·
∫ s

l1

∂r′

∂θ
θ̈ ds̃+ δr · r̈ + δθ

I3
Aρ0

θ̈

}
ds .

(112)

If we apply this theory of the planar inextensible Euler–Bernoulli beam to the static
consideration of a clamped straight cantilever subjected to a force or a couple at the
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end, the principle of virtual work leads us directly to the equations known from the
elastica theory.

Even though this minimal formulation of the inextensible Euler–Bernoulli beam
would be suitable for a subsequent finite element analysis, we will not pursue this any
further in Harsch and Eugster (2020). The double integral expressions that appear in
the virtual work expressions of distributed forces and couples (111) as well as in the
intertia terms (112) make a numerical treatment extremely cumbersome and not to
strive for. Just think about the numerical error of the position (106) that cumulates
with increasing beam length.

8 Conclusion

In this article we presented the derivation of the equations of motion describing
the three classical beams, i.e., the Timoshenko beam, the Euler–Bernoulli beam as
well as its inextensible companion. The governing equations for the beams were
obtained within the variational framework of the principle of virtual work. The ap-
plied variational formulation is beneficial not only to add constraints in the sense
of the Lagrange multiplier method but also for a subsequent finite element formu-
lation as shown in Harsch and Eugster (2020) for the planar theories. Therefore we
additionally elaborated all virtual work contributions of the classical planar theories
both as constrained and as unconstrained theories. The corresponding virtual work
contributions are ready for a Bubnov–Galerkin discretization.

Acknowledgements This research has been funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Grant No. 405032572 as part of the priority program
2100 Soft Material Robotic Systems.

References

Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depend-
ing on higher displacement gradients. Mathematics and Mechanics of Solids 8(1):51–73

Andreaus U, Spagnuolo M, Lekszycki T, Eugster SR (2018) A Ritz approach for the static analysis
of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams. Continuum
Mechanics and Thermodynamics 30(5):1103–1123

Antman SS (2005) Nonlinear Problems of Elasticity, Applied Mathematical Sciences, vol 107, 2nd
edn. Springer

Ballard P, Millard A (2009) Poutres et Arcs Élastiques. Les Éditions de l’École Polytechnique
Barchiesi E, Eugster SR, Placidi L, dell’Isola F (2019a) Pantographic beam: a complete second

gradient 1D-continuum in plane. Zeitschrift für angewandte Mathematik und Physik 70(5):135
Barchiesi E, Spagnuolo M, Placidi L (2019b) Mechanical metamaterials: a state of the art. Mathe-

matics and Mechanics of Solids 24(1):212–234
Barchiesi E, Eugster SR, dell’Isola F, Hild F (2020) Large in-plane elastic deformations of bi-

pantographic fabrics: asymptotic homogenization and experimental validation. Mathematics
and Mechanics of Solids 25(3):739–767



A variational formulation of classical nonlinear beam theories 25

Bersani A, dell’Isola F, Seppecher P (2019) Lagrange multipliers in infinite dimensional spaces,
examples of application. In: Altenbach H, Öchsner A (eds) Encyclopedia of Continuum Me-
chanics, Springer, pp 1–8

Betsch P, Steinmann P (2003) Constrained dynamics of geometrically exact beams. Computational
Mechanics 31:49–59

Boutin C, Giorgio I, Placidi L, et al (2017) Linear pantographic sheets: asymptotic micro-macro
models identification. Mathematics and Mechanics of Complex Systems 5(2):127–162

Capobianco G, Eugster SR, Winandy T (2018) Modeling planar pantographic sheets using a
nonlinear Euler–Bernoulli beam element based on B-spline functions. Proceedings in Applied
Mathematics and Mechanics 18(1):1–2

Cowper GR (1966) The Shear Coefficient in Timoshenko’s Beam Theory. Journal of Applied
Mechanics 33(2):335–340

dell’Isola F, Placidi L (2011) Variational principles are a powerful tool also for formulating field
theories. In: dell’Isola F, Gavrilyuk S (eds) Variational models and methods in solid and fluid
mechanics. CISM Courses and Lectures, vol 535, Springer, pp 1–15

dell’Isola F, Seppecher P (1995) The relationship between edge contact forces, double forces and
interstitial working allowed by the principle of virtual power. Comptes Rendus de l’Académie
des Sciences Série II, Mecanique, physique, chimie, astronomie 321(8):303–308

dell’Isola F, Steigmann D (2015) A two-dimensional gradient-elasticity theory for woven fabrics.
Journal of Elasticity 118(1):113–125

dell’Isola F, Della Corte A, Giorgio I, Scerrato D (2016a) Pantographic 2D sheets: Discussion of
some numerical investigations and potential applications. International Journal of Non-Linear
Mechanics 80:200–208

dell’Isola F, Della Corte A, Greco L, Luongo A (2016b) Plane bias extension test for a continuum
with two inextensible families of fibers: A variational treatment with Lagrange multipliers and
a perturbation solution. International Journal of Solids and Structures 81:1–12

dell’Isola F, Giorgio I, Pawlikowski M, Rizzi NL (2016c) Large deformations of planar extensible
beams and pantographic lattices: heuristic homogenization, experimental and numerical exam-
ples of equilibrium. Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 472(2185):1–23

dell’Isola F, Seppecher P, et al (2019a) Advances in pantographic structures: design, manufac-
turing, models, experiments and image analyses. Continuum Mechanics and Thermodynamics
31(4):1231–1282

dell’Isola F, Seppecher P, et al (2019b) Pantographic metamaterials: an example of mathematically
driven design and of its technological challenges. Continuum Mechanics and Thermodynamics
31(4):851–884

dell’Isola F, Seppecher P, Placidi L, Barchiesi E, Misra A (2020a) Least Action and Virtual Work
Principles for the Formulation of Generalized ContinuumModels, Cambridge University Press,
chap 8, pp 327–394

dell’Isola F, SpagnuoloM, Barchiesi E, Giorgio I, Seppecher P (2020b) PantographicMetamaterial:
A (Not So) Particular Case, Cambridge University Press, chap 3, pp 103–138

