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Abstract

In this paper, we introduce a new Galerkin based formulation for transient continuum
problems, governed by partial differential equations in space and time. Therefore, we aim
at a direct finite element discretisation of the space-time, suitable for massive parallel
analysis of the arising large-scale problem. The proposed formulation is applied to
thermal, mechanical and fluid systems, as well as to a Kuramoto-Sivashinsky problem,
representing the general class of higher-order formulations in material science using
NURBS based shape functions. We verify whenever possible the conservation properties
of the formulation. Finally, a series of examples demonstrate the applicability to all
systems presented in this paper.
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1 Introduction

The most important mathematical framework for the numerical analysis of partial dif-
ferential equations (PDEs) has been developed by Galerkin using of a weak form on
a Hilbert space. On this basis, Courant formulated in 1943 a variational method for
the solution of Galerkin type problems [13]. This leads to the first application of finite
elements in 1956 by Turner et al. [67]. Driven by statical problems in engineering, fi-
nite element solutions of spatial systems have been further improved (see, among many
others, Zienkiewicz et al. [69] and Belytschko et al. [62, 63]) and higher continuity basis
functions like B-Splines in the context of Isogeometric Analysis (IGA) was introduced
by Hughes et al. [40]. Further extensions have been proposed throughout the past two
decades for the calculation of multi-physical phenomena, e.g. thermomechanical Systems
(see, among many other, Simo & Holzapfel [36], Hesch & Betsch [33]), fluid systems (see
Donea & Huerta [18]), material science (see e.g. Anders et al. [1]) and many other
formulations.

The fundament remains: variational formulations in space are widley used in structural
mechanics, whereas in the temporal regime, both, weak and strong forms have been
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proposed, see Hughes et al. [49, 35] for an example of a classical time stepping method.
First applications on finite elements in time can be traced back to Bailey [4], dealing
with the transient behaviour of beams. Further developments can be found in Gellin
& Pitarresi [29], Pitarresi & Manolis [64] and Atilgan et al. [66], see also Bottasso
[54]. Space-time finite element methods have also been considered in fluid dynamics, see
Hughes and Hulbert [43], Hughes et al. [42] and Shakib and Hughes [60], for two-phase
flow in [51], see although Betsch et al. [6, 7, 8] for a series on finite element formulations
in time. In the majority of finite element formulations in time, the semidiscrete equations
are, however, multiplied by weighting functions in space and time and integrated over
time. As already shown in Hughes & Hulbert [43], this negates one of the most powerful
features of the finite element method: unstructured meshes. More importantly, it restricts
adaptive methodologies either to space only or/and to global refinement in time.

Due to restricted computational capacities, and above all due to our own personal ex-
perience, all methods have been designed to march forward in time. Even the above
mentioned finite element formulations in time have been formulated using a Petrov-
Galerkin method with different shape function of the functional solution and test spaces
to obtain a time-discontinuous Galerkin formalism. This approach leads to a lower tri-
angular matrix for the total system to be solved in space and time and ensures that
information flows always in the direction of positive time, i.e. solutions are said to be
causal since they depend upon the past but not on the future. And although this is
natural in our human perspective, it certainly may not be optimal from a computational
point of view. We note, however, that the first time-parallel approach for ordinary
differential equations was already presented more than 50 years ago in [55].

As a remedy, we propose a Bubnov-Galerkin approach using continuous finite elements in
time and space-time, i.e. we apply the same shape functions for the solution as well as for
the test functional space. This approach can be derived in a variationally consistent way,
hence we can demonstrate all necessary conservation properties of the different systems
under consideration. The application of domain-decomposition methods is formally
straight forward, we only have to consider to work in the Rn+1 dimensional space-time.
For two-dimensional problems in space, existing solvers for three-dimensional problems
can be applied directly to solve the arising, massive large-scale problem. However, certain
modifications might be necessary as the differential operator in time behaves differently
than in space.

Multigrid methods, which have been developed since the 50’s of the last century, al-
low for the solution of sparse symmetric positive definite linear system with optimal
complexity, cf. [32]. Thanks to their optimality and also their parallel scalability, multi-
grid methods have turned into a standard choice for the solution of large scale systems
arising from the discretization of elliptic PDEs. During the last decades, extensions of
multigrid have been developed which have also shown to be efficient and robust also in
non-linear systems, such as frictional non-linear elasticity, and saddle-point problems.
Multigrid methods have also been successfully applied to the linear systems arising from
the full space-time discretization of parabolic systems, see, e.g. [37, 26]. The fact that
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for parabolic equations, the differential operator in time direction is only of first order
and not of second order, as it is in space, requires some modifications of the multigrid
method. These modifications are realized usually by special choices of the smoother, i.e.
line smoothers, or by special coarsening strategies. In particular the modifications of the
smoother are related to smoothing strategies which have been proposed for convection-
dominated elliptic problems, such as convection-diffusion. Another possibility is to in-
troduce on the discrete level mesh-dependent diffusion in time, cf. [47]. For general
non-linear problems, multigrid methods for non-linear problems can be employed, lead-
ing to the PFASST-method (Parallel Full Approximation Scheme in Space and Time),
see [19]. Again, the treatment of the time-direction within a multi-level scheme requires
particular care, cf., e.g. [61].

In general, for the discretization in time direction for space-time multigrid methods, in
the literature the following approaches can be identified:

• to use discontinuous Galerkin in time. This approach is the most widely used, see
e.g. [27, 25, 47], based on the formulation originally presented in [45].

• to use tailored test functions, containing a time-derivative of the space-time con-
tinuous test functions. This means to replace a standard test function δθ with
δθ ⇒ ∇tδθ, or to add this expression to the otherwise unchanged test-function.
This formalism has been presented in [3] and has been shown to be equivalent to
a Petrov-Galerikin formulation

• to use continuous ansatz-spaces in space and time, see, e.g. [24] and [2]. We
note that these works are dealing with the wave equation, where time and space
derivative are of the same order.

Space-time multigrid for parabolic problems, using finite differences and a Gauß-Seidel
smoother have been used in [31]. Interestingly, if only coarsening in space is applied,
standard multigrid performance is achieved. If coarsening in time is done nevertheless,
standard multigrid performance is not guaranteed, and the method might even diverge.
This behaviour can be traced back to errors which are smooth in space, but non-smooth
in time.

In [37], multigrid is applied in space-time for parabolic equations. For the 2-dimensional
or 3-dimensional heat equation, good V -cycle contraction rates are obtained, but mesh
independent convergence rates is achieved only for F-cycles. This is in contrast to
multigrid for elliptic problems, which shows already mesh-independence for the V -cycle.
Horton and Vandewalle propose also an adaptive coarsening strategy based on the space
and time discretisation parameters ∆x and ∆t. Defining an inverse numerical diffusion

λ = ∆t
∆x2 , (1)

they showed that standard space-time multigrid provided good convergence rates only
for λ larger than a critical value λcrit, which depends on the accuracy of the time dis-
cretisation. For λ < λcrit, only time coarsening was numerically proven to be effective.
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Recently, a space-time multigrid based on a discontinuous Galerkin formulation in time
and standard finite element in space for parabolic problems has been presented [25],
which uses a fully parallel block Jackobi smoother. The MGRIT approach (Multigrid
Reduction in Time) can be found in [20], where standard one-step methods are employed
as smoothers is a multilevel method in time. For hyperbolic problems, the situation is
more complex than for the parabolic case. Space-time discontinuous Galerkin methods
for the compressible Navier-Stokes equation have been considered in [46], and multigrid
methods for Navier-Stokes with periodic boundary conditions and point-block smoothers
can be found in [5].

From a multigrid point of view, the main difficulty for space-time solution is that in time
we have to deal with a purely convective problem (after possible reduction to a first order
system). The multigrid approach considered here is therefore based on a stabilization in
time. Here, we follow the approach of [26, 47] and add diffusion in time. We moreover
adapt our coarsening strategy the strategy proposed and analysed in [37, 25].

For the application on continuous Lagrangian finite elements in time and space-time,
we construct the coarser approximation spaces using semi-geometric multigrid methods,
see [16]. These methods create a nested hierarchy of finite element spaces based on a
hierarchy of possibly non-nested meshes. To this end, a discrete (pseudo-)L2-projection
operator between the finite element spaces related to the non-nested meshes is com-
puted, [48]. The weights of the resulting scaled mass-matrices are then used for defining
the coarse level spaces based on linear combinations of the fine level basis functions.
This means that we can easily construct the desired multi-level hierarchies by providing
appropriate coarser meshes which fulfil the condition (1). We note the one advantage of
this approach is the resulting low operator complexity.

