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Abstract
Based on more than three decades of rod finite element theory, this publication unifies all the successful contri-

butions found in literature and eradicates the arising drawbacks like loss of objectivity, locking, path-dependence
and redundant coordinates. Specifically, the idea of interpolating the nodal orientations using relative rotation
vectors, proposed by Crisfield and Jelenić in 1999, is extended to the interpolation of nodal Euclidean transfor-
mation matrices with the aid of relative twists; a strategy that arises from the SE(3)-structure of the Cosserat
rod kinematics. Applying a Petrov–Galerkin projection method, we propose a novel rod finite element formulation
where the virtual displacements and rotations as well as the translational and angular velocities are interpolated
instead of using the consistent variations and time-derivatives of the introduced interpolation formula. Properties
such as the intrinsic absence of locking, preservation of objectivity after discretization and parametrization in terms
of a minimal number of nodal unknowns are demonstrated by conclusive numerical examples in both statics and
dynamics.
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1 Introduction
The theory of shear-deformable (spatial) rod formulations dates back to the pioneer works of Cosserat[1], Timoshenko[2],
Reissner[3] and Simo[4]. Thus, depending on the chosen literature, shear-deformable rods are called (special) Cosserat
rods[5], Simo–Reissner beams, spatial Timoshenko beams, geometrically exact beams[6], etc. Due to this ambiguity
of naming conventions[7], it is best to describe the used rod finite element formulation by the underlying kinematics
only[8, 9]. Nonetheless, there is a wide agreement in English literature preferring the name special Cosserat rod.
Thus, we adopt this notation but for simplicity suppress the prefix “special” in the subsequent treatment. In addition,
there is a vast amount of rod finite element formulations found in literature. Introducing all of them concerning
their historical development and their tiny differences or improvements is out of the scope of this publication and the
interested reader is referred to the exhaustive literature survey of both shear-deformable and shear-rigid rods given
by Meier et al.[10]. However, we want to introduce the most important developments found in literature that can be
seen as individual milestones leading to the present formulation.

Cardona and Geradin[11] introduced the first total Lagrangian shear-deformable spatial rod finite element for-
mulation where the nodal rotations are parametrized in terms of total rotation vectors. To prevent the well-known
singularity of this parametrization, they introduced a strategy of also using the complement rotation vector. By
application of a Bubnov–Galerkin projection, the virtual work contributions are discretized in space. Focusing on
details of the rotation vector parametrization, the identical rod formulation is found in Ibrahimbegović et al.[12]. In
1999, Crisfield and Jelenić[13] made a groundbreaking discovery in the theory of shear-deformable rod finite element
formulations. All previously existing rod finite element formulations violate the objectivity requirement in the discrete
approximation. Moreover, they presented a solution to the described problem by interpolating the nodal orientations
using relative rotation vectors. The follow-up publication[14] introduces an objective rod finite element formulation us-
ing incremental rotation vectors for the description of the nodal rotations and thus working in an updated Lagrangian
setting. To simplify the linearization of the internal virtual work functional, the authors applied a Petrov–Galerkin[15]
projection by introducing the virtual rotation expressed in the inertial frame. This results in a non-symmetric and
configuration-dependent mass matrix. A remedy for this is to use instead the virtual rotation vector expressed in the
cross-section-fixed basis together with the corresponding angular velocity (again expressed in the cross-section-fixed
basis). As will be discussed in the course of the subsequent treatment, this combination yields a symmetric and
possibly constant mass matrix, typically met in rigid body dynamics[16], however, at the cost of a non-symmetric
stiffness matrix.
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The previously mentioned rod finite element formulations rely on the uncoupled composition approximations of
the centerline points as elements of R3 and the cross-sectional orientations as elements of the special orthogonal
group SO(3) denoted by R3 × SO(3). In contrast, helicoidal approximations[17] and strain-based approaches[18, 19]
use a coupled interpolation of these two fields. Based on these developments, Sonneville et al.[20] extended the
idea of interpolating the nodal orientations using relative rotation vectors[13] to the interpolation of nodal Euclidean
transformation matrices using relative twists. That is, an interpolation strategy where positions and orientations
are intrinsically coupled. Exclusively working on the Lie group SE(3), the authors[20] applied a Bubnov–Galerkin
projection, i.e., the virtual displacements are given by the variation of the nodal values.

Inspired by this interpolation, the present paper introduces a novel rod finite element formulation using only the
coupled interpolation strategy of SE(3) while retaining all other favorable properties of the classical formulations. In
this way, the present rod finite element combines all the important properties of the formulations in the above literature
and tries to eliminate all their drawbacks. In particular, the main contributions of this paper are the following:

• We present a novel total Lagrangian (thus path-independent), intrinsically locking-free and objective rod finite el-
ement formulation parametrized by the nodal total rotation vectors and centerline points. Using the complement
rotation vector in combination with a relative interpolation strategy circumvents possible occurring singularities
for element deformations in which the relative rotation angle remains below π. Therefore, a minimal number of
nodal unknowns is obtained in contrast to formulations relying on redundant coordinates[6, 21, 9].

• Application of a Petrov–Galerkin projection results in a very simple inertial virtual work functional that ulti-
mately leads to a symmetric mass matrix that is constant for most applications. In contrast to Sonneville et
al.[20], this approach neither requires the involved expressions of the SE(3)-tangent operator and its inverse nor
their derivatives.

• Depending on the specific application, a system of ordinary differential equations or the nonlinear generalized
force equilibrium is obtained. These can respectively be solved using a standard ODE solver (e.g. Runge–
Kutta family, generalized-α) or root finding algorithms (e.g. Newton–Raphson, Riks) instead of requiring highly
specialized Lie group versions of them[20]. Hence, the formulation can easily be integrated into existing flexible
multibody dynamic software packages.

• Besides the presentation of the linearized internal forces, static and dynamic benchmark examples demonstrate
the power of the new formulation. Using a two-node element – that can be integrated by a two-point Gauss–
Legendre quadrature rule – second-order spatial convergence is achieved for both centerline and orientation.

The remainder of this paper is organized as follows. In Section 2, the Cosserat rod theory is briefly recaptured.
The section closes with the formulation of the internal, external and inertial virtual work functionals of the shear-
deformable spatial rod. Section 3 introduces a novel Petrov–Galerkin rod finite element formulation based on a
very efficient two-node SE(3)-interpolation strategy that preserves objectivity of the discretized strain measures.
Introducing some bookkeeping enables the precise formulation of the discrete virtual work functionals that result in
the tuples of internal, external and gyroscopic forces as well as the symmetric and possibly constant mass matrix.
Further, the linearization of internal forces is given. To demonstrate the performance of the presented finite element
formulation carefully selected benchmark examples are studied in Section 4, meaning that each of this minimal set
of examples demonstrates at least one affirmed property of the proposed formulation. To close the paper, Section 5
presents concluding remarks.

While most parts of the paper can be read with a rudimentary knowledge of matrix Lie groups, the interested reader
is referred to Appendix A for a deeper understanding of some manipulations. Therein, a concise overview of matrix
Lie groups is given with all equations and references relevant to this work. In particular, the special orthogonal group
SO(3) and the special Euclidean group SE(3) are examined as subgroups of GL(3) and GL(4), respectively. Similar
introductions are found in literature[22, 23, 24, 20, 25]. For didactic reasons, the variation of the rod’s strain measures
is shown step by step in Appendix B. Since some of the derivatives of the used Lie group formulas cannot be found in
literature, all required derivatives of the proposed SE(3)-interpolation strategy are presented in Appendix C. Finally,
Appendix D discusses the discrete conservation properties of the proposed rod finite element formulation. That is, the
conservation of total energy, linear and angular momentum. For this purpose, another Petrov-Galerkin formulation is
presented, where the virtual nodal rotations and the nodal angular velocities are expressed in the inertial frame.

2 Cosserat rod theory
2.1 Centerline and cross-section orientation
We introduce the Euclidean 3-space E3 as an abstract 3-dimensional real inner-product space[5]. A basis for E3 is a
linearly independent set of three vectors ex, ey, ez ∈ E3. The basis is said to be right-handed if ex · (ey × ez) > 0
and orthonormal if their base vectors are mutually orthogonal and have unit length. In this paper, only right-handed
orthonormal bases are considered. For a given basis K = {eK

x , eK
y , eK

z }, the respective components aK
i , i ∈ {x, y, z}

of a vector a = aK
x eK

x + aK
y eK

y + aK
z eK

z ∈ E3 can be collected in the triple Ka = (aK
x , aK

y , aK
z ) ∈ R3. Thus, we

carefully distinguish R3 from the Euclidean 3-space E3. The rotation between two bases K0 and K1 is captured by the
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Figure 1: Kinematics of the centerline curve with their attached orthonormal basis vectors.

proper orthogonal transformation matrix AK0K1 ∈ SO(3), which relates the coordinate representations K0a and K1a
in accordance with K0a = AK0K1 K1a. Let ξ ∈ J = [0, 1] ⊂ R denote the centerline parameter and (η, ζ) ∈ A(ξ) ⊂ R2

the cross-section parameters of the cross-section area at ξ. Considering the rod as a three-dimensional continuum, a
point Q of the rod can be addressed by

IrOQ(ξ, t) = IrOP (ξ, t) + AIK(ξ, t) KrP Q(ξ, η, ζ) , ξ = (ξ, η, ζ) ∈ B = J × A(J ) ⊂ R3 . (1)

Herein, IrOP are the Cartesian components with respect to the inertial basis I of the time-dependent centerline curve
rOP , where the subscripts O and P refer to the origin O and the centerline points, see Figure 1. To not overload the
notation in (1), we abstained from explicitly denoting the dependence of the points P and Q on ξ and ξ, respectively.
Moreover, KrP Q denote the cross-section coordinates, which are transformed to the I-basis using the transformation
matrices AIK . Note that the base vectors of the cross-section-fixed K-bases are functions of the centerline parameter
ξ and time t, i.e., eK

i = eK
i (ξ, t), i ∈ {x, y, z}.

