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Abstract
Making use of experimental data for bias extension, shearing, and point-load tests in large deformation regime for rectangular
and square bi-pantographic specimens, we perform a numerical identification to fit the a priori parameters of a planar discrete
spring model. The main objective of the work is to develop an automatized optimization process based on the Nelder–
Mead simplex algorithm for identifying the constitutive parameters of discrete modeling of bi-pantographic structures, as well
as assessing its descriptiveness and predictive capacity. The analysis allows to conclude that there exists a single set of
parameters for the adopted discrete modeling such that it is descriptive and predictive for several different tests and for a wide
range of deformations.
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Introduction
The present paper deals with a generalization of pantographic fabrics1,2. Pantographic fabrics are actual fabrics which are
made up of two orthogonal families of parallel beams. Beams of different families are connected at their intersection points
by means of perfect hinges or, alternatively, by means of elastic hinges, i.e., hinges and rotational springs opposing to the
relative rotation of beams concurring to the same hinge. Within each family, beams are at a given distance between each
other. Such a distance might be depending on the beam pair or be constant. If each family of beams contains the same
number of beams, having the same constant distance one from each other, and the beams have all the same dimensions
and physical properties, then the pantographic fabric is said to be balanced3. Pantographic fabrics were designed and then
realized physically by arranging the two families of beams onto two different parallel planes. The design and realization
of connections between two beams has been accomplished by means of cylindrical pivots acting ideally as in-plane elastic
hinges, i.e., hinges with torsional springs4,5, and by means of actual hinges which, however, are prone to suffering significant
non-elastic phenomena and hence pose complex challenges in manufacturing engineering. While the realization of cylindrical
pivots is less challenging from the manufacturing point of view – there are however issues related to the plane in which
scanning tracks lie and heat treatments for metallic specimens – it has been proved by experimental and computational
investigations that the behavior of cylindrical pivots involves complex deformation modes and, particularly, significant non-
torsional deformation modes in large deformation. Beams in pantographic fabrics play the role of bending elements. Their
utilization in pantographic fabrics has been conceived to confer to the fabric, when regarded as a continuum, second gradient
effects in plane due to the dependence of the deformation energy upon the geodesic bending of the material lines. However,
the presence of beams does not only entail these desired effects. The fact that in the physical reality beams are arranged on
two different planes makes them interact mutually, in a way such that torsional deformation modes6, as well as in-plane and
out-of-plane buckling7–9, are triggered, even when problems with in-plane boundary conditions are considered10.
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In the last years, many research efforts published in the scientific literature have dealt with variations and enhancements
of the design of pantographic fabrics. As mentioned before, the design and manufacturing of perfect hinges in pantographic
fabrics has been attempted in the context of 3D-printing using both metallic and polymeric raw material, see in this regard
the works11,12. It is worth to mention in this introduction that also non-orthogonal families of fibers13, as well as non-straight
fibers14, have been considered in the scientific literature. The need for performing and understanding experimental analyses
on pantographic fabrics has stimulated many studies in Digital Image Correlation (DIC), manufacturing techniques and
material characterization15–17. It is worth to mention here that pantographic specimens have been realized also at extremely
low scales, including the nano-scale18–20.

Pantographic materials belong to a class of materials which includes not only pantographic fabrics but, more generally,
materials with a microstructure based on the pantographic motif, i.e., a mechanism which is well known from everyday
life (pantographic mirrors, expanding fences, scissor lifts, etc.), which is characterized by a zero-energy accordion-like
homogeneous extension/compression deformation mode. For example, pantographic beams, namely strips of pantographic
fabrics consisting of the periodic repetition in one direction of a single pantographic cell, have been proposed as an example
of complete second gradient beam21–24. In the present paper, a particular kind of metamaterials is addressed, namely so-
called Bi-Pantographic Structures (Bi-PS). Bi-PS were conceived as a generalization of pantographic fabrics and consist of
pantographic fabrics whose beams have in turn a pantographic microstructure and are, actually, pantographic beams, see
Figure 1. They were first introduced in the paper25.