We start with a most common description in Section 2 followed by a first and easy to
understand application to thermal systems in Section 3. Afterwards, we demonstrate
the application to mechanical systems (see Section 4), using a direct discretisation of
Hamilton’s principle of varying action in the Hamiltonian framework. The following two
sections 5 and 6 deal with fluids as well as a Kuramoto-Sivashinsky formulation. The
fluid system will demonstrate the general applicability of the proposed formulation to
constrained (incompressible) fluids. We notice that finite volume and similar formula-
tions are more common to the fluid community, so we present here a proof of concept for
fluid systems within the scope of this paper using variational consistent finite element
formulation. The Kuramoto-Sivashinsky model is chosen as a prototypical higher-order
formulation in material science using a state of the art Isogeometric Analysis (IGA)
approach based on NURBS shape functions in space-time. Eventually, in Section 7,
we discuss modifications that can be done in order to achieve multigrid performance in
Bubnov-Galerkin formulations of problems which are only first order in time. Finally,
a series of examples in Section 8 demonstrates the applicability as well as the accu-
racy of the proposed formulation along with additional investigations on the multigrid
performance.
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2 Space-time formulation

Let B ⊂ Rn, n ∈ {1, 2, 3}, be a Lipschitz bounded domain and I = [t1, t2] ⊂ R, t1 < t2, a
temporal interval. We consider systems ofm partial differential equations† in the general
form

A(u(x, t),x, t)∇tu(x, t) + Lu(x, t) = f(x, t) ∀(x, t) ∈ B × I, (2)

along with initial- and boundary-conditions

u(x, t) = u0(x) on (x, t) ∈ B × {t1},
u(x, t) = g(x, t) on (x, t) ∈ ∂Bu × I,

(Ru)(x, t) = h(x, t) on (x, t) ∈ ∂Bσ × I.
(3)

In keeping with common nomenclature, we will denote the Dirichlet boundary condi-
tions ∂Bu and Neumann conditions ∂Bσ, respectively, both satisfying ∂B = ∂Bu ∪ ∂Bσ
and ∂Bu ∩ ∂Bσ = ∅ throughout the time interval I. Moreover, we assume that A =
diag(a1, . . . , am) : Rm × B × I → Rm×m and f : B × I → Rm are sufficiently smooth
functions, ∇t denotes the partial derivative with respect to t and L = (L1, . . . ,Lm),
R = (R1, . . . ,Rm) are component-wise defined differential operators,

Lu := (L1u1, ...,Lmum), Ru := (R1u1, ...,Rmum), (4)

acting on the spatial coordinates of u. A commonly used approach to deal with such
problems in the context of the finite element method (FEM) is to discretise the temporal
part of (2) separately using methods for solving initial value problems such as Runge-
Kutta methods to obtain a semi-discrete boundary value problem. This results in a
series of boundary value problems which are solved successively with finite elements.
In the present paper we avoid separate treatment of spatial and temporal derivations
by treating the temporal part as well as the spatial part of (2) within the scope of the
FEM.

For the space-time formulation proposed here, we redefine and reinterpret the initial
boundary value problem (2),(3) as a pure boundary value problem in the space-time
domain B̃ := B × I ⊂ Rn+1 as follows: find u : B̃ → Rm such that

A(u(y),y)∇tu(y) + Lu(y) = f(y) ∀y ∈ B̃, (5)

supplemented by
u(y) = g̃(y) on y ∈ ∂B̃u,

(Ru)(y) = h(y) on y ∈ ∂B̃σ,
(6)

where y = (x, t) represents an event in the space-time. Moreover, the partial derivatives
are split using the notion ∇y = [∇x, ∇t]. The outer boundaries of the space-time is given

†For a thermal system, m is equal one, for a mechanical system, m is equal n, for a thermomechanical
system, m is equal n+ 1, etc.
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by ∂B̃u = (∂Bu × I) ∪ (B × {t1}), ∂B̃σ = ∂Bσ × I and

g̃(y) :=

u0(y) if y ∈ B × {t1}
g(y) if y ∈ ∂Bu × I.

(7)

Note that we apply Dirichlet conditions in B × {t1}, i.e. we fixate the initial conditions.
Within the proposed framework, we can alternatively constrain the final configuration
and move backwards in time. The application of the FEM to (5),(6) is now straight for-
ward: define appropriate trial and weighting spaces S, V , derive a variational statement
of (5) and solve the weak formulation using finite elements. This will be demonstrated
in detail on different initial boundary value problems in the subsequent sections.

3 Thermal conduction

In a first step, we investigate the heat equation to describe the evolution of the absolute
temperature distribution θ : B0 × I → R in the context of the proposed space-time
formulation. Assuming the absence of mechanical contributions, the initial mesh remains
static and thus, the nominal heat flux vector Q is defined by

Q = −K(θ)∇x(θ), (8)

where K is a thermal conductivity tensor which must be positive semi-definite. Note
that this constitutive (Fourier-) law is thermodynamically consistent in the sense that
it has to be in accordance to the second law of thermodynamics. The Lagrangian form
of the local energy balance equation now reads

ρcp∇t(θ) = ∇x ·Q+R, ∀ y ∈ B̃, (9)

which has to be valid in the space-time domain B̃. Here, cp := cp(y, θ) can be interpreted
as specific heat capacity excluding the mechanical load (e.g. constant pressure), ρ :=
ρ(x)‡ denotes the mass density and R := R(y) represents the heat supply per unit
volume. To complete this space-time boundary value problem, appropriate Dirichlet
and Neumann conditions are specified by

θ(y) = θ̃(y) on y ∈ B × t1 = ∂B̃t1 ,
θ(y) = θ̄(y) on y ∈ ∂Bθ × I = ∂B̃θ,

Q ·N = −Q̄ on y ∈ ∂BQ × I = ∂B̃Q.
(10)

Here, ∂Bθ and ∂BQ are subsets of the domain boundary ∂B, satisfying ∂Bθ ∪ ∂BQ = ∂B
and ∂Bθ ∩ ∂BQ = ∅. Moreover, N denotes the unit outward normal field and θ̃ can be
interpreted as prescribed initial temperature distribution.

‡Here, we assume that the mass density does not change in time.
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3.1 Weak formulation

For finite element analysis we reformulate (9) along with (10). Therefore the collection
of solution and weighting functions are defined as

S =
{
θ ∈ H1(B̃) |

(
θ = θ̄ on ∂B̃θ

)
∧
(
θ = θ̃ on ∂B̃t1

)}
, (11)

V =
{
δθ ∈ H1(B̃) |

(
δθ = 0 on ∂B̃θ

)
∧
(
δθ = 0 on ∂B̃t1

)}
, (12)

where H1(B̃) is the Sobolev space of square integrable functions θ : B̃ → R with square
integrable weak derivatives of first order. Note that we often suppress for the remainder
of the article the dependence on (x, t) and on y, respectively, for the sake of brevity.
The weak problem corresponding to (9) reads: find θ ∈ S such that

B(θ, δθ) = L(δθ) ∀ δθ ∈ V , (13)

where

B(θ, δθ) :=
∫
B̃

δθρcp(θ)∇t(θ) dW +
∫
B̃

∇x(δθ) ·K(θ)∇x(θ) dW, (14)

L(δθ) :=
∫
B̃

δθR dW +
∫

∂B̃Q

δθQ̄ dΓ. (15)

Here, dW = dV dt and dΓ = dA dt. Moreover, we have made use of the divergence
theorem in the spatial domain and the symmetry of the conductivity tensor.

3.2 First law of thermodynamics

The first law of thermodynamics states that energy can neither be created nor destroyed,
i.e. that the total inner energy is a conserved quantity throughout time. Testing (13)
using δθ = µ, where µ ∈ R is arbitrary and constant, and assuming the absence of
Dirichlet boundary conditions ∂B̃θ yields∫

B̃

ρcp(θ)∇t(θ) dW =
∫
B̃

R dW +
∫

∂B̃Q

Q̄ dΓ ≡ Q, (16)

where Q represents the total net heating of the continuum body within the time interval
I. Introducing the specific inner energy e := e(θ(y)), where ∂e/∂θ = ρcp and defined
such that the left hand side of (16) can be rewritten as follows∫

B̃

ρcp(θ)∇t(θ) dW =
∫
B̃

∂e

∂θ
∇t(θ) dW =

∫
B̃

∇t(e) dW. (17)
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Summarised, (16) reads ∫
B̃

∇t(e) dW = Q, (18)

∫
B

e(t = t2) dV −
∫
B

e(t = t1) dV = Q, (19)

where we have made use of the fundamental theorem of calculus, which relates the
definite integral with the antiderivative. The last statement represents the space-time
version of the first law of thermodynamics.

3.3 Discretisation

To achieve a numerical solution for a thermal problem, we apply a finite element frame-
work to the thermal field. In particular, we introduce a finite dimensional approximation
of θ and δθ so that

θh =
∑
A∈ω

NA(y)θA and δθh =
∑
A∈ω

NA(y)δθA. (20)

Here, A ∈ ω = {1, . . . , nnode} are nodes in the space-time and NA : B̃ → R are the
corresponding global shape functions within the space-time. The spaces S, V are ap-
proximated by finite-dimensional spaces

Sh =
{
θh ∈ H1(B̃h) |

(
θh = θ̄ on ∂B̃θ,h

)
∧
(
θh = θ̃ on ∂B̃t1,h

)}
(21)

Vh =
{
δθh ∈ H1(B̃h) |

(
δθh = 0 on ∂B̃θ,h

)
∧
(
δθh = 0 on ∂B̃t1,h

)}
. (22)

Taking the linearity of B in its second argument and the linearity of L into account, the
resulting discrete problem reads: find θh ∈ Sh such that

B
(
θh, NA

)
= L

(
NA

)
∀ A ∈ ω, (23)

with

B
(
θh, NA

)
=
∫
B̃h

NAρcp(θh)∇t(NB) dWθB +
∫
B̃h

∇x(NA) ·K(θh)∇x(NB) dWθB, (24)

L
(
NA

)
=
∫
B̃h

NAR dW +
∫

∂B̃Q,h

NAQ̄ dΓ, (25)

is valid. Note that the Einstein summation convention is employed for repeated indices
throughout the article.
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3.4 Balance of energy

To verify the algorithmic conservation of energy as stated by the first law of thermody-
namics, we set δθA = µ and obtain

B
(
θh, NAµ

)
=
∫
B̃h

(∑
A∈ω

NA

)
µρcp(θ)∇t(NB) dWθB+

∫
B̃h

(
∇x(

∑
A∈ω

NA)
)
µ ·K(θh)∇x(NB) dWθB,

(26)

L
(
NAµ

)
=
∫
B̃h

(∑
A∈ω

NA

)
µR dW +

∫
∂B̃Q,h

(∑
A∈ω

NA

)
µQ̄ dΓ = Qh, (27)

Next, we take the properties ∑
A∈ω

NA = 1 and ∇x( ∑
A∈ω

NA) = 0 into account. Moreover,

a subsequent division on both sides with µ and introducing the discrete inner energy eh
yields ∫

B̃h

ρcp(θ)∇t(NB) dWθB =
∫
B̃h

∇t(eh) dW = Qh. (28)

The last equation confirms algorithmic energy consistency of the proposed space-time
formulation. Hence, the balance law for energy is correctly reproduced in the discrete
space-time setting.