2.2 Variations, velocities and curvature
Let ˙(•) and (•),ξ respectively denote the derivative with respect to time t and centerline parameter ξ. The variation
is denoted by δ(•). The virtual displacement IδrP and the centerline velocity IvP are given by the variation as well
as the time derivative of the centerline

IδrP = δ (IrOP ) , IvP = I ṙOP . (2)

The angular velocity of the K-basis relative to the inertial I-basis, in components w.r.t. the K-basis, is defined by

KωIK := j−1
SO(3) (Kω̃IK) , with Kω̃IK := AT

IKȦIK , (3)

where jSO(3) : R3 → so(3) = {B ∈ R3×3|BT = −B} is the linear and bijective map such that ω̃r = jSO(3)(ω)r = ω× r
for all ω, r ∈ R3, see (72) from Appendix A. Analogously, we define the scaled curvature as

Kκ̄IK := j−1
SO(3)

(
K
˜̄κIK

)
, with K

˜̄κIK := AT
IKAIK,ξ (4)

and the virtual rotation as

KδϕIK := j−1
SO(3)

(
Kδϕ̃IK

)
, with Kδϕ̃IK := AT

IKδAIK . (5)

2.3 Reference arc length
For the reference centerline curve Ir0

OP , the length of the rod’s tangent vector is J = ∥Ir0
OP,ξ∥. Thus, for a given

centerline parameter ξ, the reference arc length s is defined by

s(ξ) :=
∫ ξ

0
J(ξ̄) dξ̄ . (6)

Following Harsch and Eugster[26], the derivative with respect to the reference arc length s of a function f : J ×R → R3

can be computed by
f,s(ξ, t) := f,ξ(ξ, t) 1

J(ξ) . (7)

2.4 Objective strain measures
The objective strain measures of a Cosserat rod, see Antman[5, Section 8.2], are given by

KκIK = Kκ̄IK/J and Kγ = K γ̄/J , with K γ̄ := AT
IK IrOP,ξ , (8)

which can be gathered in the six-dimensional tuple ε = (Kγ, KκIK) ∈ R6. Therein, the dilatation and shear is
captured by Kγ, while KκIK measures torsion and bending, see Antman[5, Section 8.6].
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2.5 Internal virtual work
Without loss of generality, we restrict ourselves to hyperelastic material models where the strain energy density with
respect to the reference arc length W = W (Kγ, KκIK ; ξ) depends on the strain measures (8) and possibly explicitly
on the centerline parameter ξ. By that, the internal virtual work functional is defined as

δW int := −
∫

J
δWJdξ = −

∫
J

{
δ(K γ̄)TKn + δ(Kκ̄IK)TKm

}
dξ , (9)

where we have introduced the constitutive equations

Kn :=
(

∂W

∂Kγ

)T
, Km :=

(
∂W

∂KκIK

)T
. (10)

Note that even in the inelastic case, where no strain energy density W is available, the internal virtual work (9) can be
used, with internal forces and moments Kn and Km given by different constitutive laws[8]. Using δ(Kγ) and δ(KκIK)
derived in Appendix B, the internal virtual work (9) takes the form

δW int = −
∫

J

{
(IδrP )T,ξ AIK Kn + (KδϕIK)T,ξ Km − KδϕT

IK [K γ̄ × Kn + Kκ̄IK × Km]
}

dξ . (11)

As in Equation (2.10) of Simo and Vu-Quoc[4], we introduce the diagonal elasticity matrices Cγ = diag(ke, ks, ks) and
Cκ = diag(kt, kby

, kbz
) with constant coefficients. In the following, the simple quadratic strain energy density

W (Kγ, KκIK ; ξ) = 1
2
(

Kγ − Kγ
0)T Cγ

(
Kγ − Kγ

0)+ 1
2
(

KκIK − Kκ
0
IK

)T Cκ

(
KκIK − Kκ

0
IK

)
(12)

is used, where the superscript 0 refers to the evaluation in the rod’s reference configuration.

2.6 External virtual work
Assume the line distributed external forces Ib : J × R → R3 and moments Kc : J × R → R3 to be given as densities
with respect to the reference arc length. Moreover, for i ∈ {0, 1}, point forces Ibi : R → R3 and point moments
Kci : R → R3 can be applied to the rod’s boundaries at ξ0 = 0 and ξ1 = 1. By that, the corresponding external virtual
work functional is given by

δW ext =
∫

J

{
IδrT

P Ib + KδϕT
IK Kc

}
Jdξ +

1∑
i=0

[
IδrT

P Ibi + KδϕT
IK Kci

]
ξi

. (13)

2.7 Inertial virtual work:
Let ρ0 : J → R denote the rod’s mass density per unit reference volume and dA the cross-section surface element. It
is convenient to define the following abbreviations

Aρ0(ξ) :=
∫

A(ξ)
ρ0 dA , KSρ0(ξ) :=

∫
A(ξ)

ρ0K r̃P Q dA , KIρ0(ξ) :=
∫

A(ξ)
ρ0K r̃P Q K r̃ T

P QdA . (14)

Further, using the mass differential dm = ρ0JdAdξ and expressing the variation and second time derivative of rOQ

in terms of the rod’s kinematics (1), the inertial virtual work functional of the Cosserat rod can be written as (cf.
Equation (9.54) of Eugster and Harsch[8] for a coordinate-free version)

δW dyn = −
∫

B
IδrT

OQI r̈OQ dm = −
∫

J

(
IδrP

KδϕIK

)T
{

M
(

IvP

KωIK

)·
+ g

}
Jdξ , (15)

where we have introduced the two quantities

M =
(

Aρ013×3 AIK KST
ρ0

KSρ0AT
IK KIρ0

)
, g =

(
AIK Kω̃IK KST

ρ0 KωIK

Kω̃IK KIρ0 KωIK

)
. (16)

Note that the quantity Sρ0 vanishes if the centerline points IrOP (ξ, t) coincide with the cross-sections’ center of mass.
For this case M and g get independent of the rod’s configuration.
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3 Finite element formulation
3.1 Rod kinematics in homogenous coordinates
The frame I = {O, eI

x, eI
y, eI

z} is the set collecting the origin O together with the inertial base vectors eI
i , i ∈ {x, y, z}.

A generic and possibly non-inertial frame K = {P, eK
x , eK

y , eK
z } is given by a point P together with a right-handed

orthonormal basis K. The point Q relative to the K-frame is addressed by the triple KrP Q ∈ R3, which are the
components of the vector rP Q ∈ E3 between P and Q with respect to the K-basis. Rigid body motions between two
frames K0 and K1 are captured by the Euclidean transformation matrix

HK0K1 =
(

AK0K1 K0rP0P1

01×3 1

)
, (17)

which relates the triples K1rP1Q ∈ R3 and K0rP0Q ∈ R3 in accordance with(
K0rP0Q

1

)
=
(

K0rP0P1 + AK0K1 K1rP1Q

1

)
= HK0K1

(
K1rP1Q

1

)
. (18)

In fact, the Euclidean transformation matrix HK0K1 is an element of the special Euclidean group SE(3) considered here
as a Lie subgroup of the general linear group GL(4). A brief introduction to the Lie group setting and particularly an
overview of the herein required mappings is given in Appendix A. Direct computation readily verifies that the inverse
of HK0K1 is

H−1
K0K1

=
(

AT
K0K1

−AT
K0K1 K0rP0P1

01×3 1

)
. (19)

Consequently, using (18), the motion of the rod (1) can be written in homogenous coordinates as(
IrOQ

1

)
= HIK

(
KrP Q

1

)
, with HIK =

(
AIK IrOP

01×3 1

)
. (20)

The group structure of SE(3) then allows to decompose the Euclidean transformation matrix HIK into

HIK = HIK0HK0K . (21)

3.2 SE(3)-interpolation
In order to introduce the idea of the SE(3)-interpolation strategy, we discretize the rod by a single two-node finite
element. In contrast to Sonneville et al.[20], we choose a parametrization of HIK0 and HIK1 in terms of time-dependent
generalized coordinates q(t) =

(
IrOP0(t),ψ0(t), IrOP1(t),ψ1(t)

)
∈ R12 given by the nodal positions IrOP0(t) ∈ R3,

IrOP1(t) ∈ R3 and the nodal rotation vectors ψ0(t) ∈ R3, ψ1(t) ∈ R3. Using the exponential map of SO(3), defined
in (76), the parametrization is

HIK0(q) =
(

ExpSO(3)(ψ0) IrOP0

03×1 1

)
and HIK1(q) =

(
ExpSO(3)(ψ1) IrOP1

03×1 1

)
. (22)

With the SE(3)-logarithm map from (84), we can compute the relative twist θK0K1 corresponding to the relative
Euclidean transformation HK0K1 = H−1

IK0
HIK1 as

θK0K1 = LogSE(3)
(
HK0K1

)
=
(

T−T
SO(3)(ψ01) K0rP0P1

ψ01

)
. (23)

Herein ψ01 corresponds to the relative rotation vector parameterizing the transformation between the K0- and K1-
basis according to AK0K1 = ExpSO(3)(ψ01). Due to the singularity of LogSO(3) for ∥ψ01∥ = π, see Appendix A.2, this
interpolation strategy is restricted to applications in which the relative rotation angle satisfies ω = ∥ψ01∥ < π. A
discretization with a higher number of elements always cures this problem. By linearly scaling the relative twist θK0K1

and using the SE(3)-exponential map (84), a relative Euclidean transformation from the K0-frame to the K-frame can
be constructed as

HK0K(ξ, q) = ExpSE(3)
(
ξ θK0K1(q)

)
. (24)

The Euclidean transformation HK0K satisfies HK0K(0, q) = 14×4 and HK0K(1, q) = HK0K1 . To obtain the Euclidean
transformation for a point within the finite element, the expressions (21) and (24) motivate the following SE(3)-
interpolation

HIK(ξ, q) := HIK0(q)HK0K(ξ, q) = HIK0(q) ExpSE(3) (ξ θK0K1(q)) , (25)
originally proposed in Equation (55) of Sonneville et al.[20]. In order to see the interpolation for the position and
orientation, we explicitly compute the exponential map in (25) resulting in

HIK =
(

AIK0 IrOP0

01×3 1

)(
ExpSO(3)(ξψ01) TT

SO(3)(ξψ01) ξ T−T
SO(3)(ψ01)K0rP0P1

01×3 1

)
(

AIK IrOP

01×3 1

)
=
(

AIK0 ExpSO(3)(ξψ01) IrOP0 + ξ AIK0TT
SO(3)(ξψ01)T−T

SO(3)(ψ01)K0rP0P1

01×3 1

)
.

(26)
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Consequently, the rod’s orientation is discretized by

AIK(ξ, q) = AIK0(q) ExpSO(3)
(
ξψ01(q)

)
, (27)

which corresponds to Equation (4.7) of Crisfield and Jelenić[13]. Since AIK(0, q) = AIK0 and AIK(1, q) = AIK1 ,
the discretization (27) is a highly nonlinear interpolation of the nodal transformation matrices. The rod’s centerline
is discretized by

IrOP (ξ, q) = IrOP0 + ξ AIK0(q)TT
SO(3)

(
ξψ01(q)

)
T−T

SO(3)
(
ψ01(q)

)
K0rP0P1(q) , (28)

which also interpolates the nodal positions IrOP (0, q) = IrOP0 and IrOP (1, q) = IrOP1 in a highly nonlinear manner.

3.3 Objectivity, discretized strain measures and absence of locking of SE(3)-interpolation
Using the just introduced Euclidean transformation matrices, we can recognize the strain measures of the Cosserat
rod theory (8) in the following equation

H−1
IKHIK,s =

(
AT

IK −AT
IK IrOP

01×3 1

)(
AIK,s IrOP,s

01×3 0

)
=
(

AT
IKAIK,s AT

IK IrOP,s

01×3 0

)
=
(

Kκ̃IK Kγ
01×3 0

)
. (29)

With the proposed interpolation (25), the strain measures in

H−1
IKHIK,s =

(
HIK0HK0K

)−1(HIK0HK0K
)

,s
= H−1

K0KHK0K,s (30)

depend only on the relative Euclidean transformation HK0K and its reference arc length derivative. Objectivity is the
requirement that a quantity remains unaltered under a change of observer, i.e., a change of the I-frame. Whether we use
an I-frame or an I+-frame, which are related by the time-dependent Euclidean transformation HI+I , the discretized
strain measures in H−1

I+KHI+K,s correspond to the strain measures obtained by (30). This proofs objectivity of the
interpolation (25).