One of the main advantages of additive manufacturing lies in the possibility of easily producing complex three-dimensional
geometries at, practically, no additional cost. For this reason, the development of 3D-printing techniques witnessed in the
last two decades has stimulated research in the field of mechanical metamaterials. These materials assume special properties
depending on their microstructure. However, while additive manufacturing is experiencing great progress in the number
of raw materials that can be used, see as an instance the recent works on the 3D-printing of concrete structures, the main
raw materials used in additive manufacturing are still polymeric or metallic. When polymeric and metallic materials are
considered, additive manufacturing and, particularly, powder bed fusion technology, can guarantee a final specimen quality
which is comparable to standard manufacturing techniques. Actually, when metallic materials are considered, post-processing
of specimens is still needed to remove residual stresses caused by temperature gradients during the printing phase.

Generally speaking, printed materials deposited in layers may exhibit anisotropic behavior, due to their lamellar
structure, which needs to be evaluated. The interface between the layers, depending on the process, remains a sensitive
area, which may represent the mechanically weak points of the structure. It is therefore necessary to establish a study
methodology to characterize the complex and anisotropic behavior of this type of material to further improve existing additive
manufacturing processes. However, even simple microstructures realized by means of 3D-printing have been proven to result
in material properties which are extremely interesting from the engineering viewpoint, like extension-bending/extension-
torsion coupling26–29, band gap properties for vibration attenuation30,31, extreme stiffness32, fluid-like behavior33, extreme
elastic range34, damage-tolerant behavior35, enhanced and/or tailored stability properties36,37, unidirectional response38,39,
and many others40.

It is evident that designing micro-structures to be 3D-printed, possibly by topological optimization techniques41, requires
a thorough quantitative understanding of the mechanical behavior of the structure to be printed. Continuum models are
needed to describe the large-scale mechanical behavior of a wide class of materials that, at some spatial scale, possess a
microstructure. These models are particularly important for bridging spatial scales ranging from that of interactions between
elements of the microstructure to the collective behavior of a large number of elements42. In the last ten years, making use of
generalized and second gradient continua theories introduced in the early 1960s43–45, many investigations were carried out
dealing with pantographic structures. In particular, the paper46 provided the first homogenization result for Bi-PS in large
deformation regime along with numerical results and experimental measurements for validation purposes.

Discrete simulations can be designed that provide trajectories and distribution of strain energies at the element scale.
Therefore, discrete models can be used as a more refined description than continuum models. While continuum models are
less computationally demanding than discrete models, the formulation of continuum models able of capturing the behavior of a
material with micro-structure, as well as the development of robust numerical procedures47,48 that work in sometimes-singular
cases, is still challenging and, in any case, requires the utilization of discrete simulations for validation purposes. Therefore,
when exploring the behavior of a material with micro-structure, while less appealing in view of getting analytical expressions,
the utilization of discrete simulations is of utmost utility. For the understanding of Bi-PS, the use of discrete simulations
has been indeed beneficial. Discrete modeling has been used as micro-scale description for developing an homogenized
continuum description of Bi-PS and, albeit not systematically as in the present work, its experimental fitting has been carried
out, together with that of the homogenized continuum model, in the paper49.

In this paper, motivated by the encouraging results obtained in49, making use of training and test sets of experimental
data, a numerical identification50–52 is performed to fit the parameters of a planar discrete spring model describing the static
behavior of Bi-PS subjected to different kind of loads and boundary conditions. The model is fitted using force-displacement
curves for bias extension, shearing, and point-load tests in large deformation regime for rectangular and square specimens. The
attempt reported in this paper of performing a systematic fitting and validation procedure for Bi-PS is inspired from existing
literature on the identification of models describing pantographic fabrics. In53, the in-plane and out-of-plane stiffnesses of a
continuum plate model are determined by simulating bias extension and shear tests and employing the Levenberg–Marquardt
optimization algorithm. In52, the numerical identification of the constitutive parameters of the aforementioned macro model is
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carried out through the trust region reflective optimization method. Contrarily to this work, which makes use of experimental
data, these two works made use of data generated by a refined three-dimensional model based on Cauchy mechanics and
hyperelastic constitutive laws.