4 Non-linear elasticity

The most challenging system under investigation deals with general non-linear elasticity.
Again, a Lipschitz bounded domain is defined in B0 ⊂ Rn, n ∈ {1, 2, 3} its reference
or unstressed configuration. The current configuration Bt ⊂ Rn at time t ∈ I = [t1, t2]
is related to the reference configuration via the deformation mapping ϕ : B̃0 → Rn,
where B̃0 := B0 × I ⊂ Rn+1, such that Bt = ϕ(B0, t). Material points are labelled by
X ∈ B0 with corresponding actual or spatial positions defined by x(t) = ϕ(X, t). The
dynamics of an elastic body caused by conservative external forces is described by its
Lagrangian

L(ϕ,∇X(ϕ),∇t(ϕ)) = T (∇t(ϕ))− V (ϕ,∇X(ϕ)), (29)

where the kinetic energy T and the potential energy V are given by the functions

T (∇t(ϕ)) = 1
2

∫
B0

ρ0‖∇t(ϕ)‖2 dV =
∫
B0

T dV,

V (ϕ,∇X(ϕ)) =
∫
B0

[Ψ− ρ0ϕ ·B] dV −
∫
∂Bσ0

ϕ · T̄ dA.
(30)
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The contribution of the external forces to the potential energy is due to the dead loads
B = B(X) and T̄ = T̄ (X) which are distributed over the volume of the continuum
body and its von Neumann boundary, respectively. Moreover, T = T (X,∇t(ϕ)) =
1
2ρ0‖∇t(ϕ)‖2 and Ψ = Ψ(X,∇X(ϕ)) represent the kinetic energy and the strain energy
function per unit reference volume.

As in elasto-dynamics the main interest lies in initial value problems, the classical form
of Hamilton’s principle with prescribed initial and end configurations is not a suitable
starting point. A somehow weakened formulation is obtained by postulating Hamilton’s
principle of varying action

δ

t2∫
t1

L(ϕ,∇X(ϕ),∇t(ϕ)) dt− δϕ · ∂T

∂(∇tϕ))

∣∣∣∣∣
t2

t1

= 0 ∀δϕ, (31)

which can be found for instance in Izadpanah [44] or Borri [11].

Inserting the Lagrangian defined in (29) and (30) into Hamilton’s principle of varying
action (31), the dynamics of an elastic body subjected to external dead loads is described
by the variational expression

t2∫
t1

{∫
B0

δT (∇t(ϕ)) + ρ0δϕ ·B − δΨ(∇X(ϕ)) dV +
∫
∂Bσ0

δϕ · T̄ dA
}

dt

−
∫
B0

δϕ · ∂T
∂(∇t(ϕ)) dV

∣∣∣∣∣
t2

t1

= 0 ∀δϕ.

(32)

Carrying out the variations followed by suitable integration by parts, the variational
statement (32) leads directly to the local form of the balance of linear momentum to-
gether with suitable boundary conditions.

What follows next has to be understood point wise for every material point X for every
instant of time t, i.e. for every event in space-time. The density of the kinetic energy
T (∇t(ϕ)) is a convex and differentiable function with respect to ∇t(ϕ). The conjugate
function T ∗ = T ∗(p) is defined as

T ∗(p) = sup
∇t(ϕ)∈Rn

{p · ∇t(ϕ)− T (∇t(ϕ))}. (33)

Denoting the variation with respect to ∇t(ϕ) by δ∇t(ϕ), the necessary and sufficient
condition for the supremum in (33) can be written as

δ∇t(ϕ) (∇t(ϕ) · p− T (∇t(ϕ)) = δ(∇t(ϕ)) ·
(
p− ∂T

∂(∇t(ϕ))

)
= 0 ∀δ(∇t(ϕ)). (34)

Using T = 1
2ρ0‖∇t(ϕ)‖2, the condition (34) can also be expressed by the relation

∇t(ϕ) = ρ−1
0 p, which then inserted into (33) leads to the conjugate kinetic energy
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density T ∗ and the conjugate kinetic energy T ∗

T ∗(p) = 1
2ρ
−1
0 ‖p‖2, T ∗(p) = 1

2

∫
B0

ρ−1
0 ‖p‖2 dV. (35)

Since the kinetic energy is a quadratic form, we can write the conjugate kinetic energy
also as T ∗(p) = T (ρ−1

0 p). Moreover, due to the differentiability of T the biconjugate
function T ∗∗ = (T ∗)∗ is equal to the function itself, i.e. T ∗∗ = T . This allows us to
rewrite the kinetic energy density as

T (∇t(ϕ)) = sup
p∈Rn
{∇t(ϕ) · p− T ∗(p))}. (36)

The supremum in Equation (36) can be dropped as long as the necessary and sufficient
condition for the supremum is satisfied. Similar to (34), this condition can be written
as δp(p · ∇tϕ − T ∗(p)) = 0, where we denoted by δp the variation with respect to p.
Consequently, we can rewrite Hamilton’s principle of varying action (32) as

t2∫
t1

{∫
B0

δ∇t(ϕ)(∇t(ϕ) · p− T ∗(p)) + δp(∇t(ϕ) · p− T ∗(p)) + ρ0δϕ ·B

− δΨ(∇X(ϕ)) dV +
∫
∂Bσ0

δϕ · T̄ dA
}

dt−
∫
B0

δϕ · ∂T
∂(∇t(ϕ)) dV

∣∣∣∣∣
t2

t1

= 0 ∀δϕ, δp

(37)
in which the first term comes from the dynamic principle, while the second term is the
condition allowing us to drop the supremum of (36). It is easy to see that the first two
variations can be written together by demanding a variation with respect to all variables
δ. Furthermore, the derivative of the kinetic energy on the time boundary corresponds
to the momentum p and so

t2∫
t1

{∫
B0

δ(∇t(ϕ) · p− T ∗(p)) + ρ0δϕ ·B − δΨ(∇X(ϕ)) dV +
∫
∂Bσ0

δϕ · T̄ dA
}

dt

−
∫
B0

δϕ · p dV
∣∣∣∣∣
t2

t1

= 0 ∀δϕ, δp

(38)

Introducing the Hamiltonian

H(ϕ,∇X(ϕ),p) = T ∗(p) + V (ϕ,∇X(ϕ)), (39)

Equation (38) writes as

δ

t2∫
t1

{ ∫
B0

(∇t(ϕ) · p dV −H(ϕ,∇X(ϕ),p)
}

dt−
∫
B0

δϕ · p dV
∣∣∣∣∣
t2

t1

= 0 ∀δϕ, δp (40)

11



which, except from the boundary terms, corresponds with the classical expression of a
Hamiltonian field theory. Carrying out the variations in (38) and making explicit use
of the conjugate kinetic energy density (35), after integrating by parts with respect to
time the variational expression (38) takes the form

−
∫
B̃0

δp ·
(
∇t(ϕ)− ρ−1

0 p
)

dW+

∫
B̃0

δϕ · ∇t(p) +∇X(δϕ) : P dW =
∫
B̃0

δϕ · ρ0B dW +
∫
∂B̃σ0

δϕ · T̄ dΓ ∀δϕ, δp,
(41)

where we can now introduce the functional spaces of trial functions in space-time

Vp =
{
δp ∈ H1(B̃0) |

(
δp = 0 on ∂B̃t10

)}
,

Vϕ =
{
δϕ ∈ H1(B̃0) |

(
δϕ = 0 on ∂B̃t10

)
∧
(
δϕ = 0 on ∂B̃ϕ0

)}
.

(42)

with boundary conditions, summarised as follows

ϕ(Y ) = ϕ̃(Y ) on Y ∈ B0 × t1 = ∂B̃t10 ,

p(Y ) = p̃(Y ) on Y ∈ B0 × t1 = ∂B̃t10 ,

ϕ(Y ) = ϕ̄(Y ) on Y ∈ ∂Bϕ0 × I = ∂B̃ϕ0 ,
PN = T̄ (Y ) on Y ∈ ∂Bσ0 × I = ∂B̃σ0 .

(43)

This specific functional spaces are further restricted insofar, that the variations in direc-
tion of time are constrained to be equal zero, since stretching and compression in tem-
poral direction is only possible in relativistic mechanics§. Furthermore, P := ∂Ψ/∂F
denotes the first Piola-Kirchhoff stress tensor and F : B̃0 → Rn×n, F = ∇X(ϕ) is the de-
formation gradient tensor. Eventually, the right Cauchy-Green tensor is C : B̃0 → Rn×n,
C = F TF . In order to guarantee objectivity of the material law, it is convenient to
formulate the strain energy density of a certain material in terms of the right Cauchy-
Green tensor, i.e. Ψ(X,F ) = W (X,C(F )). Introducing the second Piola-Kirchhoff
stress tensor Σ := 2∂W/∂C, the variation of the strain energy function of Ψ required
in (41) can then be reformulated as

δΨ(F ,X) = ∂W

∂C
: ∂C
∂F

: δF = Σ : (F T δF ) = (FΣ) : δF (44)

In the discretization we will make use of this expression in terms of deformation functions
only, i.e. (FΣ) : δF = (∇X(ϕ)Σ) : ∇X(δϕ).