Using a little bit of Lie algebra introduced in the Appendix A, the discretized strain measures can be drastically
simplified. First, with the aid of (30), (7) and (81), they can be extracted from (29), by

ε =
(

Kγ

KκIK

)
= j−1

SE(3)
(
H−1

K0KHK0K,ξ

) 1
J

. (31)

Inserting the relative interpolation (24) together with the definitions (84) and suppressing for a while the subscripts
indicating SE(3), the discretized strain measures are

ε(ξ, ·) = j−1 ◦
(

Exp(ξθK0K1)−1 d
dξ

Exp(ξθK0K1)
)

1
J

= j−1 ◦
(

exp
(
j(ξθK0K1)

)−1 d
dξ

exp
(
j(ξθK0K1)

)) 1
J

= j−1 ◦
(

dexp−j(ξθK0K1 )

( d
dξ

j(ξθK0K1)
)) 1

J
,

(32)

where we have used the left-trivialized differential (63)1. Due to the linearity of j, we have d/dξ
(
j(ξθK0K1)

)
= j(θK0K1).

Since j(ξθK0K1) and j(θK0K1) commute, according to the comment below (67), the discretized strain measures simplify
further to

ε(ξ, q) =
(

j−1 ◦ dexp−j(ξθK0K1 (q)) ◦j
)
θK0K1(q) 1

J
= θK0K1(q) 1

J
. (33)

This means that the discretized strains are constant.
As discussed in Balobanov and Niiranen[27], shear and membrane locking can occur if Kirchhoff and inextensibility

constraints follow in the limit case of a parameter tending to zero. This appears for instance for the strain energy
density (12), if the stiffnesses are computed in the sense of Saint–Venant by using the material’s Young’s and shear
moduli E and G, respectively, together with the cross-section geometry. For the particular choice of a quadratic
cross-section (width w, area A = w2, second moment of area I = w4/12), the stiffnesses would be given as ke = EA,
ks = GA, kby

= kbz
= EI and kt = 2GI. Dividing the strain energy density (12) by w4, in the limit of w → 0, the

scaled axial ke/w4 and shear stiffnesses ks/w4 tend to infinity. The strain energy remains only bounded if the dilatation
remains one and the shear deformations zero, i.e., if Kγ = (1, 0, 0); inextensibility ∥Kγ∥ − 1 = 0 readily follows.
Formulations that are prone to locking cannot fulfill these constraints exactly over the entire element and introduce
parasitic dilatation and shear strains, see Figure 2 (e) for the two-node R3 × SO(3)-interpolation[13] in a configuration
where the nodal coordinates are given by the pure bending situation of a quarter circle. In contrast, according to (33),
the proposed SE(3)-interpolation can exactly represent constant strain measures for all the individual contributions,
can thus satisfy Kγ = (1, 0, 0), and is hence intrinsically relieved from both shear as well as membrane locking.
Obviously, the SE(3)-interpolation can represent the quarter circle exactly, see Figure 2 (a).
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Figure 2: Quarter circle in the eI
x-eI

z-plane defined by ψ0 = (0, −π/2, 0), ψ1 = (0, 0, 0), IrOP0 = (0, 0, 0) and IrOP1 = (1, 0, 1).
Comparison between SE(3)-interpolation and R3 × SO(3)-interpolation. (a) - (c) Visualization and strain measures of the two-node SE(3)-
element. (d) - (f) Visualization and strain measures of the two-node R3 × SO(3)-element.

3.4 Kinematics of element nodes
The concepts of the previous paragraphs can be synthesized in a rod finite element with a piecewise two-node SE(3)-
interpolation that results in constant strains within an element. Let the rod be discretized by nel two-node elements.
The nodal Euclidean transformation matrices HIKi

, i = 0, . . . , nel are parameterized in terms of the time-dependent
nodal generalized coordinates qi(t) =

(
IrOPi(t),ψi(t)

)
∈ R6 given by the nodal centerline points IrOPi(t) ∈ R3 and

the nodal total rotation vectors ψi(t) ∈ R3. Using the exponential map of SO(3), see comment before (22), the nodal
parametrization is

HIKi
(qi) =

(
ExpSO(3)(ψi) IrOPi

03×1 1

)
. (34)

The rod’s parameter space J is dived into nel linearly spaced element intervals J e = [ξe, ξe+1) via J =
⋃nel−1

e=0 Je.
This means a totality of nel + 1 nodes and nq = 6(nel + 1) unknowns. The nodal quantities can be assembled in the
global tuple of generalized coordinates q(t) =

(
q0(t), q1(t), . . . , qN−1(t)

)
∈ Rnq . Introducing an appropriate Boolean

connectivity matrix Ce ∈ R12×nq , the element generalized coordinates qe(t) =
(

IrOPe(t),ψe(t), IrOPe+1(t),ψe+1(t)
)

∈
R12 can be extracted from the global generalized coordinates q via qe = Ceq. By introducing an additional set of
Boolean connectivity matrices Cr,0, Cr,1, Cψ,0, Cψ,1 ∈ R3×12, the centerline points IrOPe

, IrOPe+1 and total rotation
vectors ψIKe

, ψIKe+1 can be extracted from the element generalized coordinates qe via IrOPe
= Cr,0qe, IrOPe+1 =

Cr,1qe, ψIKe = Cψ,0qe and ψIKe+1 = Cψ,1qe. Note, the Boolean connectivity matrices are only used for the
mathematical description of these extraction procedures. During a numerical implementation a different and much
more efficient approach is used.

3.5 Element-wise SE(3)-interpolation
For a given element interval J e = [ξe, ξe+1) the corresponding linear Lagrange basis functions Ne

0 , Ne
1 and their first

derivatives Ne
0,ξ, Ne

1,ξ are defined by

Ne
0 (ξ) = ξe+1 − ξ

ξe+1 − ξe
, Ne

1 (ξ) = ξ − ξe

ξe+1 − ξe
, Ne

0,ξ(ξ) = −1
ξe+1 − ξe

, Ne
1,ξ(ξ) = 1

ξe+1 − ξe
. (35)

Further, we introduce the characteristic function χJ e : J → {0, 1}, being one for ξ ∈ J e = [ξe, ξe+1) and zero
elsewhere. By that, we can extend the global two-node SE(3)-interpolation (25) to a piecewise two-node SE(3)-
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interpolation given by

HIK(ξ, q) =
nel−1∑
e=0

χJ e(ξ)HIKe
(q) ExpSE(3)

(
Ne

1 (ξ)θKeKe+1(q)
)

,

θKeKe+1(q) = LogSE(3)
[
H−1

IKe
(q) HIKe+1(q)

]
.

(36)

For symmetry reasons, cf. Crisfield and Jelenić[13], it might be advantageous to use a modified SE(3)-interpolation
given by

HIK(ξ, q) =
nel−1∑
e=0

χJ e(ξ)HIRe
(q) ExpSE(3)

(
Ne

0 (ξ)θReKe
(q) + Ne

1 (ξ)θReKe+1(q)
)

,

HIRe(q) = HIKe(q) ExpSE(3)

(
1
2 LogSE(3)

[
H−1

IKe
(q) HIKe+1(q)

])
,

θReKe
(q) = LogSE(3)

[
H−1

IRe
(q) HIKe

(q)
]

, θReKe+1(q) = LogSE(3)
[
H−1

IRe
(q) HIKe+1(q)

]
.

(37)

Since this strategy requires twice as many SE(3)-exponential evaluations and three times as many SE(3)-logarithm
evaluations, the interpolation (36) is preferred due to superior efficiency and simplicity.

Using similar arguments that resulted in (33), the interpolation (36) leads to piecewise constant strains

ε(ξ, q) =
nel−1∑
e=0

χJ e(ξ)
θKeKe+1(q)
ξe+1 − ξe

1
J

. (38)

Using the same reasoning following (33) and since the piecewise two-node SE(3)-interpolation can exactly represent
constant strains within each element, neither membrane nor shear locking will appear with this discretization. As
we need no further numerical strategies to avoid locking as for instance re-interpolation of strain measures[28, 29] or
mixed formulations[30, 31, 32], we call the finite element formulation intrinsically locking-free.

3.6 Petrov–Galerkin projection
Following a Petrov–Galerkin projection[15], we introduce the nodal virtual displacements δsi(t) =

(
IδrPi

(t), Ki
δϕIKi

(t)
)

∈ R6 given by the nodal centerline variation IδrPi
(t) ∈ R3 and the nodal virtual rotation Ki

δϕIKi
(t) ∈ R3. They

are related to the variations of the nodal generalized coordinates by IδrPi
= δ(IrOPi

) and Ki
δϕIKi

= TSO(3)(ψi)δψi,
see Equation (49) of Cardona and Geradin [11]. Led by the observation that M in (16) is symmetric, it is advisable
to introduce the nodal minimal velocities ui(t) =

(
IvPi

(t), Ki
ωIKi

(t)
)

∈ R6 given by the nodal centerline velocity
IvPi

(t) ∈ R3 and the nodal angular velocity Ki
ωIKi

(t) ∈ R3. Similar to the virtual displacements, the nodal minimal
velocities are related to the time derivative of the nodal generalized coordinates by the nodal kinematic differential
equation

q̇i =
(

I ṙOPi

ψ̇i

)
=
(

13×3 03×3
03×3 T−1

SO(3)(ψi)

)(
IvPi

Ki
ωIKi

)
= Bi(qi)ui . (39)

Consequently, during a subsequent Galerkin projection, the symmetry of M is preserved and results in a symmetric
mass matrix, see (44). Since the inverse tangent map T−1

SO(3) used in (39) exhibits singularities for ∥ψ∥ = k2π with
k = 0, 1, 2, . . . , we apply the following strategy to avoid them. For k = 0, we use the first order approximation
T−1

SO(3)(ω) = 13×3 + 1
2 ω̃. For k > 0, the concept of complement rotation vectors[11, 12] is applied. Due to the

Petrov–Galerkin projection, it is sufficient to introduce a nodal update that is performed after each successful time
step (in statics after each successful Newton increment). This update, which corresponds to a change of coordinates
for the orientation parametrization, is given by

ψ =
{
ψ , ∥ψ∥ < π ,

ψC =
(
1 − 2π/∥ψ∥

)
ψ , ∥ψ∥ ≥ π ,

(40)

with ExpSO(3)(ψ) = ExpSO(3)(ψC), i.e., there is no difference whether the nodal transformation matrix AIK is
described by the rotation vector ψ or by its complement ψC =

(
1 − 2π/∥ψ∥

)
ψ. Thus, for reasonable time steps

(Newton increments) a both minimal and singularity free parametrization of SO(3) is obtained without changing the
rod’s virtual work formulation since all relevant nodal quantities are interpolated relatively1.

