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Abstract: To study nonlinear wave propagation phenomena in panto-
graphic sheets, we propose a dynamic model that consists of an assembly
of interconnected planar nonlinear Euler–Bernoulli beams. The intercon-
nections are either formulated as perfect bilateral constraints or by one-
dimensional generalized force laws. Accordingly, the spatially discretized
system is described by a differential algebraic system of equations, which is
solved with an appropriate numerical solution strategy. We analyze various
wave propagation phenomena by changing the kind of excitation.
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1 Introduction

In recent years, mechanical metamaterials with pantographic microstructure
have caught many researcher’s attention [36, 8, 9, 17, 18]. The design of
this particular microstructure has an exciting background. It is neither a
micro-structure that appears in nature nor does it come from a profane idea
such as the optimization of the strength to weight ratio. It results from
curiosity-driven research and the desire to break the chains of the mainstream
of Cauchy continuum mechanics, which assumes that interactions between
subbodies take place exclusively by surface interactions, [39]. Restricting
oneself to hyperelastic material behavior, Cauchy continua allow only for
strain energy densities that depend on the first gradient of the body’s place-
ment function. Guided by the mathematical theory of calculus of variations
and the mechanical principle of stationary potential energy [15, 37], an ap-
parently straight forward extension of the theory of continuous bodies is to
allow the strain energy density to depend also on higher gradients; this can
be the second gradient [20, 21, 38, 34] or even the Nth gradient [16] of the
placement function. A material with a pantographic microstructure exhibits
the properties which can be described on a macro level by a higher gradient
continuum [1, 5, 4].
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One of the best-studied design of a pantographic sheet was proposed in
[14]. Besides a 3D-printed materialization, which is visualized in Fig. 1, a
homogenization procedure leads to a second gradient continuum describing
the planar and static behavior of the sheet. Hence, the typical pantographic
sheet is a structure composed of two layers, each consisting of parallel fibers.
These layers lie on top of each other and are oriented such that the fibers
intersect, in the top view, with an angle of 90 degrees. At every intersection,
the fibers of the upper and lower layers are connected by a pin. Depending
on the range of application, many different models have been proposed de-
scribing the static and also dynamic behavior of this structure. Certainly,
the entire structure can be regarded as a three-dimensional elastic continuum
that can be described by Cauchy continuum mechanics. This computation-
ally expensive description is used in [22] to find suitable parameters for the
planar description. In [11] and [25], similar identifications are used to obtain
the parameters of shell models that describe also the out-of-plane deforma-
tion. Recently, a more refined shell model has been proposed that includes
even the relative displacement and rotation between the upper and lower
layer of fibers [26, 28]. For a vibration analysis of shell formulations with
straight and non-straight fibers, we refer to [27] and [23], respectively.

Very simplistic but highly effective and computationally cheap models
are discrete formulations, also known as Hencky-type formulations. They
describe the planar behavior by interconnected extensional and torsional
springs [41, 42]. Often this kind of description is at the bottom of a ho-
mogenization procedure, [14, 5].

Somewhat between discrete and continuum are models which describe the
individual fibers as nonlinear beams, see [2, 10, 33]. Using beam formulations
restricted to the small strain regime, a preliminary study of wave propagation
phenomena is given in [13, 12]. In the context of higher gradient continuum
models, [30, 31], [24] and [7] study the dynamics of the pantographic sheet, a
one-dimensional pantographic continuum as well as the pantographic beam
[6], respectively. In [40], the dynamics of the pantographic beam is also
investigated using a discrete Hencky-type model.