Remark 1. We have converted the set of originally hyperbolic equations first to a set
of 2n parabolic equations and will discretise this set of equations directly in the space-
time in the subsequent section. This procedure ensures stability in temporal direction;

§Note that this would require to introduce the Minkowski space M4.
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otherwise higher continuity for the solution would be required (at least to be in H2)
with additional challenges to embed the initial velocity field. Integration by parts in
temporal direction to reduce the continuity requirement does not work in the discrete
space, since we can not enforce continuity of the velocity across the element boundaries,
a fundamental prerequisite for the conservation of linear momentum.

4.1 First integrals

A first integral, constant of motion or conserved quantity of a general differential equa-
tion is a function G : R2n → R which is constant along all solution curves of the system,
see Leimkuhler & Reich [52] for further details. This concept will now be adapted to
the space-time domain.

Balance of linear momentum To elaborate the connection between specific symmetry
properties and associated momentum maps, we focus first on translational invariance of
the Hamiltonian H as defined in 39, which implies conservation of total linear momen-
tum. In particular, we introduce a momentum map, defined by

Lξ = p · ξ, (45)

where ξ ∈ Rn is arbitrary and constant and Lξ is to be identified as the linear momentum
map. Now, we obtain by replacing δϕ := ξ and δp := ξ in (41) and noting that
replacing the variation δp immediately shows that the first term in (41), stating that
∇t(ϕ) = ρ−1

0 p, is fulfilled and we obtain∫
B̃0

ξ · ∇t(p) +∇X(ξ) : P︸ ︷︷ ︸
=0

dW =
∫
B̃0

∇t(Lξ(Y )) dW,

=
∫
B0

Lξ(Y (t = t2)) dV −
∫
B0

Lξ(Y (t = t1)) dV,

=
∫
B̃0

ξ · ρ0B dW +
∫
∂B̃σ0

ξ · T̄ dΓ.

(46)

Hence, translational invariance of the Hamiltonian implies conservation of the total linear
momentum in the sense that the change of total linear momentum is equal to the total
external contributions.
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Balance of angular momentum Next, we elaborate the connection between rotational
invariance and conservation of the total angular momentum. Assuming that the Hamil-
tonian is invariant under the action of a proper orthogonal matrix Q ∈ SO(n), we can
state

H(Qϕ,Qp) ≡ H(ϕ,p). (47)

A one-parameter group of rotation matrices can be written in the form Qε = exp(εξ̂) ∈
SO(n) where the Lie algebra ξ̂ ∈ so(n) is a skew-symmetric matrix. Next, the gradient
of the Hamiltonian reads

0 = d

dε

∣∣∣∣∣
ε=0
H(exp(εξ̂) ◦ϕ, exp(εξ̂) ◦ p) = [∇ϕH(ϕ,p), ∇pH(ϕ,p)] · ξP (ϕ,p), (48)

where ξP denotes an infinitesimal generator, see Marsden & Ratiu [53], Chapter 11.4 for
details. Introducing ξ ∈ R3 as the axial vector of ξ̂ (i.e. ξ̂a = ξ × a for all a ∈ R3) and
J ∈ R3 can be identified as total angular momentum given by

J(Y ) = ϕ× p, Jξ(Y ) = J(Y ) · ξ, (49)

associated with the previously introduced infinitesimal generator. Now we can replace
δϕ := ξ ×ϕ and obtain∫
B̃0

ξ ·ϕ×∇t(p) + F T∇X(ξ ×ϕ) : Σ︸ ︷︷ ︸
=0

dW =
∫
B̃0

∇t(ξ ·ϕ× p)− ξ · ∇t(ϕ)× p dW (50)

where we have made use of the skew-symmetry of F T∇X(ξ × ϕ) and the symmetry of
Σ. Integration by parts in temporal direction of the first term on the right hand side
and noting that ∇t(ϕ)× p = p× p = 0 yields immediately∫

B̃0

∇t(ξ ·ϕ× p) dW =
∫
B̃0

∇t(Jξ(Y )) dW,

=
∫
B0

Jξ(Y (t = t2)) dV −
∫
B0

Jξ(Y (t = t1)) dV,

= ξ ·


∫
B̃0

ϕ× ρ0B dW +
∫
∂B̃σ0

ϕ× T̄ dΓ

 .
(51)

Thus, the total change in angular momentum corresponds to the external contribu-
tions.

Balance of energy Next, a translation of the Hamiltonian itself in time reveals, that
replacing δϕ := ∇tϕ will serve us as connection with the conservation of energy. Ap-
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propriate substitution yields∫
B̃0

∇t(ϕ) · ∇t(p) +∇X(∇t(ϕ)) : P dW =
∫
B̃0

ρ−1
0 p∇t(p)︸ ︷︷ ︸

=∇t(1/2ρ−1
0 p·p)

+∇t(Ψ) dW,

=
∫
B̃0

∇tH dW,

=
∫
B0

H(t = t2) dV −
∫
B0

H(t = t1) dV,

= 0

(52)

hence, the total energy
∫
B0
H dV = T + V is a conserved quantity. Note that we have

committed the external contributions for the sake of a clear presentation. Indepen-
dent of the presents of these contributions, the last statement holds, since the external
contributions are included in H.

4.2 Discretisation

Next, we introduce finite dimensional approximation of ϕ and δϕ as well as for p and
δp as follows

ϕh =
∑
A∈ω

NA(Y )qA and δϕh =
∑
A∈ω

NA(Y )δqA,

ph =
∑
A∈ω

NA(Y )pA and δph =
∑
A∈ω

NA(Y )δpA.
(53)

Following the arguments presented in 3.3, A ∈ ω = {1, . . . , nnode} are once again nodes
in the space-time and NA : B̃ → R are the corresponding global shape functions in the
reference configuration within the space-time. The discrete functional space of test or
trial functions reads

Vp,h =
{
δph ∈ H1(B̃h

0) |
(
δph = 0 on ∂B̃t1,h0

)}
,

Vϕ,h =
{
δϕh ∈ H1(B̃h

0) |
(
δϕh = 0 on ∂B̃t1,h0

)
∧
(
δϕh = 0 on ∂B̃ϕ,h0

)}
.

(54)

Both, qA as well as δqA are ∈ Rn+1. As stated before, we do not allow stretching or
compression in time. Therefore, we place an additional constraint on the (n + 1)th
dimension, which can be considered as additional Dirichlet constraint on each node of
the system. The discrete set of equations of motion follows immediately from (41) as
follows

δpA ·
∫
B̃h

0

NA∇t(NB)qB −NAρ−1
0 NBpB dW = 0, ∀δpA (55)

δqA ·
∫
B̃h

0

NA∇t(NB)pB +∇X(NA) ·Σh∇X(NB)qB dW = δqA · P A,ext, ∀δqA. (56)
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Here, we have made use of discrete variation of Ch = qA · qB∇X(NA) ⊗ ∇X(NB).
Moreover, Σh := ∂Ψ/∂Ch represents the discrete second Piola-Kirchhof stress tensor
and

P A,ext =
∫
B̃h

0

NAρ0B dW +
∫

∂B̃σ,h0

NAT̄ dΓ, (57)

are the discrete external contributions.

4.3 Conservation properties

Linear momentum To verify conservation of linear momentum, we postulate again the
absence of Dirichlet boundary conditions. Insertion of δqA = µ into (56) yields∫
B̃0

µ ·
∑
A

(NA)∇t(NB)pB + µ · ∇X(
∑
A

(NA)) ·Σh∇X(NB)qB dW = µ ·
∑
A

P A,ext. (58)

As before, we take the properties ∑
A∈ω

NA = 1 and ∇x( ∑
A∈ω

NA) = 0 into account and
obtain ∫

B̃0

∇t(NB) dWpB =
∑
A

P A,ext. (59)

Using again the fundamental theorem of calculus in temporal direction, we obtain∫
B0

NB(X, t = t2) dV pB −
∫
B0

NB(X, t = t1) dV pB =
∑
A

P A,ext, (60)

and thus, linear momentum is algorithmically conserved.

Angular momentum Next, we substitute δqA = µ× qA into (56) and obtain∫
B̃0

µ ·qA×NA∇t(NB)pB +µ ·qA×∇X(NA) ·Σh∇X(NB)︸ ︷︷ ︸
=SAB

qB dW = µ ·qA×P A,ext, (61)

where we have made use of the identity (a × b) · c = a · (b × c). With regard to the
skew-symmetry of qA×qB and the symmetry of SAB = ∇X(NA)·Σh∇X(NB), the second
term on the left hand side of (61) vanishes and we obtain∫

B̃0

µ · qA ×NA∇t(NB)pB dW = µ · qA × P A,ext. (62)

This can be easily rewritten as follows∫
B̃0

µ ·
[
qA ×∇t(NANB)pB − qA ×∇t(NA)NBpB

]
dW = µ · qA × P A,ext. (63)
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With regard to (55), we can state that

qA∇t(NA) ≈ ρ−1
0 NApA, (64)

where the error depends on the element size, i.e. we fulfil this requirement only in an
integral sense throughout the element. Assuming that the last statement is locally
fulfilled, the second term on the left hand side vanishes, we obtain immediately

µ · qA ×
∫
B̃0

∇t(NANB) dWpB = µ · qA × P A,ext, (65)

such that

µ · qA ×
∫
B0

(NA(X, t = t2)NB(X, t = t2)) dWpB−

µ · qA ×
∫
B0

(NA(X, t = t1)NB(X, t = t1)) dWpB = µ · qA × P A,ext.
(66)

Thus, angular momentum is conserved in an approximative sense depending on the local
accuracy of (55).