In analogy to the generalized coordinates, the nodal virtual displacements and minimal velocities are assembled
in the global tuple of virtual displacements δs(t) =

(
δs0(t), δs1(t), . . . , δsN−1(t)

)
∈ Rnq and global tuple of minimal

1It should be mentioned that the proposed complement rotation vector formalism is restricted to numerical single step methods, e.g.
Runge–Kutta family, generalized-α methods, etc., but cannot be used straightforwardly for multi step algorithms like BDF. Alternatively,
another nodal rotation parametrization can be chosen, e.g., unit quaternions. Since in numerics, we cannot deal with unit quaternions, a
general quaternion is constrained to be of unit length. While in statics these constraint equations have to be taken into account, during a
numerical time integration they can be satisfied by applying an appropriate projection after each successful time step. Likewise, a modified
kinematic differential equation can be introduced, see Section 6.9.6 of Egeland and Gravdahl[33].
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velocities u(t) =
(
u0(t), u1(t), . . . , uN−1(t)

)
∈ Rnq . Using again the boolean connectivity matrix Ce, we can extract

the element virtual displacements δse(t) =
(

IδrPe
(t), Ke

δϕIKe
(t), IδrPe+1(t), Ke+1δϕIKe+1(t)

)
∈ R12 and the element

minimal velocities ue(t) =
(

IvPe(t), KeωIKe(t), IvPe+1(t), Ke+1ωIKe+1(t)
)

∈ R12 from the global quantities in agreement
with δse = Ceδs and ue = Ceu. Further, the centerline variations IδrPe

, IδrPe+1 and centerline velocities IvPe
,

IvPe+1 can be extracted from the tuple of virtual displacements δse and minimal velocities ue using IδrPe
= Cr,0δse,

IδrPe+1 = Cr,1δse and IvPe
= Cr,0ue, IvPe+1 = Cr,1ue, respectively. Identical extraction operations can be defined

for the nodal virtual rotations and angular velocities via Cψ,0, Cψ,1.
In the sense of a Petrov–Galerkin projection[15], a different interpolation for the virtual displacements is chosen.

We chose a simple interpolation strategy based on the previously introduced linear Lagrange basis function. As
outlined in the previous paragraph, in order to obtain a symmetric and possibly constant mass matrix, the angular
velocities are interpolated similarly. Formalizing that, we introduce the interpolations

IδrP (ξ, δs) =
nel−1∑
e=0

χJ e(ξ)
(
Ne

0 (ξ)IδrPe
+ Ne

1 (ξ)IδrPe+1

)
,

IvP (ξ, u) =
nel−1∑
e=0

χJ e(ξ)
(
Ne

0 (ξ)IvPe
+ Ne

1 (ξ)IvPe+1

)
,

KδϕIK(ξ, δs) =
nel−1∑
e=0

χJ e(ξ)
(
Ne

0 (ξ) Ke
δϕIKe

+ Ne
1 (ξ) Ke+1δϕIKe+1

)
,

KωIK(ξ, u) =
nel−1∑
e=0

χJ e(ξ)
(
Ne

0 (ξ) Ke
ωIKe

+ Ne
1 (ξ) Ke+1ωIKe+1

)
.

(41)

Choices like KδrP , i.e., centerline variations in the cross-section K-basis, introduce cumbersome changes of bases
when for instance the generalized contact force directions should be computed, cf. Bosten et al.[34]. This is quite
inconvenient especially when dealing with complex flexible multibody system connected by perfect bilateral constraints
as treated in Géradin and Cardona [35].

3.7 Discrete virtual work formulations
Now we have all ingredients for discretizing the previously introduced continuous virtual work formulations in space.
Inserting (41) into the internal virtual work (11), their discretization is obtained

δW int(δs; q) = δsTf int(q) , f int(q) =
nel−1∑
e=0

CT
ef int

e (Ceq) ,

f int
e (qe) = −

∫
J e

1∑
i=0

{
Ne

i,ξCT
r,iAIK Kn + Ne

i,ξCT
ψ,iKm − Ne

i CT
ψ,i (K γ̄ × Kn + Kκ̄IK × Km)

}
dξ ,

(42)

where we have introduced the internal forces f int together with their element contributions f int
e . The discrete ansatz-

function of the interpolation of (36) is used in the computation of the appearing contributions. For the sake of
readability, above and subsequently, we partly suppress the function arguments, which should be clear from the
context. Similarly, the discretization of the external virtual work (13) takes the form

δW ext(δs; q) = δsTf ext(q) ,

f ext(q) =
nel−1∑
e=0

CT
ef ext

e (Ceq) + CT
nel−1

[
CT

r,1Ib1 + CT
ϕ,1Kc1

]
ξ=1 − CT

0
[
CT

r,0Ib0 + CT
ϕ,0Kc0

]
ξ=0 ,

f ext
e (qe) =

∫
J e

1∑
i=0

{
Ne

i CT
r,iIb + Ne

i CT
ψ,iKc

}
Jdξ ,

(43)
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where we have introduced the external forces f ext and their element contributions f ext
e . Finally, the discretization of

the inertial virtual work contributions (15) is given

δW dyn(δs; q, u) = −δsT {M(q)u̇ + fgyr(q, u)} ,

M(q) =
nel−1∑
e=0

CT
eMe(Ceq)Ce , fgyr(q, u) =

nel−1∑
e=0

CT
efgyr(Ceq, Ceu) ,

Me(qe) =
∫

J e

1∑
i=0

1∑
k=0

Ne
i Ne

k

{
CT

r,iAρ013×3Cr,k + CT
r,iAIK KST

ρ0
Cψ,k

+ CT
ψ,iKSρ0AT

IKCr,k + CT
ψ,iKIρ0Cψ,k

}
Jdξ ,

fgyr
e (qe, ue) =

∫
J e

1∑
i=0

Ne
i

{
CT

r,iAIK Kω̃IK KST
ρ0 KωIK + CT

ψ,iKω̃IK KIρ0 KωIK

}
Jdξ ,

(44)

where we have introduced the symmetric mass matrix M and the gyroscopic forces fgyr together with their element
contributions Me and fgyr

e .
Appendix D discusses the discrete conservation properties of the proposed rod finite element formulation. That is,

the conservation of total energy, linear and angular momentum. Moreover, another SE(3) finite element formulation
is presented, for which the nodal virtual rotations and angular velocities expressed in their cross-section-fixed bases
are replaced by the nodal virtual rotations IδϕIKi

(t) ∈ R3 and nodal angular velocities IωIKi
(t) ∈ R3 expressed in

the inertial I-basis.
The linearization of the internal forces f int with respect to the generalized coordinates q is given by

∂f int

∂q (q) =
nel−1∑
e=0

CT
e

∂f int

∂qe
(Ceq) Ce ,

∂f int

∂qe
(qe) = −

∫
J e

1∑
i=0

{
Ne

i,ξCT
r,i

∂ (AIK Kn)
∂qe

+ Ne
i,ξCT

ψ,i

∂Km
∂qe

− Ne
i CT

ψ,i

(
K
˜̄γ ∂Kn

∂qe
− K ñ∂K γ̄

∂qe
+ K

˜̄κIK
∂Km
∂qe

− Km̃∂Kκ̄IK

∂qe

)}
dξ ,

(45)

which requires the derivative of the rotation matrix AIK and the derivatives of the internal forces and moments

∂Kn
∂qe

= ∂Kn
∂Kγ

∂Kγ

∂qe
+ ∂Kn

∂KκIK

∂KκIK

∂qe
,

∂Km
∂qe

= ∂Km
∂Kγ

∂Kγ

∂qe
+ ∂Km

∂KκIK

∂KκIK

∂qe
. (46)

Both are depending on the derivatives of the strain measures Kγ and KκIK introduced in (38). These derivatives
together with the derivative of the interpolation formula (36), i.e., the position vector IrOP and the transformation
matrix AIK are given in Appendix C. As already noted, the quantity Sρ0 vanishes if the centerline points IrOP coincide
with the cross-sections’ center of mass. For this case the gyroscopic forces fgyr and the term Mu̇ get independent
of the generalized coordinates q which is why we do not consider their linearizations here. The linearization of the
external forces is omitted as well since a possible q dependence is defined by the specific form of the external forces
and moments only.

Arising element integrals of the form
∫

J e f(ξ)dξ encountered in the discretized internal, external and gyroscopic
forces, as well as in the mass matrix, are subsequently computed using a two-point Gauss–Legendre quadrature rule.

3.8 Equations of motion and static equilibrium:
The principle of virtual work states that the totality of virtual work contributions has to vanish for arbitrary virtual
displacements at all time instants t, see Chapter 8 of dell’Isola and Steigmann[36], i.e.,

δW tot = δW int + δW ext + δW dyn != 0 ∀δs(t), ∀t . (47)

Thus, the equations of motion
u̇ = M−1(q)

(
f int(q) + f ext(q) − fgyr(q, u)

)
(48)

have to be fulfilled for each instant of time t. Further, the nodal minimal velocities ui are related to the time derivatives
of the nodal generalized coordinates q̇i via the nodal kinematic differential equation (39), which can be assembled
to a global kinematic differential equation of the form q̇ = B(q)u. Depending on the specific application, either the
system of ordinary differential equations

q̇ = B(q)u ,

u̇ = M(q)−1 (f int(q) + f ext(q) − fgyr(q, u)
)

,
(49)
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(a) (b) (c) (d)

Figure 3: Visualization of deformed configuration of the cantilever experiment for (a) ρ = 101, (b) ρ = 102, (c) ρ = 103 and (d) ρ = 104

for five elements of the proposed SE(3)-rod element.

or the nonlinear generalized force equilibrium

f int(q) + f ext(q) = 0 (50)

is obtained. The system of ordinary differential equations can be solved using standard higher-order ODE solvers
(e.g. family of explicit[37] and implicit[38, 39] Runge–Kutta methods or structure-preserving algorithms[40, 41]).
This is a remarkable result since existing SE(3) rod formulations require highly customized Lie group solvers[42, 20].
In order to apply well-established methods from structural dynamics like the Newmark-β[43] or the generalized-α
method[44], a slightly modified update of the generalized coordinates has to be applied, see Equation (37a) and (37b)
of Arnold et al.[25]. Alternatively, a generalized-α formulation for first-order differential equations[45] can be used
without any modifications. The nonlinear generalized force equilibrium (50) is solved by any root finding algorithm
(e.g. Newton–Raphson, Riks). Note that a system of linear equations with a non-symmetric matrix must be solved in
each iteration.

4 Numerical experiments
This section demonstrates the power of the developed SE(3) finite element formulation by a variety of selected bench-
mark examples. The cantilever experiment slightly extends the investigations of Meier et al.[28] and gives numerical
evidence for the absence of locking and further demonstrates a second-order spatial convergence of the proposed for-
mulation. The helix experiment, which was used in Harsch et al. [9] to study locking for a director beam formulation, is
used as a second example to show that the SE(3)-formulation is intrinsically locking-free. Objectivity after discretiza-
tion is demonstrated in the example superimposed rotation of deformed cantilever. Large inhomogeneous deformations
are studied in the example rod bent to a helical form[46]. Finally, dynamics is examined by the flexible heavy top
example.

We used a Newton–Raphson method to solve all static experiments with an absolute tolerance atol in terms of
the max error of the total generalized forces. Prescribed boundary conditions were incorporated into the principle of
virtual work using perfect bilateral constraints[35]. The dynamic problem was solved using a standard fourth order
Runge–Kutta method as well as the generalized-α method for first order differential equations[45]. For simplicity,
boundary conditions were enforced on acceleration level only. Unless stated otherwise, arising element integrals were
evaluated using a two-point Gauss–Legendre quadrature rule.