Developing an automatized optimization process for identifying the constitutive parameters of discrete modeling of Bi-PS
and testing its descriptiveness and predictive capacity are the main objectives of the work, which is organized as follows.
Section Material & Methods introduces the manufacturing technology employed to realize the specimens, the experimental
setup, and the discrete modeling of Bi-PS via elastic springs. Section Experiments illustrates the minimization problem to
be solved by the gradient free Nelder–Mead simplex algorithm for determining an optimal set of model parameters on the
basis of experimental measurements, and presents the results of the analysis. Finally, conclusions and outlooks are briefly
sketched. Building on top of previous work, the analysis allows to conclude that there exists a single set of parameters for the
adopted discrete modeling, which was also employed in previous papers as micro-scale model for homogenization purposes,
such that it is descriptive of several different tests for a wide range of deformations and such that the model is predictive when
experimental deformed shapes are compared with numerically computed ones.

Materials & Methods
Two batches of specimens, listed in Table 1, consisting of three quadratic Bi-PS (sample family A, see left of Figure 1) and two
rectangle Bi-PS (sample family B, see right of Figure 1), have been printed using a Selective Laser Sintering (SLS) technique.
Each sample family was tested in an extension test and shearing test (see Table 1). In addition, a so-called point-force test
was applied to the quadratic sample (A3). Furthermore, a discrete simulation based on the Hencky-type model is going to be
introduced. Its numerical results will be compared with experimental measurement data.

Figure 1. Quadratic Bi-PS (sample A1) with a CAD-detail-view of the inner structure on the left hand side, developed by 46,49, printed on a
Formiga P 100 (EOS GmbH, Krailling, Germany) using SLS. A rectangle Bi-PS (sample B1) is shown on the right hand side. The
detail-view shows a sample with different boundary condition in order to achieve reinforcement.

Table 1. Overview of both sample families (A1-A3, B1-B2) including their loading conditions LC (extension, shear, and point-force) and
their boundary conditions BC (reinforced or not reinforced). N is the number of unit-cells in vertical direction, M is the number of unit-cells
in horizontal direction, and the parameter ε describes the diagonal width of a half unit-cell (corresponding to Figure 6).

Sample LC BC N M ε (mm)

A1 (square) extension not reinforced 9 9 17/
√

2
B1 (rectangle) extension reinforced 7 11 17/

√
2

A2 (square) shear reinforced 9 9 17/
√

2
B2 (rectangle) shear reinforced 7 11 17/

√
2

A3 (square) point-force not reinforced 9 9 17/
√

2

All samples have been manufactured by means of SLS. Polyamide (PA) powder (PA 2200, EOS GmbH, Krailling, Germany)
with an average grain size of 0.056 mm was fused in the commercial 3D-printer EOS Formagia P 100 (EOS GmbH, Krailling,
Germany) located at the Institute of Mechanics and Printing, University of Technology Warsaw, Poland. In this bottom-up
procedure layers are sintered in the heated, focused laser spot. The specimen is manufactured layer-by-layer by means of a
laser beam under inert gas atmosphere. After printing predefined points in the first layer, the table is lowered and shaken
before new powder is applied by a wiper. The process repeats until the sample is finished. In order to reduce initial stresses,
the sample has to cool down for several hours. All samples have been finished by means of a high pressure cleaner.
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Printing results are shown in Figure 1. A square Bi-PS (sample A1) with a CAD-detail-view of the inner structure on the left
hand side and a rectangular Bi-PS (sample B1) on the right hand side with a detail-view of reinforcements can be recognized.
In order to overcome the limits of lack of contrast and therefore to enable digital image correlation for the determination of
displacements during real time deformation, both sample families have been speckled with black ink on the outer surface.
CAD-drawings with their inner and outer geometric parameters are shown in Figure 2.

Figure 2. CAD-drawings of a quadratic Bi-PS (specimen family A) and rectangle Bi-PS (specimen family B).

Experimental Setup
All experiments have been performed on a MTS Tytron 250 testing device (MTS Systems Corporation, Eden Prairie, MN,
USA) at the Institute of Mechanics, Technical University Berlin, Germany. Three different experiments have been performed:
Standard extension tests, shearing tests, and a so-called point-force test (see Table 1). Furthermore, in order to investigate the
effect of reinforcements at the border of the inner substructure on the outer deformation behavior in more detail, different
boundary conditions have been taken into account (see Table 1). By adapting a rigid body to the mounting side an reinforcement
was achieved, see detail-view on the right hand side of Figure 1. The schematics of the three different experimental setups
are summarized in Figure 3.