Total energy Next, we investigate the impact of space-time elements on the energy
conservation. Following the arguments outlined in (52), we set∫

B̃0

qA · ∇t(NA)∇t(NB)pB dW +
∫
B̃0

qA · ∇t(∇X(NA)) ·Σh∇X(NB)qB dW, (67)

for the left hand side of (41). Assuming again that

qA∇t(NA) ≈ ρ−1
0 NApA, (68)

holds, the antiderivative of the first term on the right hand side reads∫
B̃0

pA ·NAρ−1
0 ∇t(NB)pB dW =1

2pA ·
∫
B̃0

∇t(NAρ−1
0 NB) dWpB,

=1
2pA ·

∫
B0

NA(X, t = t2)ρ−1
0 NB(X, t = t2) dV

−
∫
B0

NA(X, t = t1)ρ−1
0 NB(X, t = t1) dV

pB,
=Tt2 − Tt1 ,

(69)
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i.e. we obtain the change in the kinetic energy. To calculate the change in the strain
energy function, we use∫
B̃0

qA · ∇t(∇X(NA)) ·Σh∇X(NB)qB dW =
∫
B̃0

1
2qA · qB∇t(∇X(NA)⊗∇X(NB))︸ ︷︷ ︸

∇tCh

: Σh dW,

=
∫
B̃0

∇tC
h : ∇CΨ(Ch) dW.

(70)
Assuming again for the sake of a clear presentation, that external contributions are
absent∫
B̃0

∇tC
h : ∇CΨ(Ch) dW =

∫
B̃0

∇tΨ(Ch) dW,

=
∫
B0

∇tΨ(C(X, t = t2)) dV −
∫
B0

∇tΨ(C(X, t = t1)) dV,

=Vt2 − Vt1 .

(71)

In the presents of external contributions, additional terms can be added in a straight-
forward manner to the last term using (57). Eventually, we can state

Tt2 − Tt1 + Vt2 − Vt1 = 0, (72)

which proofs conservation of total energy in an approximative sense. For this proof, the
second derivative of the shape functions has been used. To avoid this construction, we
assume that partial derivatives are exchangeable and obtain by using (64)∫
B̃0

qA · ∇t(∇X(NA)) ·Σh∇X(NB)qB dW ≈
∫
B̃

ρ−1
0 pA · qB∇X(NA)⊗∇X(NB) : Σh dW,

≈
∫
B̃0

∇tC
h : ∇CΨ(Ch) dW = Vt2 − Vt1 .

(73)
which holds again in an approximative sense, analogues to the angular momentum.

5 Fluids

As usual, we write the fluid system in terms of an Eulerian description using the inverse
mapping Y = ϕ−1(y). For the time differential of a physical quantity f(y), it follows
immediately that

ḟ = ∇tf + v · ∇xf, (74)
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where v(y) denotes the velocity at a specific event. Without loss of generality we restrict
ourselves to the incompressible case and obtain for the conservation of mass equation

∇x · v = 0. (75)

For a classical Newtonian viscous fluid, the Cauchy stress tensor σ : B̃ → Rn×n is defined
by

σ = −pI + λI∇x · v + µ
(
∇xv +∇xvT

)
, (76)

where µ denotes the dynamic viscosity and λ the second coefficient of viscosity. Here,
the pressure p : B̃ → R is a sufficiently smooth function and can be regarded as a
Lagrange multiplier introduced to enforce condition (75). Note that for the case of
an incompressible fluid the second term on the right hand side vanishes. The non-
conservative Eulerian form of the balance of linear momentum reads

ρv̇ = ∇x · σ + ρg, (77)

where ρ denotes the density and g a prescribed body force per unit of mass. To complete
the strong form of the space-time boundary value problem, suitable boundary conditions
need to be introduced as follows

v(y) = ṽ(y) on y ∈ B × t1 = ∂B̃t1 ,
v(y) = v̄(y) on y ∈ ∂Bv × I = ∂B̃v,
σ · n = h(y) on y ∈ ∂Bh × I = ∂B̃h.

(78)

Here, we assume that ∂Bv ∪ ∂Bh = ∂B and ∂Bv ∩ ∂Bh = ∅. Moreover, n denotes the
unit outward normal field and ṽ can be interpreted as prescribed initial velocity field.

5.1 Weak formulation

Suitable functional spaces of test functions for both the velocity and pressure fields are
introduced as follows,

Vv =:
{
δv ∈ H1(B̃) |

(
δv = 0 on ∂B̃v

)
∧
(
δv = 0 on ∂B̃t1

)}
,

Vp =:
{
δp ∈ L2(B̃)

}
.

(79)

Next, we rewrite the balance of linear momentum using Gauss divergence theorem along
with an integration by parts and obtain∫

B̃

δv · ρ(v̇ − g) dW +
∫
B̃

∇x(δv) : σ dW −
∫
∂B̃h

δv · h dΓ = 0, (80)

supplemented by the kinematic constraint∫
B̃

δp∇x · v dW = 0. (81)

Both equations (80) and (81) have to hold for all δv ∈ Vv and δp ∈ Vp.
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5.2 Discretisation

Without prejudice to the generality of the formulation, a Q2Q1 Lagrangian finite element
discretisation is chosen, widely known as Taylor-Hood element. Therefore we consider a
finite element discretisation of the space-time

vh =
∑
A∈ω

NA(y)vA; δvh =
∑
A∈ω

NA(y)δvA

ph =
∑
B∈ω̄

MB(y)pB; δph =
∑
B∈ω̄

MB(y)δpB
(82)

where NA(y) : B̃ → R are quadratic shape functions associated with nodes A ∈ ω =
{1, . . . , n} and MB(x) : B̃ → R are linear shape functions associated with nodes B ∈
ω̄ = {1, . . . ,m}. This element is known to satisfy the LBB condition and provides
optimal quadratic convergence of the velocity field, see Donea & Huerta [18], chapter
6.5. Hence, the Taylor-Hood element allows to circumvent stabilisation techniques (cf.
Tezduyar [65]) using extended test function spaces and we can define in a standard
fashion the functional spaces

Vv,h =:
{
δvh ∈ H1(B̃h) |

(
δvh = 0 on ∂B̃v,h

)
∧
(
δvh = 0 on ∂B̃t1,h

)}
,

Vp,h =:
{
δph ∈ L2(B̃h)

}
.

(83)

The full-discrete balance of momentum reads

δvA ·
∫
B̃

NAρ(v̇h − g) dW + δvA ·
∫
B̃

∇x(NA) : σh dW − δvA ·
∫
∂B̃h

NAhh dΓ = 0, (84)

whereas the incompressibility constraint is evaluated as

δpA

∫
B̃

MB∇x(NB) dW · vB = 0. (85)

Eventually, we note that

v̇h = ∇t(NA)vA +
(∑

B

vB ⊗∇x(NB)
)∑

C

NCvC , (86)

represents the acceleration term.

6 Kuramoto-Sivashinsky equation

In this section we consider a representative example for higher order diffusion problems.
In particular, the Kuramoto-Sivashinsky model is used for the simulation of different
thermodynamical systems far away from equilibrium state, e.g. fluctuations in fluid
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films and instabilities in laminar flame fronts, see Paniconi & Elder [57] among many
others. This transient evolution equation of fourth-order accounts for the physics of
arising chaotic instabilities in the spatial as well as the temporal domain. The numerical
resolution of the fourth-order operator is traditionally realized using finite difference
schemes. In the context of FEA for irreducible systems, global C1-continuity is required
for spatial discretization, see Gomez & Paris [30] and Hesch et al. [34] for an application
of NURBS basis functions.

Assume a Lipschitz bounded domain B ⊆ Rn, n ∈ {2, 3}, in the time interval I = [0, T ].
Then the Kuramoto-Sivashinsky problem is stated as

∇t(u) + ν∆2
x(u) + ∆x(u) + αu− ‖∇x(u)‖2 = 0, (87)

where the constitutive parameters ν and α are used to model diffusion induced chaos and
dissipative structures in reaction diffusion systems. Analogues to the thermal system, we
do not distinguish between the reference and the actual configuration, i.e. y = Y . This
space-time boundary value problem is supplemented by appropriate boundary conditions
given as

u(y) = ũ(y) on y ∈ B × t1 = ∂B̃t1 ,
∇x(u(y)) · n = 0 on y ∈ ∂B × I = ∂B̃u,

∇x(u(y) + ∆x(u(y))) · n = 0 on y ∈ ∂B × I = ∂B̃u.
(88)

Note, that (88)2 and (88)3 are often replaced by periodic boundary conditions, see e.g.
Gomez & Paris [30].