4.1 Cantilever experiment
We consider an initially straight cantilever rod of length L = 103 with a quadratic cross-section of width w subjected
to a tip moment Kc1 = (0, 0, 0.5πkb/L) and an out-of-plane tip load Ib1 = AIK (0, 0, 0.5πkb/L2). In order to
show the absence of locking, different slenderness ratios ρ = L/w ∈ {101, 102, 103, 104} are considered, i.e., widths
w ∈ {102, 101, 1, 10−1}. ranging from w = 10−1 to w = 102. Further, the elastic constants are given in terms of
the Young’s and shear moduli E = 1 and G = 0.5. That is, axial stiffness ke = EA, shear stiffness ks = GA, bending
stiffnesses kb = kby

= kbz
= EI and torsional stiffness kt = 2GI, together with A = w2 and I = w4/12. As there

is no analytical solution for this load case, the numerical solutions obtained for a single SE(3)-element and for 64
SE(3)-elements are compared to a reference solution found by a finite element implementation similar to Eugster et
al.[21] discretized by 256 linear elements. To reduce shear locking in the latter formulation, reduced integration was
applied. The strain measures of the reference solution are plotted in Figure 4 (a) and (b). For the centerline, we define

11



Table 1: Experimental parameters and errors of the cantilever experiment.

slenderness tolerance nel = 1 nel = 64
e100

r e100
ψ e100

r e100
ψ

101 10−8 6.789 1.628 1.396 × 10−3 3.355 × 10−4

102 10−9 6.792 1.629 1.397 × 10−3 3.357 × 10−4

103 10−10 6.792 1.629 1.397 × 10−3 3.357 × 10−4

104 10−11 6.792 1.629 1.397 × 10−3 3.356 × 10−4

(a)
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0
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(c)
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∝ n−1el

∝ n−2el

nel

e100r
e100 

Figure 4: (a), (b) Strain measures of the solution found by four SE(3)-elements (solid) and those of the reference solution computed with
nel = 256 elements (dashed). (c) Convergence behavior of the SE(3)-formulation.

the error

ek
r = 1

k

√√√√k−1∑
i=0

I∆rT
P (ξi) I∆rP (ξi) , I∆rP (ξi) = IrOP (ξi) − Ir∗

OP (ξi) , ξi = i

k − 1 , (51)

where Ir∗
OP denotes the centerline points of the reference solution and IrOP the same quantity of the rod in comparison.

In order to investigate the error in orientations, we use the measure[24]

ek
ψ = 1

k

√√√√k−1∑
i=0

∆ψT(ξi)∆ψ(ξi) , ∆ψ(ξi) = LogSO(3)
(
AT

IK(ξi)A∗
IK(ξi)

)
, ξi = i

k − 1 . (52)

Again, A∗
IK denotes the orthogonal transformation matrix of the reference solution and AIK the same quantity of the

rod in comparison. Since the relative rotation vector ∆ψ should be tending to zero during spatial convergence, this
is a well-suited error measure [47]. The final loads were applied for all slenderness ratios within 20 increments and
absolute tolerances as documented in Table 1. It can be observed that the spatial convergence behavior of the rod is
unaffected by the chosen slenderness ratio, although no reduced integration was applied, which numerically proofs the
absence of locking. For the different slenderness ratios, the deformed configurations are visualized in Figure 3.

Due to the applied out-of-plane force, the resulting deformation is inhomogenous and cannot be described ade-
quately by a small number of SE(3)-elements with constant strain measures, see Figure 4 (a) and (b). This makes
the example suitable for the investigation of the spatial convergence of the proposed formulation. For that, we used
a moderate slenderness ratio ρ = 103, an absolute tolerance of atol = 10−10 and 20 static increments. The numerical
errors were computed with respect to the same reference solution as above. Figure 4 (c) visualizes the convergence
behavior, which shows a second-order rate of spatial convergence in both centerline and rotation fields. This is in line
with the observations made by Sonneville et al.[20] within a different experiment.

4.2 Helix experiment
In this example, an initially straight rod, is loaded such that it is deformed to a perfect helix[9] with n = 2 coils of
radius R0 = 10 and height h = 50, see Figure 5. Introducing the abbreviation c = h/(R02πn) ≥ 1, the centerline of
such a deformed rod is described by

Ir∗
OP (ξ) = R0

 sin α(ξ)
− cos α(ξ)

cα(ξ)

 , α(ξ) = 2πnξ . (53)

Depending on the slenderness ratio ρ, the rod has a circular cross-section of diameter d = L/ρ, radius r = d/2, area
A = πr2 and second moment of area I = π

4 r4. Using the Young’s and shear moduli E = 1 and G = 0.5, respectively,
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(a) (b) (c) (d)

Figure 5: Visualization of deformed configuration of the helix experiment for (a) ρ = 101, (b) ρ = 102, (c) ρ = 103 and (d) ρ = 104 for five
elements of the proposed SE(3)-rod element.

Table 2: Experimental parameters used for the helix example.

slenderness tolerance force increments
101 10−8 70
102 10−9 100
103 10−10 200
104 10−11 500

the elastic constants are given by ke = EA, ks = GA, kb = kby
= kbz

= EI and kt = 2GI. As shown in Harsch et
al.[9], the force boundary conditions for this specific example are found by a so called inverse procedure, see Section
5.2 of Ogden[48]. Evaluating the derivative of (53), the tangent vector of the curve is

Ir∗
OP,ξ(ξ) = R0α,ξ

cos α(ξ)
sin α(ξ)

c

 , α,ξ(ξ) = 2πn . (54)

The rod should not be elongated during the deformation, i.e., J(ξ) = ∥Ir∗
OP,ξ(ξ)∥ = L, from which the rod’s total

length L =
√

1 + c2R02πn follows. Further, the Serret–Frenet frame of the deformed curve is given by

IeK
x (ξ) = 1√

1 + c2

cos α(ξ)
sin α(ξ)

c

 , IeK
y (ξ) =

− sin α(ξ)
cos α(ξ)

0

 , IeK
z (ξ) = 1√

1 + c2

−c cos α(ξ)
−c sin α(ξ)

1

 . (55)

Using (1 + c2)− 1
2 = 2πnR0/L = α,ξR0/L together with the derivatives of (55), the rod’s strain measures (8) compute

as
Kγ = (1, 0, 0) , KκIK = (c, 0, 1)R0α2

,ξ/L2 . (56)
For the given strain energy density (12), evaluating the constitutive equations (10) results in the force boundary
conditions

Ib1 = (0, 0, 0) , Kc1 = (ktc, 0, kb)R0α2
,ξ/L2 (57)

that induce a pure torsion and bending deformation. Inserting (57) into the differential equation of the nonlinear
Cosserat rod[8] results in the requirement kt = kb. This condition is satisfied for the given problem setup. For a
numerical simulation, the rod has to be clamped at IrOP |ξ=0 = Ir∗

OP |ξ=0 with an orientation given by AIK |ξ=0 =
(IeK

x , IeK
y , IeK

z )|ξ=0.
Depending on the used slenderness ratio, a different number of force increments and error tolerances were chosen,

see Table 2. As in the cantilever experiment, no locking is observed. In fact, the SE(3)-interpolation can exactly
represent a helix, which is a configuration with constant strains (56). As mentioned in Section 3.2, a single SE(3)-
element is restricted to a relative rotation vector of absolute value bounded by π. Thus four elements can exactly
represent the helix (53) with two coils. Nevertheless, during the Newton iterations locally the relative rotation vector
might exceed an absolute value of π. Hence, we use five elements for the numerical investigation.

4.3 Superimposed rotation of deformed cantilever
The objectivity of the SE(3)-formulation can be demonstrated numerically by using the cantilever rod from Section 4.1
with slenderness ratio ρ = 102, discretized by a single element. Both tip force and moment were successively applied
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Figure 6: (a) Snapshots of deformed configurations of the rotated cantilever. (b) Potential energy U vs. static increments.
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Figure 7: (a) Position vector of the second node vs. static increments. (b) Absolute rotation vector of the second node vs. static increments.

during 50 linearly spaced increments. During the subsequent 450 increments the total rotation vector of the clamped
node was linearly increased up to a value of ψ0 = (20π, 0, 0), i.e., the deformed rod performed 10 full rotations
around the eI

x-axis, see Figure 6 (a). Note, the very same problem can be solved using less than 100 static increments.
However, to get a better resolution of the derived quantities, we used a totality of 500 static increments. It is well
known that for non-objective finite element formulations, the total energy increases during a superimposed rigid body
rotation[49]. This is not the case for the present formulation, see Figure 6 (b). After the final values of the tip force
and moment are reached, the potential energy remains unaltered throughout the superimposed rotation of the clamped
node. The tip displacement is shown in Figure 7 (a). Moreover, Figure 7 (b) visualizes that whenever the absolute
value of the second nodal rotation vector would exceed π, its complement value is chosen. Thus, the trajectory of the
individual components of the nodal rotation vector exhibit discontinuities.

4.4 Rod bent to a helical form
The next experiment investigates the capabilities of the presented formulation in describing large inhomogenous
deformation. A well-suited example was introduced by Ibrahimbegovic[46] in which an initially straight cantilever
rod of length L = 10, axial stiffness ke = 104, shear stiffness ks = 104, bending stiffness kb = kby

= kbz
= 102 and

torsional stiffness kt = 102 is subjected to an incremental application of a tip moment Kc1 = AT
IK(0, 0, 20πkb/L)

and an out-of-plane tip load Ib1 = (0, 0, 50). By that, the rod is bend up to 10 full circles, while the eI
z-component

of the tip displacement “oscillates” with decreasing magnitude, see Figure 8. This observation is in perfect agreement
with the results found in literature and is further confirmed by comparing the tip displacements of the eI

z-component,
shown in Figure 9 (a), with the results reported by Ibrahimbegovic[46]. Instead of the 100 or 200 linear finite elements
used by Ibrahimbegovic[46] and Mäkinen[50], it was sufficient to discretize the rod with 30 elements of the present
formulation.

Additionally, Figure 9 (b) and (c) visualize the strain measures of the final configuration. Not surprisingly, the
dilatation γ1, both shear strains γ2, γ3 and both curvatures κ2, κ3 are step functions, since the used two-node element
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Figure 8: Linearly spaced snapshots of the helicoidal deformed rod centerline.

interpolation strategy (36) yields element-wise constant strain measures.

4.5 Flexible heavy top
Inspired by the investigation of Mäkinen[50], the dynamics of an elastic heavy top is studied here. On the one hand,
this example demonstrates the capability of the presented formulation to be solved using standard ODE solvers. On
the other hand, in the limit case of an infinite stiff rod, the rod shows the well-known behavior of a heavy top. The
motion of the heavy top is described by Euler’s equations, see Equation (1.83) and (3.35) of Magnus [51], whose
solution is taken as reference solution in the subsequent investigation. For high stiffnesses of the rod, we thus expect
the solution to be close to the one of a rigid body.