Figure 3. Schematics of displacement-controlled (∆x) shear, extension, and point-force tests.

As shown in Figure 4 for the case of extension load, maximal reaction forces were measured by a device-own loading cell
with f̄ = ±250 N and a precision of about ±25 mN. The displacement ∆x was imposed horizontally with a loading rate of
ẋ = 1525 mm min−1. In addition, displacement was measured by means of a non invasive optical deformation technique -
Digital Image Correlation (DIC). A commercial Canon EOS 1000D camera with a resolution of about 4272 × 2848 pixels
recorded one picture every two seconds. 2D-DIC evaluation was performed by means of GOM Correlate 2017 software
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(GOM GmbH, Braunschweig, Germany) and are in very good agreement with the machine-code measured by the device-own
encoder.

Figure 4. Extension test of a not reinforced quadratic Bi-PS (A1). Displacement ∆x is imposed horizontally on the right side while the
reaction force f̄ is measured by the load cell on the fixed left side.

Discrete Model
For solving the discrete micro-model it is convenient to introduce a global, minimal set of generalized coordinates, such
that the kinematics of the discrete system is entirely described by the coordinates of the nodal points. The bi-pantographic
sheet is modeled as a discrete elastic spring system that is embedded in the two-dimensional Euclidean vector space E2. The
static equilibrium conditions are obtained by the principle of virtual work, which in the case of our elastic system coincides
with the principle of stationary total potential energy. Consequently, only the system’s potential energy and its corresponding
variation have to be formulated. The system is composed of extensional and rotational springs only. First, we introduce the
potential energies of a standard extensional and rotational spring element. Subsequently, we explain the kinematics of the
bi-pantographic sheet, which includes some cumbersome but necessary bookkeeping of the relevant degrees of freedom
for each spring contribution. Lastly, we state the principle of virtual work for the constrained discrete system subjected to
kinematic boundary conditions.

The springs are formulated between nodal points, which are depicted as white filled circles, see Figure 5. The position
r = xex + yey ∈ E2 of a typical nodal point is commonly addressed by its Cartesian coordinates x = (x, y) ∈ R2 with
respect to the orthonormal basis vectors ex, ey ∈ E2. If not stated otherwise, Rf -tuples are considered in the sense of
matrix multiplication as Rf×1-matrices, i.e., as “column vectors”. Let qe = (x1, y1, x2, y2) ∈ R4 be the coordinates of two
points interconnected by an extensional spring as depicted in Figure 5(a). Introducing the abbreviations ∆x = x2 − x1 and
∆y = y2 − y1, the distance between the two points is

l(qe) =
√

∆x2 + ∆y2 =
√

(x2 − x1)2 + (y2 − y1)2 . (1)

The derivative with respect to qe is the “row vector”

∂l

∂qe (qe) = 1
l(qe) (−∆x, −∆y, ∆x, ∆y) ∈ R1×4 . (2)

Without loss of generality we restrict ourselves to linear springs, cf.54 eq. (4), which are modeled by means of a quadratic
potential with stiffness ke > 0 and undeformed length l0 > 0. That is the function

Ee(ke, l0, qe) = 1
2ke[l(qe) − l0]2 . (3)

The derivative of the potential (3) with respect to qe is the function

∂Ee

∂qe (ke, l0, qe) = ke[l(qe) − l0] ∂l

∂qe (qe) =:
(
f e(ke, l0, qe)

)T ∈ R1×4 , (4)

where the transposed of a matrix is indicated by (·)T.
Rotational springs are interactions between three nodal points. Let qr = (x1, y1, x2, y2, x3, y3) ∈ R6 be the Cartesian

coordinates of three nodal points as depicted in Figure 5(b). With the abbreviations ∆x1 = x2 − x1, ∆x2 = x3 − x2,
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Figure 5. (a) Kinematics of an extensional spring. (b) Kinematics of a rotational spring.