6.1 Weak formulation

Next we introduce the functional space of solution and weighting functions

S =
{
u ∈ H2(B̃) |u = ũ on ∂B̃t1

}
,

V =
{
δu ∈ H2(B̃) | δu = 0 on ∂B̃t1

}
,

(89)

where H2(B̃) is the Sobolev space of square integrable functions u : B̃ → R with square
integrable derivatives of first and second order. The weak form of the problem reads∫

B̃

δu(∇t(u) + αu− ‖∇x(u)‖2) + ν∆x(δu)∆x(u)−∇x(δu) · ∇x(u) dW = 0, (90)

for all δu ∈ V .
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6.2 Discretisation

For the finite element approximation of (90) we employ quadratic B-spline based shape
functions which fulfil the continuity requirements specified in (89). Accordingly, the
discrete functional spaces are defined as

Sh =
{
uh ∈ H2(B̃h) |uh = ũ on ∂B̃t1,h

}
,

Vh =
{
δuh ∈ H2(B̃h) | δuh = 0 on ∂B̃t1,h

}
,

(91)

and the approximations of u and δu read

uh =
∑
A∈ω

RAuA, δuh =
∑
A∈ω

RAδuA, (92)

where RA : B̃ → R are the global shape functions associated with a net of control points
yA, A ∈ ω = {1, . . . , nnode} within the space-time domain. The multivariate B-spline
basis functions are defined within the n+ 1 dimensional parametric domain B̂ as dyadic
product of univariate B-splines

RA =
n+1∏
l=1

Ril,p(ξl). (93)

A univariate B-spline of the l-th parametric direction and polynomial order p is recur-
sively defined via a sequence of knots [ξl1 ≤ ξl2 ≤ . . . ≤ ξlnl+p+1] as follows

Ril,p(ξl) =
ξl − ξlil
ξlil+p − ξ

l
il

Ril,p−1(ξl) +
ξlil+p+1 − ξl

ξlil+p+1 − ξlil+1
Ril+1,p−1(ξl), (94)

starting with piecewise constant functions

Ril,0(ξl) =

 1 if ξlil ≤ ξl < ξlil+1

0 otherwise
, (95)

see Dittmann [17] and Hesch et al. [34] for further details. A geometrical map F : B̂ → B̃
is introducted to link the parametric domain and the space-time domain

yh := F(ξ) = RA(ξ)yA. (96)

Eventually, the fully discrete setting of (90) reads

δuA

∫
B̃

RA(∇t(RB)uB + αRBuB − ‖∇x(RB)uB‖2)

+ ν∆x(RA)∆x(RB)uB −∇x(RA) · ∇x(RB)uB dW = 0,
(97)

representing the discrete space-time version of the Kuramoto-Sivashinsky model.
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7 Semi-geometric multigrid methods for a continuous
space-time approach

Based on the fact that classical iterative methods quickly smooth the high-frequency
error, multigrid solvers combine two different methods on two different finite element
spaces.

On a coarse space SH a correction is easily computed, usually by means of a direct solver,
resolving the low frequencies of the error. Then the correction is prolongated on a fine
space SH and few iterations of Jacobi or Gauß-Seidel methods are employed in order to
remove the high-frequency components of the error. In order to solve the coarse level
problem, the fine-level residual has to be projected on the coarse space.

The smoother and restriction operator are two main ingredients which affect the multi-
grid performance. In the purely geometric approach, usually two nested meshes are
employed in order to solve for the correction on the coarse level and smoothing the cur-
rent iteration of the solution vector on the fine level. The restriction operator used to
project the residual from the fine to the coarse mesh is usually taken as the transpose
of the interpolation operator between the coarse and the fine mesh. Convergence and
optimality proofs of this approach have been shown for elliptic problems but it has been
successfully employed also in saddle-point problems. In the algebraic mutligrid, pro-
jection and coarse level operators are constructed only by means of aggregation of the
entries of the fine level operator. While this approach gives good convergence proper-
ties for positive definite matrices, optimality in general can be shown for discretizations
which results in a stiffness matrix which enjoys the M-matrix property.

The semi-geometric approach allows to extend the good convergence properties of ge-
ometric multigrid to non-nested couple of meshes and keeping a purely algebraic con-
struction of the coarse level operators [15].

In this section, we describe the semi-geometric multigrid for space-time discretization,
considering specifically the thermal conduction problem (9). Let τh and τH denote
two different triangulations of B̃, where the subscripts h and H denote their mesh-size
parameter. We assume that h < H, so that τh is finer than τH . As described in Section 3,
we denote by Sh and SH the two interpolation spaces, whose basis function are denoted
by as NA

h and NB
H . Here, A ∈ ωh = {1, . . . , nhnode} and B ∈ ωH = {1, . . . , nHnode} are the

space-time indices of the nodes on each of the meshes.

The algebraic formulation of the finite element problem (23) reads

Bhθh = fh.

The stiffness matrix Bh ∈ Rnhnode×n
h
node and the right-hand-side vector fh ∈ Rnhnode are

defined as
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Bh
i,j = B(N i

h, N
A
j ) with i, j ∈ ωh,

and
fhi = l(N i

h) with i ∈ ωh.

The vector θh is the vector having as components the unknown coefficients of the finite
element function θh.

The prolongation operator PH→h is defined as the L2 projection from VH into Vh [14].
Observe that the coarse-level correction is defined on the test function space. Given a
function cH ∈ VH , its projection can be computed by solving

Mhc
h = TH→hc

H ,

where ch ∈ Rnhnode and cH ∈ RnHnode denote the nodal vectors of the finite element functions
ch and cH, respectively. The matrix Mh ∈ Rnhnode×n

h
node is a mass matrix like structure

on the fine finite element space, whose entries are defined as

(Mh)i,j =
∫
B̃
θj(y)θi(y) dy with i, j ∈ ωh.

The entries of the matrix TH→h ∈ Rnhnode×n
H
node are instead defined as

(TH→h)i,k =
∫
B̃
θk(y)θj(y) dy with i ∈ ωh, k ∈ ωH .

The restriction operator is simply defined as Rh→H = PT
H→h.

As in the algebraic approach, once prolongation and restriction operators are computed,
the coarse level matrix BH can be computed by means of the Galerkin assembling
procedure

BH = Rh→HBhPH→h. (98)

Obviously this approach is equivalent to the geometric multigrid in case the two grids
are nested. The computation of the prolongation operator PH→h = M−1

h TH→h requires
formally the inversion of a mass matrix on the fine level. The use of bi-orthogonal basis
functions allows to lump this matrix and hence directly store its approximation P̃H→h
[48].
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7.1 Time stabilization

Multigrid theory is well-established for elliptic problems. Space-time problem are only
first order in time direction and they can be considered as the limit of singularly per-
turbed diffusion-reaction problems. For this class of operators, multigrid solvers are
known not to perform efficiently [68, 10, 9, 56]. The main problem is that standard
finite element methods provide matrices that are not M-matrices, and hence do not
preserve the positivity and monotonicity properties of the solution.

To understand this problem, we consider a low-order discretization of the diffusion-
convection problem

Au = −µ d2u

dx2 + b
du
dx.

The discretization with linear finite elements gives a local stiffness matrix that reads

Ah = µ

h

∣∣∣∣∣∣∣
1 −1

−1 1

∣∣∣∣∣∣∣+
b

2

∣∣∣∣∣∣∣
−1 1

−1 1

∣∣∣∣∣∣∣ , (99)

where the first term at the right-hand-side comes from the discretization of the diffusive
term and the second from the discretization of convective term. The parameter h is the
element size.

In order to ensure that the local stiffness matrix is an M-matrix, the entry (Ah)1,2 has
to be smaller than zero. This leads to the condition on the Péclet number [58]

Pe = bh

2µ < 1.

When the ration b/µ� 1, the mesh has be fine enough in order to ensure that the local
matrix is an M-matrix. When it is not possible, two possible strategies are available

• Numerical diffusion: the diffusion parameter µ is replaced by µh = µ(1 + φ(Pe)),
where φ is a function which tends to zero when h→ 0, such that the discretization
is consistent. The choice (φ(x) = x) leads to upwinded schemes [38] but more
complicate choices are possible, such as the Scharfetter-Gummel scheme [59].

• Residual-based stabilizations: the space of the test functions is enriched with local
basis function [39]. Since these basis functions are local, they can be eliminated
leading to the so-called unusual-stabilization schemes [23].

In order to render the problem elliptic in the space-time formulation, we modify Eq. 16
adding a stabilisation of the form

c∆t(θ, δθ) =
∫
B̃

γ ∆t ∇tθ∇tδθ dW, (100)
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where γ is a positive parameter to be accurately chosen depending on the physical
properties of the space-time operator. A similar approach has been used in [47], in order
to stabilize mortar finite element discretization in a space-time approach. Our approach
can be classified as an upwind scheme for which the analysis is simpler [58]. As in
upwinded schemes, the parameter ∆tγ plays the role of artificial diffusion and the ∆t
factor renders the stabilization consistent.

To study the optimal choice of the parameter γ, we consider the ordinary differential
equation

 b du
dt = −u

u(0) = 1.
(101)

Introducing the time stabilization (100), the stabilized differential operator reads

−α∆t d2u

dt2 + b
du
dt ,

and the stabilized stiffness matrix is

Ah = α

∣∣∣∣∣∣∣
1 −1

−1 1

∣∣∣∣∣∣∣+
b

2

∣∣∣∣∣∣∣
−1 1

−1 1

∣∣∣∣∣∣∣ . (102)

The study of the entry (Ah)1,2 leads to the conditition

b/2 < α. (103)

Since the condition (103) does not depend on ∆t, the coarse level operators obtained
with the Galerkin assembly procedure (98) will be M-matrices and hence they do not
require a level-dependent α.

In order to quantify the error introduced by the upwind stabilization, we perform con-
vergence tests for the equation (101). Results for different values of α are reported in
Figure 1. We observe that, as expected, the upwinded schemes have only first order
accuracy and it holds true both for monotone and non-monotone schemes.

8 Examples

In this section we investigate the numerical performance of the proposed finite element
formulation. We consider a series of planar benchmark tests for all systems shown in the
theoretical part. To demonstrate the accuracy, we compare the results with traditional
time stepping schemes and verify different conservation properties whenever possible.
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Figure 1: Convergence plot for different values of the upwind stabilization parameter.

An incremental iterative Newton-Raphson solution procedure has been implemented to
solve monolithically all arising non-linear system of equations.