Let the top be given by a cylinder of radius r = 0.1 and length L = 0.5 with cross-section area A = πr2 and second
moment of area I = πr4/4. The cylinder is subjected to a constant distributed line force Ib = ρ0A(0, 0, −9.81).
The stiff rod should be made out of steel with a uniform density ρ0 = 8000, Young’s modulus E = 210 × 106 and
shear modulus G = E/(2(1 + ν)), with a Poisson’s ratio ν = 1/3. The stiff rod has consequently an axial stiffness
ke = EA, shear stiffness ks = GA, bending stiffness kb = kby

= kbx
= EI and torsional stiffness kt = 2GI. We also

considered a soft rod for which all stiffnesses were reduced by a factor 103. The top was discretized using a single
two-node SE(3)-element. The initial position is such that the top points from the origin in positive eI

x-direction, i.e.,
q0 = (03×1, 03×1, r1, 03×1) with r1 = (L, 0, 0). Its initial velocities are chosen such that in the case of a rigid
rod a perfect precession motion[51, Section 3.3.2 c)] is obtained, i.e., u0 = (03×1, Ω, v1, Ω) with the tip velocity
v1 = Ω × r1 and the angular velocity Ω = (Ω, 0, Ωpr), where Ω = 50π and Ωpr = gL/(r2Ω). Finally, the motion of
the top is constrained such that the first node coincides with the origin for all times. This can either be guaranteed by
removing the corresponding degrees of freedom from the set of unknowns, or by using the concept of perfect bilateral
constraints, cf. Géradin[35].

Using two different numerical time integration schemes (a standard fourth order Runge–Kutta method with the
absolute and relative tolerances atol = rtol = 1 × 10−8, see Hairer et al.[37] and the generalized-α method for first
order differential equations proposed by Jansen et al.[45] with the spectral radius at infinity ρ∞ = 0.9 and a step
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Figure 9: (a) Tip displacement vs. static increments. (b) and (c) Strain measures of the final configuration.
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Figure 10: Tip displacement of the rigid top vs. stiff and soft rod solutions. The rigid top solution is drawn in black, the stiff rod in red
and the soft rod in blue. (a) Spatial tip trajectory. (b) Tip displacements vs. time.

size h = 1 × 10−5), the simulations were performed until a final time of t1 = 2π/Ωpr was reached, i.e., the rigid top
performed a full rotation. Since the numerical solution of both methods only differ in their numerical digits, we only
show the results obtained by the Runge–Kutta method.

In Figure 10 (a), the spatial trajectories of the different tops’ free ends are shown. When comparing the projections
of the rod’s free tip, it can be seen that the assertion is true that the solution of a stiff rod cannot be distinguished
from the rigid body solution, while the soft rod’s tip performs a fascinating oscillatory motion superimposed to the
rigid body solution.

5 Conclusion
We have presented a rod finite element formulation based on a two-node SE(3)-interpolation, that is, the interpolation
of relative Euclidean transformation matrices using relative twists. In contrast to the typical uncoupled interpolation
of centerline points and relative rotations using relative rotation vectors, the proposed SE(3)-interpolation leads to
element-wise constant strain measures. Thus, by construction, the resulting finite element formulation will show an
absence of both membrane and shear locking and can be applied in scenarios where very high slenderness ratios are
present. Objectivity of the discretized strain measures followed from the interpolation strategy with relative Euclidean
transformation matrices.

With a Petrov–Galerkin projection method it is possible to discretize the arising virtual work functionals in space
resulting in a set of ordinary differential equations (in dynamics) or a set of nonlinear equations (in statics) both
of which can be solved using standard numerical schemes. Thus, the drawback of existing SE(3) rod formulations,
which require highly specialized Lie group solvers is circumvented in an elegant way. Further, for typical applications,
the arising mass matrix is symmetric and constant. Since the virtual displacements and rotations are interpolated
instead of using the consistent variations of the proposed SE(3)-interpolation formula, a non-symmetric stiffness
matrix is obtained, which can be disadvantageous in terms of performance and storage. The nodal kinematics of
the proposed formulation, i.e., the nodal Euclidean transformation matrices, are parameterized using total centerline
points and total rotation vectors together with the SO(3)-exponential map. Arising singularities are circumvented by
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introducing the concept of complement rotation vectors together with the proposed relative interpolation strategy.
Thus, a parametrization with a minimal number of six nodal unknowns has been achieved. The paper is closed by
demonstrating all the individual properties of the proposed formulation by numerical benchmark examples in statics
and dynamics.

A Matrix Lie groups
A.1 The general linear group GL(n)
In the course of this treatment, we restrict ourselves to matrix Lie groups over the real numbers, that is, Lie groups
G that are closed subgroups of the general linear group GL(n) = {A ∈ Rn×n| det(A) ̸= 0}, which is the group of all
n × n invertible matrices with real entries[52]. For A, B ∈ GL(n), the group operation is given by the usual matrix
product (A, B) 7→ AB. The inverse and transpose of A are respectively denoted by A−1 and AT. The identity is
given by the n × n identity matrix 1n×n. Analogously, we denote the n × n matrix containing only zeros by 0n×n.

Let gl(n) = T1n×n
GL(n) be the tangent space of GL(n) at the identity 1n×n. In Section 3.3 of Baker[53], it is

shown that gl(n) corresponds to the set of all real n × n matrices, which constitute an n2-dimensional vector space.
The Lie algebra of GL(n) consists of the vector space gl(n) together with the bilinear map

[•, •] : gl(n) × gl(n) → gl(n) , (X, Y) 7→ [X, Y] = XY − YX , (58)

which is a Lie bracket as it is skew-symmetric and satisfies the Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] =
0n×n ∀X, Y, Z ∈ gl(n). For a fixed argument X ∈ gl(n) the Lie bracket defines the linear operator

adX : gl(n) → gl(n) , Y 7→ adX(Y) = [X, Y] , (59)

called the adjoint map. Thus, instead of [X, [X, [X, [X, Y]]]], we can write ad4
X(Y), see Hall[52] Section 3.1. Note

that the adjoint map to the power of zero is defined as ad0
X(Y) := Y. Further, the identity adi

−X(Y) = (−1)i adi
X(Y)

readily follows from iteratively applying the bilinearity of the Lie bracket. According to Baker[53] Section 2.1, the
matrix exponential is defined by the power series

exp: gl(n) → GL(n) , X 7→ A = exp(X) =
∞∑

i=0

Xi

i! . (60)

As in Section 2.6 of Iserles et al.[54], for a smooth curve Z(t) ∈ gl(n), the derivative of the exponential map can
be written as

d
dt

exp (Z(t)) = dexpZ(t)
(
Ż(t)

)
exp (Z(t)) = exp (Z(t)) dexp−Z(t)

(
Ż(t)

)
, (61)

where, for X ∈ gl(n), the linear map dexpX is defined in terms of a power series as

dexpX : gl(n) → gl(n) , Y 7→ dexpX(Y) :=
∞∑

i=0

1
(i + 1)! adi

X(Y) . (62)

Rearranging the equations in (61) to

dexp−Z(t)
(
Ż(t)

)
= exp (Z(t))−1 d

dt
exp (Z(t)) and dexpZ(t)

(
Ż(t)

)
= d

dt
exp (Z(t)) exp (Z(t))−1

, (63)

it is reasonable that dexp−X(t) and dexpX(t) are called left- and right-trivialized differentials, respectively. According
to Equation (2.46) of Iserles et al.[54], the inverse of dexpX can also be written by the power series

dexp−1
X : gl(n) → gl(n) , Y 7→ dexp−1

X (Y) :=
∞∑

i=0

Bi

i! adi
X(Y) , (64)

where Bi denotes the i-th Bernoulli number.
Let the tuple (g, [·, ·]) be a subalgebra of (gl(n), [·, ·]), i.e., g is a subspace of gl(n) with dimension k ≤ n2 and

[X, Y] ∈ g for X, Y ∈ g. Then, we can always find a linear and bijective map

j : Rk → g , x 7→ X = j(x) . (65)

Since j and dexp−j(x) are linear maps, it is convenient to construct the tangent operator T(x) ∈ Rk×k, which is the
linear map defined as

T(x) := j−1 ◦ dexp−j(x) ◦j = j−1 ◦
∞∑

i=0

(−1)i

(i + 1)! adi
j(x) ◦j =

∞∑
i=0

(−1)i

(i + 1)!⌈x⌋i , (66)
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where in the last equality we have introduced the mapping

⌈•⌋ : Rk → Rk×k , x 7→ ⌈x⌋ = j−1 ◦ adj(x) ◦j . (67)

Often this mapping is applied in the form j
(
⌈x⌋y

)
= adj(x)

(
j(y)

)
, for x, y ∈ Rk. If j(x) and j(y) commute, then

powers of the adjoint map adi
j(x)(j(y)) vanish for i > 0 resulting in T(x)y =

(
j−1 ◦ dexp−j(x) ◦j

)
y = y. The inverse

of the tangent operator is given by

T(x)−1 =
(

j−1 ◦ dexp−j(x) ◦j
)−1

= j−1 ◦ dexp−1
−j(x) ◦j = j−1 ◦

∞∑
i=0

(−1)iBi

i! adi
j(x) ◦j =

∞∑
i=0

(−1)iBi

i! ⌈x⌋i . (68)

Since the matrix rank of ⌈x⌋ is at most k, the Cayley–Hamilton theorem guarantees the existence of functions a0(⌈x⌋),
. . . , ak−1(⌈x⌋) such that

⌈x⌋k =
k−1∑
i=0

ai(⌈x⌋)⌈x⌋i . (69)

Hence, we can express the tangent operator (66) and its inverse (68) by a finite number of powers of ⌈x⌋. Using similar
arguments, also the exponential map (60) can be expressed by a finite number of matrix powers.

A.2 The special orthogonal group SO(3)
As a subgroup of GL(3), the special orthogonal group

SO(3) = {A ∈ GL(3)|ATA = 13×3, det(A) = +1} (70)

is the group of all proper orthogonal transformations. In Baker[53] Section 3.3, it is shown that the tangent space at
the identity

so(3) = T13×3SO(3) = {Ω ∈ R3×3|Ω + ΩT = 03×3} (71)
corresponds to the three-dimensional space of skew-symmetric 3 × 3 matrices, which in dynamics often corresponds to
the space of angular velocities. Since so(3) is a subspace of gl(3) and the Lie bracket [Ω1, Ω2] ∈ so(3) for Ω1, Ω2 ∈ so(3),
the tuple (so(3), [·, ·]) is a Lie subalgebra of (gl(3), [·, ·]).

For so(3), the map (65) can be identified explicitly as

jSO(3)(•) = (̃•) : R3 → so(3) , ω =

ω1
ω2
ω3

 7→ Ω = jSO(3)(ω) = ω̃ =

 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

 , (72)

where we have introduced the tilde symbol for compact notation. This map is related to the cross product by ω̃r = ω×r
for ω, r ∈ R3.

In order to minimize the number of transcendental function evaluations[23, 20], we introduce the mappings

α(ω̃) = sin(∥ω∥)
∥ω∥

, β(ω̃) = 21 − cos(∥ω∥)
∥ω∥2 , γ(ω̃) = α(ω̃)

β(ω̃) = ∥ω∥
2 cot(∥ω∥/2) , (73)

with lim∥ω∥→0 α(ω̃) = lim∥ω∥→0 β(ω̃) = lim∥ω∥→0 γ(ω̃) = 1. Noting that ω̃3 = −∥ω∥2ω̃ and carefully separating even
and odd parts of the power series of the exponential map (60), see Murray et al.[55] Section 2.2, the exponential map
from so(3) to SO(3) has an analytical form known as Rodrigues’ formula

expSO(3) : so(3) → SO(3) , Ω 7→ A = expSO(3)(Ω) = 13×3 + α(Ω)Ω + β(Ω)
2 Ω2 . (74)

For the case ∥Ω∥ → 0, following the typical approach in computational methods, the first order approximation
expSO(3)(Ω) = 13×3 + Ω is applied.