In this paper, we propose a model to analyze the planar transient dy-
namic behavior of the pantographic sheet. As an extension of the static
consideration in [33], we formulate a dynamic model composed of intercon-
nected planar nonlinear beams. The behavior of the spatially discretized
system is eventually captured by a differential algebraic system of equations
(DAE). In order to introduce notation and kinematics, in Sect. 2, we reca-
pitulate the theory and finite element formulation of the planar nonlinear
Euler–Bernoulli beam from [19]. A similar formulation can also be found in
[32]. Working within the variational framework of the principle of virtual
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Figure 1: CAD visualization of the pantographic sheet, [28].

work, in Sect. 3, we model the pantographic sheet as a multibody system
of interconnected discretized planar beams. The interactions as well as the
boundary conditions are formulated either as perfect bilateral constraints or
as generalized one-dimensional force laws. In Sect. 4, for various excitation
functions, nonlinear wave propagation phenomena are investigated.

2 Nonlinear Euler–Bernoulli beam

The motion of the system is described in the two-dimensional Euclidean
vector space E2 with origin O and orthonormal inertial frame given by the
unit vectors ex, ey ∈ E2. If not otherwise indicated, all introduced vectorial
quantities will be represented with respect to the inertial ex-ey-frame as
tuples of real numbers. Often, there will also appear n-tuples of real numbers
which will be treated in the sense of matrix multiplication as Rn×1-matrices,
i.e., as “column vectors”.

The motion of a planar nonlinear Euler–Bernoulli beam is represented by
the centerline

x(s, t) = (x(s, t), y(s, t)) , (1)

which is a plane curve parametrized by the real-valued position functions
x = x(s, t) and y = y(s, t), which in turn depend on time t and on s ∈ [0, l]
being the arc length of the undeformed beam with length l. Denoting with
the prime (•)′ the derivative with respect to the reference arc length s, the
inclination angle θ = θ(s, t) between the tangent vector x′ and the horizontal
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ex-direction can be computed as

θ = arctan
(

y′

x′

)
. (2)

Consider x̂ = x̂(s, t, ε) and ŷ = ŷ(s, t, ε) to be differentiable parametrizations
with respect to ε ∈ R such that the actual positions are embedded in the
parametrization and are obtained for ε = 0. Then, by replacing the corre-
sponding functions in (1), the variational family x̂ = x̂(s, t, ε) is obtained.
Introducing δx = ∂x̂/∂ε|ε=0 and δy = ∂ŷ/∂ε|ε=0, the virtual displacement of
the centerline δx = δx(s, t) is defined as

δx = ∂x̂
∂ε

∣∣∣∣∣
ε=0

= (δx, δy) . (3)

The extension of the beam is captured by the axial stretch g = g(s, t), which,
together with its variation δg = δg(s, t), is defined as

g = ∥x′∥ = [(x′)2 + (y′)2]1/2 , δg = δx′⊤x′

g
. (4)

The curvature of the beam, which is the rate of change of the beams in-
clination angle, as well as the virtual rotation δθ = δθ(s, t) induced by the
variation of the centerline can be expressed as

θ′ = (x′
⊥)⊤x′′

g2 , δθ = (x′
⊥)⊤δx′

g2 . (5)

Note the introduced mapping ⊥ : a = (a1, a2) 7→ a⊥ = (−a2, a1), which
corresponds to a 90 degrees rotation in counterclockwise direction. Carrying
out the variation of the curvature θ′, together with the relation (δx′

⊥)⊤x′′ =
−δx′⊤x′′

⊥, we get

δθ′ = 1
g2

(
(x′

⊥)⊤δx′′ − δx′⊤[2θ′x′ + x′′
⊥]
)

. (6)

A hyperelastic planar nonlinear Euler–Bernoulli beam is characterized
by a strain energy function per unit reference arc length W = W (g, θ′).
Henceforth, we choose the quadratic strain energy function for straight beams

W (g, θ′) = 1
2ke(g − 1)2 + 1

2kbθ′2 , (7)

where ke and kb denote the beam’s extensional and bending stiffnesses, re-
spectively. The internal virtual work of a beam as the negative of the first
variation of the beam’s total strain energy is