∆y1 = y2 − y1 and ∆y2 = y3 − y2, the angles between the ex-axis and the vectors ∆r1 = ∆x1ex + ∆y1ey and ∆r2 =
∆x2ex + ∆y2ey , respectively, are introduced by the relations

ϕ1(qr) = tan−1
(

∆y1
∆x1

)
, ϕ2(qr) = tan−1

(
∆y2
∆x2

)
(5)

with the corresponding derivatives

∂ϕ1
∂qr (qr) = 1

l1(qr)2 (∆y1, −∆x1, −∆y1, ∆x1, 0, 0) ∈ R1×6 ,

∂ϕ2
∂qr (qr) = 1

l2(qr)2 (0, 0, ∆y2, −∆x2, −∆y2, ∆x2) ∈ R1×6 .

(6)

The relative angle ∆ϕ = ϕ2 − ϕ1 measures the torsion of a rotational spring. Without loss of generality we restrict ourselves
to linear springs, cf.55 eq. (2.1), which are modeled by means of a quadratic potential with stiffness kr > 0 and undeformed
relative angle ∆ϕ0. Their energy is given by the real-valued function

Er(kr, ∆ϕ0, qr) = 1
2kr[∆ϕ(qr) − ∆ϕ0]2 . (7)

Straightforwardly, the derivative with respect to qr leads to the R1×6 matrix

∂Er

∂qr (kr, ∆ϕ0, qr) = kr[∆ϕ(qr) − ∆ϕ0]
(

∂ϕ2
∂qr (qr) − ∂ϕ1

∂qr (qr)
)

=:
(
f r(kr, ∆ϕ0, qr)

)T
. (8)

Since tan−1 is restricted to the interval (− π
2 , π

2 ), it is not always possible to compute the absolute angles ϕ1 and ϕ2 from (5).
This can be overcome by numerically computing tan−1 via the atan2-function with a range (−π, +π] ⊂ R, cf.49. Even with
this correction, the value of the generalized force law of the torsional spring (8) will be discontinuous at atan2(−1, 0) = π.
This singularity can be removed by direct computation of the relative angle ∆ϕ. For that a local basis that is aligned with
∆r1 is constructed via

eK
x = ∆r1/∥∆r1∥ , eK

y = ∆r⊥
1 /∥∆r⊥

1 ∥ , (9)

with ∆r⊥
1 = (ey ⊗ ex − ex ⊗ ey)∆r1 being ∆r1 rotated counterclockwise by a quarter angle. Introducing the decomposition

∆r2 = ∆r
∥
2eK

x + ∆r⊥
2 eK

y , ∆r
∥
2 = ∆r2 · ∆r1

∥∆r1∥
, ∆r⊥

2 = ∆r2 · ∆r⊥
1

∥∆r⊥
1 ∥

(10)

and recognizing ∥∆r1∥ = ∥∆r⊥
1 ∥, the relative angle can be computed via

∆ϕ = tan−1

(
∆r⊥

2

∆r
∥
2

)
= tan−1

(
∆r2 · ∆r⊥

1
∆r2 · ∆r1

)
= tan−1

(
∆x2∆y1 − ∆x1∆y2
∆x2∆x1 + ∆y2∆y1

)
. (11)

Again, numerically tan−1 is evaluated via the atan2-function. By that, no singularities are present for |∆ϕ| < π, i.e., every
rotational spring’s relative angle is smaller than 180◦. Indeed, this is a valid assumption for the numerical simulations of the
bi-pantographic sheet shown in subsequent Section.

The bi-pantographic sheet is characterized by a periodic substructure, which is captured in the discrete model by identical
cells composed of extensional and rotational springs. The cells themselves do interact with each other by sharing nodal points
with adjacent cells and by additional rotational springs. In the undeformed reference configuration, the cells are quadratic
with width

√
2ε, see Figure 6. Each cell has 4 nodal points as vertices, which are globally addressed by the row-column
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Figure 6. Reference configuration of the discrete model. The (i, j)th vertex and the (i, j)th cell are highlighted by a red dot and a red
square, respectively. A close up shows the arrangement of the nodal points in the undeformed reference configuration.

Figure 7. Deformed configuration of the discrete model. The (i, j)th vertex and the (i, j)th cell are highlighted by a red dot and a red
quadrilateral, respectively. A close up shows the arrangement of the nodal points in the deformed configuration and their interaction by
extensional and rotational springs.

indices (i, j) within the range i = {0, 1, . . . , N} and j = {0, 1, . . . , M}. Consequently, the sheet consists of N · M cells with
(N + 1)(M + 1) cell vertices. Besides the 4 vertices, in each cell, there are 9 additional nodal points required to capture the
complex behavior of the bi-pantographic sheet. In the reference configuration these nodal points are arranged symmetrically
as depicted in Figure 6.