From explicitly computing (74) and denoting ω = ∥ω∥, the diagonal terms reveal the identity cos ω = 1
2 (tr(A)−1),

which can be solved for ω = ω(A). The off diagonals directly lead to ω̃ = ω
2 sin(ω) (A − AT). Using sin2(ω(A)) =

1 − (tr(A) − 1)2/4, an analytic form of the SO(3)-logarithm map is given by

logSO(3) : SO(3) → so(3) , A 7→ Ω = logSO(3)(A) = ω(A)
2 sin

(
ω(A)

) (A − AT) . (75)

Again, for ω → 0, we use the first order approximation Ω = (A − AT)/2. For notational convenience, we further
introduce the capitalized exponential and logarithm maps

ExpSO(3) : R3 → SO(3) , ω 7→ A = ExpSO(3)(ω) = expSO(3) ◦jSO(3)(ω) ,

LogSO(3) : SO(3) → R3 , A 7→ ω = LogSO(3)(A) = j−1
SO(3) ◦ logSO(3)(A)

= ω(A)
2 sin

(
ω(A)

)(A32 − A23, A13 − A31, A21 − A12
)

,

(76)
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which directly relate R3 with SO(3) and vice versa.
For a lighter notation, we shortly suppress the subscripts of j and ⌈•⌋ indicating SO(3). Let x, y, z ∈ R3, using the

skew-symmetry and Jacobi’s identity of the cross product, direct computation verifies j
(
⌈x⌋y

)
z = adj(x)

(
j(y)

)
z =(

j(x)j(y) − j(y)j(x)
)
z =

(
x̃ ỹ − ỹ x̃

)
z = j(x̃y)z. Comparison of both sides of the equality, readily implies ⌈x⌋SO(3) =

jSO(3)(x) = x̃. Again using ω̃3 = −∥ω∥2ω̃ and carefully separating the terms in the power series (66) (see Iserles et
al.[54] Equation (B.10) and Equation (18) of Park and Chung[23])2, the SO(3)-tangent operator can be written in the
form

TSO(3)(ω) =
∞∑

i=0

(−1)i

(i + 1)!⌈ω⌋i
SO(3) = 13×3 − β(ω̃)

2 ω̃ + 1 − α(ω̃)
∥ω∥2 ω̃2 . (77)

Similarly from (68) (see Iserles et al.[54] Equation (B.11), Park and Chung[23] Equation (19) and Equation (2.20) of
Bullo[22]), the inverse SO(3)-tangent operator can efficiently be computed via

T−1
SO(3)(ω) =

∞∑
i=0

Bi

i! ⌈ω⌋i
SO(3) = 13×3 + 1

2 ω̃ + 1 − γ(ω̃)
∥ω∥2 ω̃2 . (78)

For ∥ω∥ → 0, we use the first order approximations TSO(3)(ω) = 13×3 − 1
2 ω̃ and T−1

SO(3)(ω) = 13×3 + 1
2 ω̃. Due to the

skew-symmetry of ω̃, the tangent map and its inverse fulfill the additional properties TSO(3)(−ω) = TT
SO(3)(ω) and

T−1
SO(3)(−ω) = T−T

SO(3)(ω).

A.3 The special Euclidean group SE(3)
As a subgroup of GL(4), the special Euclidean group

SE(3) = SO(3) ⋉R3 =
{

H =
(

A r
01×3 1

)
∈ GL(4)

∣∣∣∣A ∈ SO(3), r ∈ R3
}

(79)

is the the group of all Euclidean transformations H, which can be expressed in terms of a translation r ∈ R3 and a
proper orthogonal transformation A ∈ SO(3). Its linearization at the identity

se(3) = T14×4SE(3) = so(3) ⋉R3 =
{

Θ =
(

Ω v
01×1 0

)
∈ R4×4

∣∣∣∣Ω ∈ so(3), v ∈ R3
}

(80)

is the space of all twists Θ, which is a 4 × 4 matrix composed of a translational and angular velocity v ∈ R3 and
Ω ∈ so(3), respectively. Since se(3) is a subgroup of gl(4) and the Lie bracket [Θ1, Θ2] ∈ se(3) for Θ1, Θ2 ∈ se(3), the
tuple (se(3), [·, ·]) is a Lie subalgebra of (gl(4), [·, ·]).

For se(3), the map (65) can be identified explicitly as

jSE(3) : R6 → se(3) , θ =
(

v
ω

)
7→ Θ = jSE(3)(θ) =

(
jSO(3)(ω) v

01×3 0

)
=
(
ω̃ v

01×3 0

)
. (81)

The exponential map from se(3) to SE(3) is given by (see Example A.12 of Murray et al.[55])

expSE(3) : se(3) → SE(3) , Θ 7→ expSE(3)(Θ) =
(

expSO(3)(Ω) TT
SO(3)(ω)v

01×3 1

)
, (82)

where ω = j−1
SO(3)(Ω). By computing Θ = logSE(3) ◦ expSE(3)(Θ) it can be verified that the SE(3)-logarithm map is

given in terms of SO(3) formulas only and reads as

logSE(3) : SE(3) → se(3) , H =
(

A r
01×3 1

)
7→ Θ =

(
Ω T−T

SO(3)(ω)r
01×3 0

)
, (83)

where Ω = logSO(3)(A) and ω = j−1
SO(3)(Ω). Again, the capitalized exponential and logarithm maps relate R6 with

SE(3) and vice versa via

ExpSE(3) : R6 → SE(3) , θ 7→ H = ExpSE(3)(θ) = expSE(3) ◦jSE(3)(θ) ,

LogSE(3) : SE(3) → R6 , H 7→ θ = LogSE(3)(H) = j−1
SE(3) ◦ logSE(3)(H)

=
(

T−T
SO(3)

(
LogSO(3)(A)

)
r

LogSO(3)(A)

)
.

(84)

2Note, both references define the tangent operator and its inverse in terms of the right-trivialized differential. Thus, their formulas differ
in the sign of the skew-symmetric part.
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B Variation of strain measures
Using the skew-symmetry of Kδϕ̃IK , the expression (5)2 can be written as δAT

IK = −Kδϕ̃IKAT
IK . Consequently, the

variation of K γ̄ from (8) computes to

δ(K γ̄) = δ(AT
IK IrOP,ξ) = AT

IK δ (IrOP,ξ) + δAT
IK IrOP,ξ = AT

IK(IδrP ),ξ − KδϕIK × K γ̄ . (85)

In the last equality, we have recognized the virtual displacement (2)1 since the variation and ξ-derivative commute for
vector components with respect to a constant basis. The same property gives rise to the equality

0 = AT
IK

[(
δ
(

IeK
i

))
,ξ

− δ
((

IeK
i

)
,ξ

)]
, (86)

where IeK
i = AIK KeK

i , i ∈ {x, y, z}. Straightforward computation together with (4) and (5) yields

AT
IK

(
δ
(

IeK
i

))
,ξ

= AT
IK

(
δAIK KeK

i

)
,ξ

= AT
IK

[
AIK

(
KδϕIK × KeK

i

)]
,ξ

= Kκ̄IK ×
(

KδϕIK × KeK
i

)
+ (KδϕIK),ξ × KeK

i

(87)

as well as
−AT

IKδ
((

IeK
i

)
,ξ

)
= −AT

IKδ
(
AIK,ξKeK

i

)
= −AT

IKδ
[
AIK

(
Kκ̄IK × KeK

i

)]
= −KδϕIK ×

(
Kκ̄IK × KeK

i

)
− δ (Kκ̄IK) × KeK

i

= KδϕIK ×
(

KeK
i × Kκ̄IK

)
− δ (Kκ̄IK) × KeK

i .

(88)

Inserting the latter two expressions in (86) and making use of the Jacobi identity and the skew-symmetry of the cross
product, one readily sees that(

(KδϕIK),ξ − KδϕIK × Kκ̄IK − δ (Kκ̄IK)
)

× KeK
i = 0 . (89)

As this holds for all i ∈ {x, y, z}, the term in the bracket of (89) must vanish, resulting in the identity

δ (Kκ̄IK) = (KδϕIK),ξ − KδϕIK × Kκ̄IK . (90)

C Linearization of internal forces
In order to evaluate the linearization of the internal force vector f int, the derivatives of the exponential and logarithm
maps of the underlying parametrization are required. Since most of these derivatives are not well established in
literature and in order to be self-consistent, we briefly introduce them in the subsequent treatment. Most of the
presented formulas have a removable singularity for ω = ∥ω∥ → 0. Thus, during a numerical implementation a critical
angle ωcrit = 1×10−6 is defined. Whenever the value of ω falls below this critical angle, the first order approximations
introduced in the first section are used. Thus, we have to introduce both, the derivative of the required formulas and
the corresponding first order approximation.

In the following, we identify the i-th component of a tuple a by ai, the i, j-th component of the matrix A by
Aij and the components of third order objects are indicated by three subscripts. Using the identities ω̃ij = ωkεkji,
∂ω̃ij/∂ωk = εkji and ∂(ω̃ilω̃lj)/∂ωk = εkliω̃lj + ω̃ilεkjl, where εijk denotes the Levi–Civita permutation symbol, we
can compute the derivatives of the auxiliary functions introduced in (73), with respect to ωk by

∂α(ω̃)
∂ω

= ω

∥ω∥2 (cos(ω) − α(ω̃)) ,
∂β(ω̃)

∂ω
= 2 ω

∥ω∥2 (α(ω̃) − β(ω̃)) ,
∂γ(ω̃)

∂ω
= ω

(
γ(ω̃)
∥ω∥2

(
1 − γ(ω̃)

)
− 1
)

. (91)

Thereby, the derivative of the rotation matrix components Aij , obtained from the capitalized SO(3) exponential
map (76), with respect to ωk is[

∂ ExpSO(3)

∂ω
(ω)
]

ijk

=
{

−αεijk + cos ω−α
ω2 ω̃ijωk + α−β

ω2 ω̃ilω̃ljωk + β
2 (εkliω̃lj + ω̃ilεkjl) , ω > ωcrit ,

−εijk , ω ≤ ωcrit .
(92)

Similar relations are found in Gallego and Yezzi[56].
Multiplying ω̃nm = εkmnωk with εimn and using εkmnεimn = 2δki gives ωi = 1

2 εimnω̃nm. Thus, we have to compute[
∂ LogSO(3)

∂A (A)
]

ijk

= 1
2εimn

[
∂ logSO(3)

∂A (A)
]

nmjk

. (93)
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Further, from cos ω = 1
2 (tr(A) − 1) with ∂ arccos(x)/∂x = −1/

√
1 − x2 we find[

∂ω(A)
∂A

]
jk

= − δjk

2 sin ω(A) and
[

∂

∂A

(
ω(A)

2 sin ω(A)

)]
jk

= ω(A) cos ω(A) − sin ω(A)
2 sin3 ω(A)

δjk . (94)

Finally, using the identities ∂Aab/∂Acd = δacδbd and εimn(δmjδnk − δnjδmk) = 2εijk, the derivative of ωi, obtained
from the capitalized SO(3) logarithm map (76), with respect to the rotation matrix components Ajk is given by[

∂ LogSO(3)

∂A (A)
]

ijk

=
{

ω cos ω−sin ω
4 sin3 ω εimn(Anm − Amn)δjk + ω

2 sin ω εijk , ω > ωcrit ,
1
2 εijk , ω ≤ ωcrit .