δW int
b = −

∫ l

0
δWds = −

∫ l

0

{
∂W

∂g
δg + ∂W

∂θ′ δθ′
}

ds . (8)
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Identifying N = ∂W/∂g = ke(g − 1) and M = ∂W/∂θ′ = kbθ′ as axial force
and bending couple, respectively, and inserting (4) and (6) into (8), we get

δW int
b = −

∫ l

0

{
1
g

δx′⊤
(

x′N − M

g
[2θ′x′ + x′′

⊥]
)

+ δx′′⊤x′
⊥

M

g2

}
ds . (9)

The virtual work contribution of the inertial forces is given by

δW dyn
b = −

∫ l

0
δx⊤Aρ0ẍds , (10)

where Aρ0 is the mass density per unit reference arc length and the dot ˙(•)
denotes the time derivative. Note, that we omitted the contribution that
takes the rotatory inertia of the beam into account, compare [19, Sect. 7.2].

For a Galerkin-type finite element discretization of the beam, we approxi-
mate the centerline by B-spline polynomials. This approximation can be writ-
ten in the form x(s, t) ≈ r(s, q(t)) = N(s)q(t), where N = N(s) ∈ R2×2ncp

is the matrix of B-spline basis functions and q = q(t) ∈ R2ncp is the vector
consisting of the coordinates of the ncp control points, see [35]. Using the
same approximation for all induced quantities, e.g., δx ≈ δr′ = N′δq, the
internal virtual work (9) is approximated as

δW int,h
b = δq(t)⊤f int

b (q) ,

f int
b = −

∫ l

0

{
1
g

N′⊤
(

r′N − M

g
[2θ′r′ + r′′

⊥]
)

+ N′′⊤r′
⊥

M

g2

}
ds ,

(11)

where δq = ∂q̂/∂ε|ε=0 are the virtual displacements of the discretized finite
dimensional system determined by the variational families q̂ = q̂(t, ε) ∈
R2ncp . The discretization of the inertial virtual work leads to

δW dyn,h
b = −δq(t)⊤Mbq̈(t) , Mb =

∫ l

0
Aρ0N⊤Nds , (12)

where Mb is the constant, symmetric and positive definite mass matrix of
the discretized beam. We refer the reader to [29], for an introduction to
the finite element approximation of planar beams and in particular for more
technical details concerning the used shape functions as well as the element-
wise implementation.

3 Pantographic sheet

As sketched in Fig. 2, the pantographic sheet with length L and height H
is composed of nrow rows and ncol columns of straight beams each of which
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Figure 2: Reference configuration of the pantographic sheet.

has a reference length of l =
√

2H/nrow. For convenience, both the number
of rows and the number of columns are chosen to be even. In total there
are nb = nrowncol individual beams, which are either addressed by the tuple
(i, j) referring to row i ∈ {1, . . . , nrow} and column j ∈ {1, . . . , ncol} or by
the index b = (i − 1)ncol + j ∈ {1, . . . , nb}. All beams are modeled as Euler–
Bernoulli beams each with the same discretization that has been introduced
in the previous section. Accordingly, the centerline xb of beam b is approxi-
mated by r(s, qb(t)) = N(s)qb(t). The generalized coordinates of the entire
pantographic sheet, which are the control point coordinates of all beams, are
collected in the tuple q = (q1, . . . , qnb). The Boolean matrix Cb connects
the beam coordinates qb with the sheet coordinates q by means of qb = Cbq.
In the reference configuration, as depicted in Fig. 2, the beams are arranged
such that the ex-component of r(s, Qb) increases for increasing reference arc
length s. Note that Qb denotes the control point coordinates of beam b in
the reference placement.

So far only nb individual discretized beams have been introduced. To
obtain a pantographic sheet, we propose a model with the following interac-
tions:

1) junction: At the connection point of two adjacent beams within a single
fiber, the beams must agree on their position and inclination angle.