Deutschmann B, Eugster SR, Ott C (2018) Reduced models for the static simulation of an elastic
continuum mechanism. IFAC-PapersOnLine 51(2):403 – 408, 9th Vienna International Confer-
ence on Mathematical Modelling

Dill EH (1992) Kirchhoff’s theory of rods. Archive for History of Exact Sciences 44(1):1–23
Elishakoff I, Kaplunov J, Nolde E (2015) Celebrating the centenary of Timoshenko’s study of

effects of shear deformation and rotary inertia. Applied Mechanics Reviews 67(6):060,802
Eugster SR (2015) Geometric Continuum Mechanics and Induced Beam Theories, Lecture Notes

in Applied and Computational Mechanics, vol 75. Springer
Eugster SR, dell’Isola F (2017) Exegesis of the introduction and sect. I from “Fundamentals of the

mechanics of continua” by E. Hellinger. Zeitschrift für angewandte Mathematik und Mechanik
97(4):477–506

Eugster SR, dell’Isola F (2018) Exegesis of sect. II and III.A from “Fundamentals of the mechanics
of continua” by E. Hellinger. Zeitschrift für angewandteMathematik undMechanik 98(1):31–68



26 Simon R. Eugster and Jonas Harsch

Eugster SR, Deutschmann B (2018) A nonlinear Timoshenko beam formulation for modeling a
tendon-driven compliant neck mechanism. Proceedings in AppliedMathematics andMechanics
18(1):1–2

Eugster SR, Glocker Ch (2017) On the notion of stress in classical continuum mechanics. Mathe-
matics and Mechanics of Complex Systems 5(3-4):299–338

Eugster SR, Steigmann DJ (2020) Variational methods in the theory of beams and lattices. In:
Altenbach H, Öchsner A (eds) Encyclopedia of Continuum Mechanics, Springer, pp 1–9

Eugster SR, Hesch C, Betsch P, Glocker Ch (2014) Director-based beam finite elements relying on
the geometrically exact beam theory formulated in skew coordinates. International Journal for
Numerical Methods in Engineering 97(2):111–129

Germain P (1973) The method of virtual power in continuum mechanics. Part 2: Microstructure.
SIAM Journal on Applied Mathematics 25:556–575

Giorgio I, Rizzi NL, Turco E (2017) Continuum modelling of pantographic sheets for out-of-
plane bifurcation and vibrational analysis. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 473(2207)

Greco L, CuomoM (2013) B-spline interpolation of Kirchhoff-Love space rods. ComputerMethods
in Applied Mechanics and Engineering 256(0):251–269

Harsch J, Eugster SR (2020) Finite element analysis of planar nonlinear classical beam theories.
In: Abali BE, Giorgio I (eds) Developments and Novel Approaches in Nonlinear Solid Body
Mechanics, vol 2, Springer

Maurin F, Greco F, Desmet W (2019) Isogeometric analysis for nonlinear planar pantographic lat-
tice: discrete and continuummodels. ContinuumMechanics and Thermodynamics 31(4):1051–
1064

Meier C, Popp A, Wall WA (2014) An objective 3D large deformation finite element formulation
for geometrically exact curved Kirchhoff rods. Computer Methods in Applied Mechanics and
Engineering 278(0):445–478

Rahali Y, Giorgio I, Ganghoffer J, dell’Isola F (2015) Homogenization à la Piola produces second
gradient continuummodels for linear pantographic lattices. International Journal of Engineering
Science 97:148 – 172

Reissner E (1981) On finite deformations of space-curved beams. Zeitschrift für Angewandte
Mathematik und Physik 32(6):734–744

Shirani M, Luo C, Steigmann DJ (2019) Cosserat elasticity of lattice shells with kinematically
independent flexure and twist. Continuum Mechanics and Thermodynamics 31:1087–1097

Simo JC (1985) A finite strain beam formulation. the three-dimensional dynamic problem. part I.
Computer Methods in Applied Mechanics and Engineering 49:55–70

Steigmann DJ (2017) Finite Elasticity Theory. Oxford University Press
Steigmann DJ, dell’Isola F (2015) Mechanical response of fabric sheets to three-dimensional

bending, twisting, and stretching. Acta Mechanica Sinica 31(3):373–382
SteigmannDJ, FaulknerMG (1993)Variational theory for spatial rods. Journal of Elasticity 33(1):1–

26
Till J, Aloi V, Rucker C (2019) Real-time dynamics of soft and continuum robots based on Cosserat

rod models. The International Journal of Robotics Research 38(6):723–746
Timoshenko S, Goodier JN (1951) Theory of Elasticity, 2nd edn. McGraw-Hill book Company