We present the convergence properties of a space-time multigrid solver applied to the
thermal conduction and the Navier-Stokes problems presented in Section 3 and Section
5, respectively. The first one represent a standard test-case for parabolic problems and
the second an interesting non-linear problem with saddle-point structure. Numerical
tests of multigrid solver has been carried out in the application HART [50], previously
EWE, developed inside the finite element framework MOOSE. In particular, on the side
of the smoothers, we use time-line smoothers for the heat-equation and standard point
block-smoothers for Navier-Stokes problem. The former show a huge improvement in
terms of convergence speed, which can be expected, taking into account the convective
nature of the time direction.

8.1 Thermal conduction

As a first example we consider a planar conduction problem with an initial temperature
distribution as depicted in Figure 2. The geometry has a size of [−2.5, 2.5]× [−2.5, 2.5]
in [cm], the temporal domain has a size of [0, 4] and the initial temperature is given by
θ(x1, x2, 0) = 0.04 · (x1 + 2.5) · (x2 + 2.5) + 293. The Neumann boundaries are equal zero
and except of the initial conditions no further Dirichlet boundary conditions are given,
i.e. the system is adiabatically isolated. The number of elements is given by [32, 32, 64]
and the material parameters for copper at room temperature are used: conductivity
K = 400I, heat capacity cp = 385 and density ρ = 8920. Note that unless otherwise
stated, all values are given in SI units.

Results are displayed in Figure 3, the z-axis represents the temporal domain. For com-
parison, Figure 3 also presents the results of a classical implicit Euler scheme using
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Figure 2: Initial temperature distribution.

Figure 3: Results of the conductivity problem. Left: space-time cube; right: classical time stepping
scheme.

2048 time-steps. The change in total energy throughout time for this adiabatic isolated
system is given by ∫

B̃h

∇t(eh) dW = 1.5353× 10−8, (104)

which is within the range of round-off errors.

The eigenvalue distribution of the stiffness matrix of this specific system with 69696
degrees of freedom is plotted in Figure 4. Note that the formulation is non-symmetric
in general, i.e. we obtain complex eigenvalues. Moreover Figure 4 shows a convergence
plot for the present thermal conduction problem. Therefore, we calculated an overkill
solution using 100000 time-steps using a classical implicit Euler scheme and use

error =
∥∥∥[θ1, ..., θnnode ]− [θoverkill

1 , ..., θoverkill
nnode

]∥∥∥ , (105)

as measure of the error.
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Figure 4: Left: convergence plot; right: eigenvalues of the discrete thermal system.

8.1.1 Multigrid performance for thermal systems

We first consider the direct application of multigrid solvers to the space-time discreti-
sation of heat equation using linear finite elements on space-time hexahedral meshes.
The space and time discretisation parameters are denoted by dt and dx, respectively.
Again, we obtain a large linear system of equations in the space-time domain, even for
this spatially 2-dimensional system. The applied multigrid method is characterised by
the following components: 3 pre- and post-smoothing steps of Gauss-Seidel, two level
V-cycle, and nested meshes. Assembly of coarse levels is realised by means of a Galerkin
approach, which is also suitable for non-nested meshes. Convergence is related to the
L2 norm of the linear residual ‖rm‖ at the m-th iteration and the convergence rate is
defined as ρm = ‖rm‖/‖rm−1‖. V -cycle iterations are performed until the norm of the
residual is reduced by a factor of 1012. The reported convergence rates are computed as
the mean convergence rate over the different cycles.

A naive approach to heat equation Figure 6 shows the convergence rate of the for
different space-time meshes. It can be clearly seen that, differently from the application
of elliptic problems, the method is not robust with respect to space-time refinements.
In particular, we observe a decrease of multigrid performances with respect to mesh
refinement. As discussed in Subsection 7.1, the non-optimal behaviour of this approach
can be understood from parabolic structure of the equations. The equation in time can
be seen as a degenerate convection-diffusion equation. For these kind of equations, the
coarse grid approximation may deteriorate the convergence since convection is respon-
sible of grid-scale effects: oscillations present in the coarse scale are not smoothed and
smoothers may diverge for convection-dominated problems [9].
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Figure 5: Space-time adaptive approach based on a gradient error indicator.

Diffusion-in-time stabilisation Following the approach presented in [47], in order to
render the problem elliptic in the space-time formulation, we modify Eq. 16 in a con-
sistent way adding a stabilisation term of the form (100). This new term renders the
space-time heat equation elliptic for each ∆t and but reduces the convergence order of
the discretization scheme. In the one-dimensional case an optimal value for the param-
eter can be found studying the monotonicity property of the stiffness matrix. In these
(2+1)-dimensional case, a similar study is more complicated. Here we want to show by
means of a numerical study, how a threshold for γ exists in order to gain optimality of
multigrid solvers.

In Table 1, we report the convergence properties of a multigrid solver applied to the
modified system. It can be observed that, if γ is smaller than a certain threshold,
multigrid performances are not achieved and are almost γ-independent. On the other
hand, for γ > 0.128, the solver has an optimal behaviour showing mesh-independency.
In particular for larger values of the artificial diffusion, a better behaviour of multigrid
can be observed.

This is also confirmed by the results reported in Figure 7: an increase in the ellipticity
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Figure 6: Convergence of standard multigrid in the space-time domain.

γ

Fine mesh
16× 16× 32 32× 32× 64 64× 64× 128

0.004 0.264 0.519 0.692
0.008 0.264 0.519 0.692
0.016 0.264 0.519 0.692
0.032 0.264 0.519 0.692
0.064 0.264 0.519 0.692
0.128 0.014 0.020 0.065
0.256 0.008 0.008 0.020
0.512 0.005 0.003 0.005

Table 1: Two-level convergence factor for different stabilization parameters.

of the problem provide a faster convergence rate.The numerical simulations also confirm
that the stabilization in Eq. (100) is only problem-dependent. The choice of γ is not
related to the coarsest or finest levels employed, rendering our semi-geometric approach
possible since it does not require further or different corrections on the coarsest levels.
and the Galerkin assembly procedure gives naturally the correct coarse level operators.

Three-level method Similar results can be observed from the convergence rates re-
ported in Table 2 where the convergence rate for a three-level method is reported. Again,
we can observe the existence of threshold value for γ for which optimal convergence is
achieved. This value seems not to depend on the time-space mesh-size.
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Figure 7: Left: convergence of stabilized MG for a given γ. Right: convergence behaviour of MG with
respect to the stabilisation parameter.

γ

Fine mesh
32× 32× 64 64× 64× 128 128× 128× 256

0.004 0.598 0.788 0.939
0.008 0.598 0.788 0.939
0.016 0.598 0.788 0.939
0.032 0.598 0.788 0.939
0.064 0.598 0.788 0.939
0.128 0.006 0.007 0.008
0.256 0.003 0.003 0.004
0.512 0.003 0.003 0.003

Table 2: Three-level convergence factor for different stabilization parameters.

A new time-line smoothing strategy Line-smoothers have been developed for convec-
tion dominated problems [56, 68, 10] and are based on the idea of re-ordering strategy
for grid-points following the flow direction and,possible, processing nodes in forward and
backward directions. Again, we follow the similarities between time-flow and convection.
Being the convective term only along the time co-ordinate axis, we extend this idea by
smoothing the spatial nodes following the time direction.

In Table 3, we can observe how the use of this additional information is responsible for
a huge reduction of the overall cost of the solution procedure. In a parallel approach,
this approach requires a careful distribution of the nodes keeping all spatial nodes at
different times on the same processor. An alternative variant for the parallelisation of
this inherent sequential smoother has been presented in [56].
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A note on space-time adaptivity The continuous-in-time space-time approach allows
for a simple and quick re-use of spatially adaptive finite element softwares. The ellipticity
of the problem allows to use error indicator which are usually used in time sequential
codes. In Figure 8 we report a comparison of the H1-error between three uniform mesh
refinements and four adaptive mesh refinement steps based on gradient-jump indicator.
We can observe how, also in the space-time approach, a lower error can be obtained with
less degrees of freedom. The resulting meshes of the four space-time adaptivity steps for
the thermal conduction problem considered in this section are reported in Figure 5.
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10-2

10-1

100

|| 
e 

|| H
1

Uniform refinement vs adamptive mesh refinement

unif
adapt

Figure 8: Comparison between uniform mesh refinement and adaptive mesh refinement based on a
gradient indicator.

8× 8× 16 16× 16× 32 32× 32× 64

Gauss-Seidel 0.010 (7) 0.014 (7) 0.007 (6)
Time-line smoother 3.01e-04 (4) 4.92e-04 (6) 6.50e-05 (3)

Table 3: Two-level convergence factor and, in bracket, the number of V-cycle iterations for a standard
Gauss-Seidel smoother and a time-line smoother.

8.2 Non-linear elasticity

This example deals with a continuum body which assumes the form of an L-shaped
block in the stress-free initial configuration (see Figure 9, left). This planar example
consists of 36 elements in the spatial direction. Moreover, the interval in temporal
direction T = [0, 1.5] is divided in 30 slices. Hence, we have to solve for 8835 unknowns.
Hyperelastic constitutive behaviour is assumed to be governed by a compressible Neo-
Hooke material with associated stored energy function

W (C) = µ

2 [tr(C)− n] + λ

2 (ln(J))2 − µ ln(J). (106)
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Figure 9: Non-linear elasticity. Left: initial configuration, right: comparison of results

The corresponding material constants are assumed to take the values λ = 1298.100,
µ = 865.3846 and ρ = 0.1, where λ and µ denote Lamé parameters. An initial velocity
distribution is predefined such that the x-component vx is equal the y-component of
the reference configuration, i.e. zero at y = 0 and 10 at the upper end of the L-shape.
Thus, we obtain an inhomogeneous initial velocity distribution of this L-shape, leading
to a deformation in time. Further Dirichlet and Neumann boundary conditions are not
given, i.e. the L-shape can move free in space.