2) pivot: At the intersection of the two fiber families, the corresponding
beams show the same position throughout the motion.

3) torsional spring: In order to model the torsional stiffness of the pin
that connects the two beam families, at each intersection, a torsional
spring is added.
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Table 1: Boundary conditions in the form gbc(q, t) = 0.

4) boundary conditions: We consider here three different boundary con-
ditions, which are listed in Tab. 1. For all boundary conditions the
top and bottom edges are unconstrained. Moreover, there are no con-
straints that block the inclination angles of the beams.

(i) longitudinal excitation: the boundary points of the left edge are
excited in ex-direction with e(t) and can move freely in ey-direction.
The boundary points of the right edge are blocked in ex-direction
but can move freely in ey-direction.

(ii) lateral excitation: The boundary points of the left edge are excited
in ey-direction with e(t) and are blocked in ex-direction. At the
right edge all beams are fixed.

(iii) point excitation: While the top and bottom left corner points are
excited by e(t) in ey-direction, the left and right edge points are
blocked in ex-direction but can move freely in ey-direction.

The interactions 1) through 3) with the corresponding virtual work con-
tributions are exemplary introduced at an intersection point in the interior
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Figure 3: (a) Bilateral constraints at an interior intersection point. (b) Torsional pin
stiffness with torsional spring.

of the sheet as depicted in Fig. 3.
junction: The junction within the bottom fiber family, γ = −π/4, is the

perfect bilateral constraint with the constraint conditions

gjun(q) =
(

r(l, Ci,jq) − r(0, Ci+1,j+1q)
r′(l, Ci,jq)⊤r′

⊥(0, Ci+1,j+1q)

)
= 0 . (13)

Note the constraint condition on the inclination angle, which is formulated
in terms of the tangent vectors. In fact, the angles of the adjacent beams
agree if the tangent vector r′ of beam (i, j) is perpendicular to the normal
vector r′

⊥ of beam (i + 1, j + 1). The junction in the top beam family is
obtained when exchanging the indices in (13) as follows: (i, j) 7→ (i + 1, j)
and (i + 1, j + 1) 7→ (i, j + 1). Assuming the constraint to be perfect, the
constraint conditions (13) are guaranteed by the virtual work contribution

δW jun = δq⊤Wjun(q)λjun , Wjun =
(

∂gjun

∂q

)⊤
, (14)

where Wjun and λjun denote the generalized force directions of the constraint
and the Lagrange multipliers, respectively.

pivot: The constraint conditions of the pivot between the two fiber fami-
lies are

gpiv(q) = r(l, Ci,jq) − r(0, Ci,j+1q) = 0 , (15)

which demand the positions at the intersection to be the same. The virtual
work contribution is given as

δW piv = δq⊤Wpiv(q)λpiv , Wpiv =
(

∂gpiv

∂q

)⊤
. (16)

torsional spring: Using the inclination angle of (2), the deviation from
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−π/2 between the two fiber families is determined by

gtor(q) = arctan
(

e⊤
y r′(l, Ci,jq)

e⊤
x r′(l, Ci,jq)

)
− arctan

(
e⊤

y r′(0, Ci,j+1q)
e⊤

x r′(0, Ci,j+1q)

)
+ π

2 . (17)

Using the quadratic potential v(gtor) = 1
2kt(gtor)2, the virtual work for an

individual torsional spring is

δW tor = −δvtor(gtor(q)) = δq⊤wtor(q)λtor(q) (18)

with the generalized force direction wtor and the force law given by

wtor =
(

∂gtor

∂q

)⊤
, λtor(q) = −ktgtor(q) . (19)

boundary conditions: The boundary conditions are formulated as addi-
tional time dependent constraints with constraint equations gbc(q, t) = 0,
which come along with the corresponding virtual work contribution

δW bc = δq⊤Wbc(q, t)λbc , Wbc =
(

∂gbc

∂q

)⊤
. (20)