In the deformed configuration, the Cartesian coordinates of the cell vertices are denoted x(i,j) = (x(i,j), y(i,j)) ∈ R2. As
depicted in Figure 7, the Cartesian coordinates of the kth nodal point within cell (i, j) are xk

(i,j) = (xk
(i,j), yk

(i,j)) ∈ R2.
Note that the coordinates of the cell vertices have different denotations depending on their respective application on cell or
sheet level. Thus, the f = 2[(N + 1)(M + 1) + 9N · M ] generalized coordinates of the discrete system are the Cartesian
coordinates of all nodal points of the sheet

q = (x(0,0), · · · , x(M,N), x4
(0,0), · · · , x12

(0,0), · · · , x4
(M−1,N−1), · · · , x12

(M−1,N−1)) ∈ Rf . (12)

For a compact formulation of the total potential energy of the system, it is convenient to introduce spring coordinates, i.e.,
sets of coordinates that involve only the coordinates of the relevant nodal points for each spring. We begin with the interactions
in each cell (i, j) by considering Figure 7 together with Tab. 2, where the explicit assignments of the nodal coordinates to the
spring coordinates are specified. The axial stiffnesses of the fibers in the sheet are modeled by 16 extensional springs each with
stiffness ke and undeformed length l0 = ε/(2 cos β) = ε/

√
3, where we have used β = π

4 − α = π
6 . The coordinates required

for the kth spring are given by qe
(i,j)k ∈ R4. The resistance of the pins with respect to torsion is captured by 8 rotational

springs, depicted in Figure 7 by green arcs, with stiffness kr1. The energy of the lth rotational spring is formulated with
qr1

(i,j)l ∈ R6 and the undeformed angle ϕ0 = (−1)lπ/3. The bending stiffness of the fibers within each cell are included by 4
rotational springs with stiffness kr2 and ϕ0 = 0 influencing the coordinates qr2

(i,j)m ∈ R6. The cells interact with each other
by sharing nodal points with adjacent cells. However, we also have to account for the bending stiffness of the fibers at each cell
vertex for i = 1, . . . , N − 1 and j = 1, . . . , M − 1. These bending stiffnesses are realized by rotational springs with stiffness
kr2 and corresponding spring coordinates qr3

(i,j)m ∈ R6, which are specified in Figure 8. To extract the spring coordinates from
the generalized coordinates (12), the Boolean connectivity matrices Ce

(i,j)k ∈ R4×f and Cr1
(i,j)l, Cr2

(i,j)m, Cr3
(i,j)m ∈ R6×f
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spring coordinates assignment of nodal points

qe
(i,j)k = (xp

(i,j), xq
(i,j)) {p, q} ∈

k=0
{0, 5},

k=1
{0, 6},

k=2
{5, 4},

k=3
{6, 4},

k=4
{4, 7},

k=5
{4, 8},

k=6
{7, 1},

k=7
{8, 1},

k=8
{4, 9},

k=9
{4, 10},

k=10
{9, 2},

k=11
{10, 2},

k=12
{4, 11},

k=13
{4, 12},

k=14
{11, 3},

k=15
{12, 3}

qr1
(i,j)l = (xp

(i,j), xq
(i,j), xs

(i,j)) {p, q, s} ∈
l=0

{0, 6, 4},
l=1

{0, 5, 4},
l=2

{4, 7, 1},
l=3

{4, 8, 1},
l=4

{4, 9, 2},
l=5

{4, 10, 2},
l=6

{3, 12, 4},
l=7

{3, 11, 4}

qr2
(i,j)m = (xp

(i,j), xq
(i,j), xs

(i,j)) {p, q, s} ∈
m=0

{5, 4, 9},
m=1

{6, 4, 10},
m=2

{12, 4, 8},
m=3

{11, 4, 7}
Table 2. Assignments of coordinates of nodal points to spring coordinates within cell (i, j).

are defined by the relations

qe
(i,j)k = Ce

(i,j)kq , qr1
(i,j)l = Cr1

(i,j)lq , qr2
(i,j)m = Cr2

(i,j)mq , qr3
(i,j)m = Cr3

(i,j)mq . (13)

Figure 8. Assignments of coordinates of nodal points to spring coordinates for interaction between cells.