(95)

Further, the derivatives of the SO(3) tangent operators are required. Using the identities introduced above they
can be computed as[

∂TSO(3)

∂ω
(ω)
]

ijk

=
{

β
2 εijk + ω̃ijωk

β−α
ω2 + 1−α

ω2 (εkliω̃lj + ω̃ilεkjl) + 3α−2−cos ω
ω4 ω̃ilω̃ljωk , ω > ωcrit ,

1
2 εijk , ω ≤ ωcrit

(96)

and[
∂T−1

SO(3)

∂ω
(ω)
]

ijk

=
{

− 1
2 εijk + 1−γ

ω2 (εkliω̃lj + ω̃ilεkjl) + 1
ω2

(
2 1−γ

ω2 + γ
ω2 (1 − γ) − 1

4
)

ω̃ilω̃ljωk , ω > ωcrit ,

− 1
2 εijk , ω ≤ ωcrit .

(97)

The derivatives of the capitalized SE(3) exponential and logarithm introduced in (84) boils down to correctly
assemble the just computed derivatives. Recalling that θ = (v, ω), we get the derivative of the exponential map

[
∂ ExpSE(3)

∂θ
(θ)
]

ijk

=



[
∂ ExpSO(3)

∂ω (ω)
]

ij(k−3)
, for 1 ≤ i, j ≤ 3 , 4 ≤ k ≤ 6 ,[

TT
SO(3)(ω)

]
ik

, for 1 ≤ i ≤ 3 , j = 4 , 1 ≤ k ≤ 3 ,

[v]l
[

∂TSO(3)
∂ω (ω)

]
li(k−3)

, for 1 ≤ i ≤ 3 , j = 4 , 4 ≤ k ≤ 6 ,

0 , else .

(98)

With
H =

(
A r

01×3 1

)
(99)

the derivative of the SE(3) logarithm map with respect to its argument is given by

[
∂ LogSE(3)

∂H (H)
]

ijk

=


[r]l
[

∂T−1
SO(3)
∂ω (ω)

]
lim

[
∂ LogSO(3)

∂A (A)
]

mjk
, for 1 ≤ i, j, k ≤ 3 ,[

T−T
SO(3)(ω)

]
ij

, for 1 ≤ i, j ≤ 3 , k = 4,[
∂ LogSO(3)

∂A (A)
]

(i−3)jk
, for 4 ≤ i ≤ 6 , 1 ≤ j, k ≤ 3,

(100)

where internally ω = LogSO(3)(A) is used. Note that again the first order approximation of the required SO(3)
quantities have to be used whenever ω ≤ ωcrit.

Finally, the derivative of the element-wise SE(3)-interpolation (36) with respect to the generalized coordinates q
can be computed as[

∂HIK

∂q (ξ, q)
]

ijk

=
nel−1∑
e=0

χJ e(ξ)
{[

∂HIKe

∂q

]
ilk

[
ExpSE(3)

(
Ne

1 (ξ)θKeKe+1

)]
lj

+ [HIKe ]il
[

∂ ExpSE(3)

∂θ

(
Ne

1 (ξ)θKeKe+1

)]
ljm

Ne
1 (ξ)

[
∂ LogSE(3)

∂H (HKeKe+1)
]

mno([
∂H−1

IKe

∂q

]
npk

[
HIKe+1

]
po

+
[
H−1

IKe

]
np

[
∂HIKe+1

∂q

]
pok

)}
.

(101)

D Discrete conservation properties
Following Romero and Armero [57], this section discusses the discrete conservation properties of the proposed rod
finite element formulation. That is, the conservation of total energy, linear and angular momentum. For the sake of
brevity, but without loss of generality, we consider the case for which the centerline points IrOP (ξ, t) coincide with
the cross-sections’ center of mass and for which Sρ0 of (14) vanishes.
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D.1 Discrete conservation of total energy
With the discrete kinematics from (36) and (41), the total energy E = T + U of the discretized rod is given in terms
of the kinetic energy

T (q, u) = 1
2

∫
B

I ṙT
OQI ṙOQ dm = 1

2

nel−1∑
e=0

∫
J e

{
IvT

P Aρ0 IvP + Kω
T
IK KIρ0 KωIK

}
J dξ (102)

and the potential energy

U(q) =
nel−1∑
e=0

∫
J e

W (Kγ, KκIK ; ξ)J dξ . (103)

Their respective time derivatives are

Ṫ (q, u) =
nel−1∑
e=0

∫
J e

{
IvT

P Aρ0 I v̇P + Kω
T
IK KIρ0(KωIK)·

}
J dξ (104)

and

U̇(q) =
nel−1∑
e=0

∫
J e

{
KnT(K γ̄)· + KmT(Kκ̄IK)·

}
dξ

=
nel−1∑
e=0

∫
J e

{
(IvP )T,ξ AIK Kn + (KωIK)T,ξ Km − Kω

T
IK(K γ̄ × Kn + Kκ̄IK × Km)

}
dξ ,

(105)

where we have used the identities (K γ̄)· = AT
IK(IvP ),ξ − KωIK × K γ̄ and (Kκ̄IK)· = (KωIK),ξ − KωIK × Kκ̄IK ,

which follow from the derivation given in Appendix B by replacing the variations with the time derivatives.
Since the principle of virtual work holds for arbitrary virtual displacements, we can choose the nodal virtual dis-

placements δsi = (IvPi , KiωIKi) to be composed of the nodal minimal velocities. Inserting these virtual displacements
into (44) and (42), in the absence of any external force contributions, the virtual work principle leads to

0 = δW dyn(δs; q, u) + δW int(δs; q) = −
(
T (q, u) + U(q)

)·
. (106)

Consequently, conservation of the total energy is guaranteed also for the discrete equations.

D.2 Discrete conservation of linear momentum
The discrete linear momentum of the Cosserat rod is

IL(u) =
∫

B
I ṙOQdm =

nel−1∑
e=0

∫
J e

Aρ0 IvP J dξ . (107)

For an arbitrary Ic ∈ R3, let the nodal virtual displacements be given by

δsi =
(

Ic
03×1

)
. (108)

This choice represents a virtual translation of the rod. Inserting (108) into the discrete internal virtual work (42) and
recognizing that Ne

0,ξ(ξ) + Ne
1,ξ(ξ) = 0, one readily sees that δW int(δs; q) = 0. Using (108) in the discrete inertial

virtual work (44) together with Ne
0 (ξ) + Ne

1 (ξ) = 1 leads to

δW dyn(δs; q, u) = −IcT

(
nel−1∑
e=0

∫
J e

Aρ0 IvP J dξ

)·
= −IcT

I L̇(u) != 0 , (109)

which, in agreement with the principle of virtual work, must vanish if no external forces are applied to the rod.
Consequently, the rate of change of the linear momentum I L̇ = 03×1 vanishes and the linear momentum IL is
preserved.

D.3 Discrete conservation of angular momentum
The present rod finite element formulation uses nodal virtual rotations expressed in the individual cross-section-fixed
bases Ki

δϕIKi
(t) ∈ R3. For an arbitrary Iη ∈ R3, the nodal virtual displacements δsi = (Iη× IrOPi

, AT
IKi Iη) lead to

a virtual rotation around the origin of all nodal points. With respect to the inertial basis, by construction, the nodal
cross-sections are all virtually rotated the same. However, due to the chosen interpolation (41)3, the cross-sections
within the elements are not all rotated with the same constant virtual rotation Iη. Hence, for this formulation a virtual
rotation of the entire rod is not contained in the set of admissible virtual displacements. Consequently, there is no
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algorithmic access to the discrete angular momentum and it is not possible to construct a numerical time integration
scheme that preserves the discrete total angular momentum.

If such a conservation property is crucial for a specific application, the present rod formulation can easily be
modified. Instead of using the nodal virtual rotations Ki

δϕIKi
(t) ∈ R3 expressed in the cross-section-fixed basis

Ki, the nodal virtual rotations IδϕIKi
(t) ∈ R3 expressed in the inertial basis I are used. Analogously, the nodal

angular velocities Ki
ωIKi

(t) ∈ R3 are replaced by IωIKi
(t) ∈ R3. Proceeding similar to the original formulation, new

discretized internal and inertial virtual work contributions are obtained. They are

δW int(δs; q) = δsTf int(q) , f int(q) =
nel−1∑
e=0

CT
ef int

e (Ceq) ,

f int
e (qe) = −

∫
J e

1∑
i=0

{
Ne

i,ξCT
r,iAIK Kn + Ne

i,ξCT
ψ,iAIK Km − Ne

i CT
ψ,i (IrOP,ξ × AIK Kn)

}
dξ ,

(110)

and
δW dyn(δs; q, u) = −δsT {M(q)u̇ + fgyr(q, u)} ,

M(q) =
nel−1∑
e=0

CT
eMe(Ceq)Ce , fgyr(q, u) =

nel−1∑
e=0

CT
efgyr(Ceq, Ceu) ,

Me(qe) =
∫

J e

1∑
i=0

1∑
k=0

Ne
i Ne

k

{
CT

r,iAρ013×3Cr,k + CT
ψ,iIIρ0Cψ,k

}
Jdξ ,

fgyr
e (qe, ue) =

∫
J e

1∑
i=0

Ne
i CT

ψ,iIω̃IK IIρ0 IωIKJdξ ,

(111)

with
IIρ0(q) = AIK(q)KIρ0AIK(q)T . (112)

Note, with this reformulation the mass matrix M(q) and the gyroscopic forces fgyr(q, u) depend on the generalized
coordinates q, which is clearly a drawback with respect to the original formulation.

Conservation of energy and linear momentum follows in the same way as just shown and is not repeated here. As
the virtual rotations are now formulated with respect to the inertial basis, the nodal virtual displacements

δsi =
(

Iη × IrOPi

Iη

)
, (113)

induce a virtual rotation for the entire rod and conservation of total angular momentum can be shown. Indeed, for
this discretization, the discrete angular momentum takes the form

IJ(q, u) =
∫

B
IrOQ × I ṙOQdm =

nel−1∑
e=0

∫
J e

{IrOP × Aρ0 IvP + IIρ0 IωIK} J dξ . (114)

Inserting (113) into the discrete internal virtual work (110) and recognizing the identities already used for the linear
momentum leads to a vanishing internal virtual work functional δW int(δs; q) = 0. Using (113) in the discrete inertial
virtual work (111) results in

δW dyn(δs; q, u) = −Iη
T

nel−1∑
e=0

∫
J e

{IrOP × Aρ0 I v̇P + IIρ0 Iω̇IK + Iω̃IK IIρ0 IωIK} J dξ = −Iη
T

I J̇(q, u) != 0 , (115)

which, according to the principle of virtual work, must be zero for vanishing external virtual work functionals. It
readily follows that I J̇ = 03×1 and that the total angular momentum IJ is conserved in these cases.
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