The individual constraint equations that appear in gbc are specified in Tab. 1.
Summing up all these contributions, the total virtual work of the panto-

graphic sheet with nb beams can be written in the form

δW tot = −δq⊤ (Mq̈ − h(q) − W(q, t)λ) , (21)

with the constant, symmetric and positive definite mass matrix

M =
nb∑

b=1
C⊤

b MbCb , (22)

the generalized forces of all nb beams and the nt torsional springs

h(q) =
nb∑

b=1
C⊤

b f int
b (Cbq) +

nt∑
k=1

wtor
k (q)λtor

k (q) , (23)

as well as the generalized force directions

W(q, t) =
(
Wjun

1 (q) · · · Wjun
nj (q) Wpiv

1 (q) · · · Wpiv
np (q) Wbc(q, t)

)
, (24)

and Lagrange multipliers

λ = (λjun
1 , . . . , λjun

nj , λpiv
1 , . . . , λpiv

np , λbc) (25)
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geometric properties kinetic properties
nrow 12 ke 500 N
ncol 300 kb 417 × 10−7 Nm2

H nrow × 0.01 m kt 175 × 10−4 Nm
L ncol × 0.01 m Aρ0 93 × 10−5 kgm−1

spatial discretization time discretization
# el./beam 1 te 8 × 10−2 s
polynomial degree 3 ∆t 2 × 10−5 s
# quadr. points/el. 5 ρ∞ 0.8

Table 2: Model and discretization parameters.

arising from the nj junctions, np pivots as well as the boundary conditions.
The equations of motion of the pantographic sheet are obtained from the
principle of virtual work, which holds along with the constraint conditions

g(q, t) = (gjun
1 (q), . . . , gjun

nj (q), gpiv
1 (q), . . . , gpiv

np (q), gbc(q, t)) = 0 , (26)

as the following differential algebraic system of equations

Mq̈ − h(q) − W(q, t)λ = 0 ,

g(q, t) = 0 .
(27)

For the time integration of this semi-discrete equations of motion, we used the
generalized-α scheme for constrained mechanical systems of index 3 proposed
by [3].

4 Numerical Analysis and Discussion

As excitation function, see Fig. 4, we chose

e(t) = e0 sin
(

nπ

2s1
t
)

(S1,[0,s1](t) − S1,[s1,2s1](t)) , (28)

where we made use of the first smooth step function S1,I1 for the interval
I1 = [a, b], which is defined as

S1,[a,b](t) =


0 t < a ,

−2
(

t−a
b−a

)3
+ 3

(
t−a
b−a

)2
a ≤ t ≤ b ,

1 b < t .

(29)

The excitation function (28) has the convenient property that the excitation
velocity ė is zero at t = 0 and t = 2s1.
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The analysis of the nonlinear wave propagation phenomena requires to
solve the initial value problem given by the equations of motion (27) together
with the initial values q(0) = Q, q̇(0) = 0 and λ(0) = 0, where Q denotes
the nodal coordinates of all individual beams in the reference configuration as
sketched in Fig. 2. For each boundary condition, we computed the results for
s1 = 0.01 s and n = {1, 2, 4} and used model and discretization parameters
listed in Tab. 2. The displacement e0 was chosen for (i) the longitudinal
excitation as e0 = 0.05 m, for (ii) the lateral excitation as e0 = 0.05 m, and
for (iii) the point excitation as e0 = 0.03 m.