Using the spring coordinates of Tab. 2 and Figure 8 together with the potential energies (3) and (7), the total potential
energy of the discrete bi-pantographic sheet is

E(q) =
N−1∑
i=0

M−1∑
j=0

( 15∑
k=0

Ee(ke, l0, Ce
(i,j)kq) +

7∑
l=0

Er(kr1, (−1)l π
3 , Cr1

(i,j)lq)

+
3∑

m=0
Er(kr2, 0, Cr2

(i,j)mq)
)

+
N−1∑
i=1

M−1∑
j=1

3∑
m=0

Er(kr2, 0, Cr3
(i,j)mq) .

(14)

Let q̂(ε) be a function of ε that includes the actual coordinates q for static equilibrium in the case of ε = 0, i.e., q̂(0) = q.
Then the variation of the total potential energy E induced by q̂ is

δE(q) = ∂E

∂q (q)dq̂
dε

(0) = fT(q)δq , (15)

where δq = dq̂
dε (0) are the virtual displacements, f(q) = (∂E/∂q)T(q) are the internal generalized forces. Using (4) and (8)

together with the total potential energy (14), the internal generalized forces of the bi-pantographic sheet are obtained by

fT(q) = ∂E

∂q (q) =

=
N−1∑
i=0

M−1∑
j=0

( 15∑
k=0

f e(ke, l0, Ce
(i,j)kq)Ce

(i,j),k +
7∑

l=0
f r(kr1, (−1)l π

3 , Cr1
(i,j)lq)Cr1

(i,j)l

+
3∑

m=0
f r(kr2, 0, Cr2

(i,j)mq)Cr2
(i,j)m

)
+

N−1∑
i=0

M−1∑
j=0

3∑
m=0

f r(kr2, 0, Cr3
(i,j)mq)Cr3

(i,j)m .

(16)
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Kinematic boundary conditions are imposed by perfect bilateral constraints 0 = g(q) ∈ Rm with a virtual work contribution
δW c = δgTλ = δqTW(q)λ, where W(q)T = ∂g

∂q (q) ∈ Rm×f is the matrix of generalized force directions and λ ∈ Rm

the vector of constraint forces. In such a manner the position of the most outer nodes is constrained to zero or a prescribed
displacement, depending on the respective left and right boundaries. Additionally, the central node x0

i,j is constrained on these
boundaries in order to model the reinforcement using an additional pivot as shown in the first, second and fourth experiment
in Figure 11. This assumption is fostered by observing that the stiffness of reinforcement is of magnitudes larger compared
to the extensional stiffness of the axial springs. For the point-load experiment all nodes on the left-hand side are connected
to a two dimensional rigid body. This body is constrained such that it is only allowed to rotate around a pivoted point with
relative horizontal (−5.1 mm) and vertical (−4.35 mm) displacement with respect to the lower left node of the specimen.

The discrete system is now in static equilibrium iff the total virtual work of internal generalized forces and constraint forces
vanishes for all virtual displacements, i.e.,

δqT(f(q) + W(q)λ) = 0 ∀δq ∈ Rf (17)

and the constraint equations are g(q) = 0 are satisfied. Thus, the equilibrium configuration is determined by the set of
nonlinear equations

h(q, λ) =
[
f(q) + W(q)λ

g(q)

]
= 0 (18)

which can be solved, at least locally, by a Newton–Raphson iteration scheme.

Experiments
This section presents the results of both, the simulation and the real world experiments. For identification of the unknown
stiffness parameters a parameter optimization procedure will be presented in the beginning. Subsequently, it is shown that
the numerical model is capable for description of the pantographic sheet using a single set of experimentally optimized
parameters.

Parameter optimization
The yet unknown stiffness parameters β = (ke, kr1, kr2) are identified experimentally in the following way and reported in
Table 3. Let the Euclidean error between the simulated force fij and the measured one f ij (see Figure 10) normalized by the
maximum force f ijmax within each experiment be denoted as

δij =
fij − f ij

f ijmax

. (19)

This error was minimized during an optimization procedure using all N = 5 experiments. Within each experiment M = 20
different static equilibria were solved. The optimal values β∗ were obtained by introducing the cost function

K(β) = 1
2

√√√√ N∑
i=1

M∑
j=1

δ2
ij

N
(20)

and solving the optimization problem

β∗ = argmin
β∈R3

K(β) , s.t. h(q, λ) = 0 (21)

using a gradient free Nelder–Mead simplex algorithm, see56. By heuristic, the initial parameters were set to ke = 20 N m−1,
kr1 = 10 N m and kr2 = 50 N m.