In Figs. 5–7, time snapshots of the current configurations of the longitudi-
nal excitation are shown. In order to visualize the contraction and dilatation
of the sheet in ey-direction, the color map is associated with the positive
and negative ey-displacement u±

y = ±e⊤
y (r(s, q(t)) − r(s, Q)). The positive

and negative ey-displacement u+
y and u−

y is chosen for the beams above and
below the horizontal symmetry line, respectively. In Fig. 5, one can see for
t ∈ [0, 0.02 s] how the positive longitudinal displacement causes a dilatation
followed by a contraction of the sheet. While the dilatating wave packet
decays very fast, the contracting wave packet travels through the sheet. Be-
hind the contracting wave packet alternately dilatational and contracting
wave packets emerge all of which travel at different speed. In Fig. 6, a simi-
lar behavior occurs in which the dilatational wave is not excited as much as
for the first excitation. The excitation leads to contracting and dilatational
wave packets that are much longer in ex-direction. For n = 4, in Fig. 7, the
excitation causes dilatational and contracting wave packets that are much
more localized.

For the lateral excitation, the snapshots in Figs. 8–10 are colored by the
displacement in ey-direction, that is uy = e⊤

y (r(s, q(t)) − r(s, Q)). Both in
Fig. 8 and Fig. 9 propagating lateral waves can be recognized. The shorter
wave packets travel with a higher speed such that the wave propagation is
highly dispersive. In Fig. 10, the nonlinearity of the problem causes an inter-
action between lateral and dilatational wave. Starting from t = 0.03 s, super-
posed to the lateral displacement, contracting and dilatating wave packets
do appear.

For the point excitation in Figs. 11–13, the colormap is associated with
the positive and negative ey-displacements as it is done for the longitudinal
excitation. The wave propagation phenomena resemble the ones observed
for the longitudinal excitation. In contrast to the longitudinal excitation,
the excitation does not induce a dilatating wave packet that runs ahead
of the first contracting wave packet. It can be recognized as a particular
property of the pantographic sheet, that the longitudinal excitation as well
as the pointwise excitation in lateral direction cause similar wave propagation
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Figure 4: Excitation function for s1 = 1 × 10−2 s.

phenomena.
In particular for the longitudinal and point excitations, the traveling wave

packages at different speed are striking. With the current excitation func-
tions these wave packages decay passing through the pantographic structure.
However, since the change of the wave forms are not so drastic, we dare to
conjecture that there may exist a certain excitation function for which a cer-
tain wave package travels through the structure without changing its form,
i.e., that a solitary wave exists.

5 Conclusion

The main goal of the paper was to introduce a planar model to analyze non-
linear wave propagation phenomena in pantographic sheets. The proposed
model can be seen as a multibody system consisting of planar Euler–Bernoulli
beams that are coupled by perfect bilateral constraints and generalized one-
dimensional force laws. The equations of motion are eventually characterized
as a DAE of index 3 which is solved using a robust generalized-α scheme.
The formulation within the variational framework of the principle of virtual
work allows for a systematic extension of the presented model. Instead of
a quadratic strain energy function for the beam, also other strain energy
functions can be used. Moreover, dissipative mechanisms within the beams
could be modeled by postulating the internal virtual work contribution of
the beams together with constitutive laws for axial force and bending couple
depending on the axial stretch, the curvature and time derivatives thereof.
Also the interaction between the beam families can be extended easily by
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Figure 5: Longitudinal excitation with n = 1, s1 = 0.01 s and e0 = 0.05 m.

changing the force law for the torsional spring.
The presented wave propagation phenomena were all highly dispersive.

It is task for future investigations, to find out whether the conjecture of the
existence of solitary waves is true or not. Solitary waves appear in struc-
tures where the nonlinearities compensate the dispersive effects in the wave
propagation. If for the current formulation there does not exist a soliton,
one might still find such a wave when considering the same structure with
nonlinear constitutive laws for the beams and the torsional springs. One
can think of two possibilities to approach this difficult problem. The first
way is to develop a brute force numerical procedure testing a huge amount
of excitation functions together with a method filtering out relevant wave
packages. The second way is to work with the two-dimensional continuum
limit which may allow for a further reduction to a one-dimensional contin-
uum formulation. For such a reduced formulation either the envisaged brute
force method or some analytical procedures can be applied.
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