In order to study the sensitivity of the cost function a grid search was performed. For that the value of the cost function
is computed for the optimal parameters β∗ varied by ±30%. On the left hand side of Figure 9 the loss surface of the cost
function is depicted for the optimal parameter ke = 15.03 N m−1 but varied kr1 and kr2. It can clearly be seen that for the
optimal value of ke a variation of kr1 and kr2 increases the global error. Led by that observation the cost function is evaluated
for the optimal values kr1 = 14.53 N m and kr2 = 22.10 N m but varied values of ke, see right hand side of Figure 9. Again,
for the optimal values every variation in ke leads to an increasing cost function, which shows that the found set of optimal
parameters is a local minimizer for the given cost function (20).

Table 3. Optimized stiffness parameters and respective relative error.

ke kr1 kr2 K(β∗)
15.03 N m−1 14.53 N m 22.10 N m 1.497 × 10−1 N
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Figure 9. Loss surface for optimal ke and varied kr1, kr2 (left). Loss function for fixed kr1 and kr2 but varied ke (right).

Experiment vs. simulation
In Figure 11 the initial and deformed configurations are shown for all five experiments. It can be seen that the numerically
obtained deformed configurations are in excellent agreement with the experiments, neglecting optical distortion effects
introduced by the camera system. There is only a single outliers, the rectangle specimen during the extension experiment.
It can be observed, that during the numerical experiment some elements of the pantographic sheet intersect each other.
Obviously, this is no physical behavior and stems from the fact that self-contact and friction within the panthographic sheet
is not included to the numerical model. By that, the model underestimates the required force and yields wrong displacement
predictions since self-contact would prevent the torsional springs from deforming further. The force displacement curves of
the very same experiments are reported in Figure 10. Once again, for all but the first experiment the simulated results are
in excellent agreement with the experiments. This can again be explained by the missing self-contact, since the specimen is
allowed to penetrating itself. If this would be prohibited by an appropriate contact formulation, the load on the extensional
springs would increase and lead to higher internal forces as observed in the experiments. Further, in the last two experiments
the forces are overestimated by the numerical model for very large displacements.

Discussion and outlook
Within this publication we presented a set of five displacement controlled experiments of pantographic sheets. They
demonstrated three different kinds of deformation states, namely extension, shear and point loads. All applied displacements
are in the regime of medium to large elastic deformations. Further, a new formulation for the computation of the intermediate
angle required for the torsional springs of the discrete model removed the presence of geometric singularities of the existing
model49. The results presented in the previous Section have shown that the presented discrete model is a both powerful and
easy tool for description of large deformations of panthographic structures. Good predictions of the deformations and the
required forces are obtained. Future investigations should clarify if the usage of nonlinear material models for the extensional
and torsional springs lead to even more accurate predictions. In order to include all relevant physical effects frictional self-
contact57,58 has to be included to the discrete model. By such an improved numerical model, the presented investigations can
be extended the area of extremely large elastic deformations. Further, dynamic analysis and nonlinear wave propagation of
pantographic fabrics59 can be investigated using the present model.

From the experimental point of view, optical distortion effects introduced by the camera system have to be reduced or
avoided by an appropriate post-processing step. Finally, the individual nodal displacements and further derived quantities,
e.g., intermediate angles, can be used for a more sophisticated optimization procedure. This requires the application of digital
image correlation (DIC), cf.49,60 or a full field magnetic resonance imaging (MRI)/ computed tomography (CT) scan.
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Figure 11. Initial and deformed configurations – simulated vs. experimental results. First and second row show respectively the extension
and shear deformation of the rectangular specimen. Third, forth and sixth row show respectively the extension, shear and point
deformation of the quadratic specimen. The simulated configurations are visualized by overlayed blue lines. All simulations are performed
with the same parameter set given in Table 3.
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