In Figure 9, right, results for the space-time element (green) and a classical implicit Euler
scheme (cyan) are displayed. About 2500 timesteps were necessary to obtain a similar
accurate solution compared to the space-time results, demonstrating the superiority of
the proposed formulation. In Figure 10, the corresponding von Mises stress distribution
for both, the space-time as well as the classical time stepping scheme is shown.

The change of linear and angular momentum over all time-steps is given as follows∫
B̃0

∇t(Lξ(Y )) dW = 0.3137× 10−13,
∫
B̃0

∇t(Jξ(Y )) dW = 0.0888. (107)

Reducing gradually the element size in temporal direction yields for the total change in
angular momentum and total energy
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Figure 10: Results of the elasticity problem, colors indicate von Mises stress distribution. Left: space-
time formulation, right: classical time stepping scheme.

time slices 30 90 150 210

change in AM 0.088 0.009 0.002 6.192× 10−04

change in energy 0.7496 0.6134 0.3649 0.0773

i.e. linear momentum is algorithmically conserved and we obtain a clear convergence
of angular momentum and total energy. Note that the displayed values represent the
integral over space and time and thus, the global change for the whole time period.
Figure 11, left, shows a convergence plot for this transient L-shape problem in comparison
to an implicit Euler formulation and a midpoint rule. Therefore, we calculated an overkill
solution using 25000 time-steps of an implicit Euler scheme and use the norm

error = ‖[q1, . . . , qnnode
]− [qoverkill

1 , . . . , qoverkill
nnode

]‖, (108)

as error indicator. Note that a specific numerical error in the overkill solution remains
independent of the time-step size, since the stop criterion of the Newton-Raphson it-
eration is 1 × 10−7 and the total error accumulates over all time steps. Both, the
implicit time stepping scheme as well as the space-time formulation clearly converge
to the same solution. Moreover, it is easy to see that, as expected, the implicit Euler
is of first order accuracy, whereas the linear shape function in the temporal direction
of the space-time formulation provide a quadratic term and hence, we obtain second
order accuracy. Moreover, the absolute error is tremendously lower compared to tradi-
tional time-stepping methods. Overall, the superiority of the space-time formulation is
obvious.

Eventually, in Figure 11, right, the complex eigenvalues of the mechanical system using
30 time slices are plotted.
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Figure 11: Left: convergence plot, error is plotted over ∆t; right: eigenvalues of the discrete mechanical
system.
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Figure 12: Problem set up of lid driven cavity flow.

8.3 Fluids

In this section we consider a common benchmark in the context of fluid problems. In
order to demonstrate the proposed space-time formulation, the lid driven cavity flow
is simulated using a Taylor-Hood Q2Q1 velocity-pressure space-time elements. The
geometry of size [0, 1]× [0, 1] and [0, 10] in temporal direction as well as the boundary
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conditions of the problem are depicted in Figure 12. The initial velocity is set to zero
on the boundary ∂B̃t1 except at the lid, where the horizontal velocity is prescribed as
v(y) = [1, 0] ∈ ∂B̃v for all time t ∈ [0, 10], including the edge nodes A and B („leaky
cavity“). On all remaining boundaries the velocity is set to zero throughout time. The
width and the height of the cavity are b = h = 1 and the density of the fluid is set to
ρ = 1. The fluid viscosity is set to µ = 0.01, resulting in a global Reynold number of
Re = 100.

Figure 13: Results of the flow problem. Up: Norm of the velocity, below: pressure field. Left: space-time
formulation, right: classical time stepping scheme.

Figures 13 displays the results of the space-time formulation and the conventional time
marching scheme, respectively. In particular, the upper row shows the norm of the ve-
locity, whereas the lower row shows the pressure field. All examples have been calculated
using 64×64 elements in spatial direction. In temporal direction, only four element rows
for the space-time formulation have been used, whereas 100 time-steps where used to
calculate the results using an implicit Euler scheme. As can be seen, the results match
nearly perfectly. In Figure 14, the flow field at time t = [0.25, 5, 10] is plotted for the
space time formulation.
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Overall, we can state that the space-time formulation is suitable for the calculation of
fluid systems using finite elements. The usage of finite volume or similar discretisation
techniques may be considered for space-time as well, a proof of concept for the more
complex finite element formulation is given here.

8.3.1 Multigrid performance for fluid system

The application of multigrid solvers to the Navier-Stokes problem allows to test their
performances in case of non-linear saddle-point problems. For this latter, convergence
theory is still a challenge. One of the standard choices in order to improve the conver-
gence rate for vector and saddle-point problems is to employ point-block smoothers [28],
which are based on the idea of performing a Gauß-Seidel or Jacobi step together for
the degrees of freedom associated to a mesh node. To have the same number of degree
of freedom per node, we employ a P1-P1 discretisation stabilised with pressure space
Laplacian of the form

−
∫
B̃

α∆x2∇xp · ∇xδp dy.

This stabilization presented in [12] is consistent and allows to remove spurious modes.
It does not affect the convergence order both when linear finite element or Taylor-Hood
schemes are employed. For Stokes problem, an optimal value of α is the inverse of the
Reynolds number [41]. Differently from the artificial diffusion term, this stabilization
depending on ∆x2 is not mesh-independent. Similar observation has been done in the
study of similar saddle-point problems, such as poroelasticity [21, 22].

In the solution of the non-linear problem, we employ an inexact Newton’s method, for
which each non-linear step is solved with an relative tolerance of 10−5. The global New-
ton’s procedure is solved with a relative tolerance of 10−12. For the solution of the linear
solver, we employ a GMRES method, preconditioned with a semi-geometric multigrid
for which 3 pre- and 3 post-smoothing point-block Gauß-Seidel steps are perfomed.

The role of the presented simulations is to study the effect of the different stabilizations
on the convergence of multigrid. While the role of γ is well-understood, the choice of α
depends on the coarsest mesh. This latter also influence the properties of the point-block
matrices, hence affecting the smoothing properties of iterative solvers.

Convergence studies of semi-geometric multigrid is reported in Tables 4 and 5 for two
different meshes. It can observed that for α larger than a certain value, the overall
number of Newton iterations and V-cycle is constant. As for the thermal conduction
problem, the number of multigrid steps in order to converge decreases increasing the
time-stabilization parameter.

In Figure 15, convergence tests are reported for different mesh sizes. In the first step,
where a pure Stokes problem is solved, optimality of multigrid solver can be observed.
From the second iteration, we can observe that for finer meshes a better convergence
rate is obtained.
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γ

α
1.6 3.2 6.4 12.8 25.6 51.2 102.4

0.02 N.C. 23 (5) 22 (5) 22 (5) 22 (5) 22 (5) 22 (5)
0.04 N.C. 23 (5) 22 (5) 22 (5) 22 (5) 22 (5) 22 (5)
0.08 N.C. 23 (5) 22 (5) 22 (5) 22 (5) 22 (5) 22 (5)
0.16 N.C. 23 (5) 22 (5) 22 (5) 22 (5) 22 (5) 22 (5)
0.32 N.C. 23 (5) 22 (5) 22 (5) 22 (5) 22 (5) 22 (5)
0.64 N.C. 23 (5) 22 (5) 22 (5) 22 (5) 22 (5) 22 (5)
1.28 N.C. 22 (5) 21 (5) 20 (5) 20 (5) 20 (5) 20 (5)
2.56 N.C. 20 (5) 20 (5) 20 (5) 20 (5) 16 (4) 16 (4)
5.12 N.C. 16 (4) 16 (4) 16 (4) 16 (4) 16 (4) 16 (4)

Table 4: Convergence rate for different time and space stabilisation parameters for a 32×32×50 mesh.

γ

α
1.6 3.2 6.4 12.8 25.6 51.2 102.4

0.02 30 (5) 36 (5) 40 (5) 44 (5) 46 (5) 47 (5) 48 (5)
0.04 30 (5) 36 (5) 40 (5) 44 (5) 46 (5) 47 (5) 48 (5)
0.08 30 (5) 36 (5) 40 (5) 44 (5) 46 (5) 47 (5) 48 (5)
0.16 30 (5) 36 (5) 40 (5) 44 (5) 46 (5) 47 (5) 48 (5)
0.32 30 (5) 36 (5) 40 (5) 44 (5) 46 (5) 47 (5) 48 (5)
0.64 30 (5) 36 (5) 40 (5) 44 (5) 46 (5) 47 (5) 48 (5)
1.28 28 (5) 30 (5) 33 (5) 34 (5) 34 (5) 34 (5) 34 (5)
2.56 27 (5) 29 (5) 31 (5) 31 (5) 25 (4) 25 (4) 25 (4)
5.12 20 (4) 22 (4) 23 (4) 23 (4) 23 (4) 23 (4) 22 (4)

Table 5: Convergence rate for different time and space stabilisation parameters for a 64×64×100 mesh.
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8.4 Kuramoto Sivashinsky problem

In this last section we investigate the (2+1) dimensional version of the Kuramoto-
Sivashinsky problem on a geometry of size [0, 100]2 and a temporal domain [0, 115].
The computational mesh consists of 64× 64× 200 quadratic B-spline elements. Follow-
ing the investigations in Gomez and Paris [30] periodic conditions along with a uniform
random perturbation between [−0.05, 0.05] of the homogeneous field u = 0 as initial
configuration (see Figure 16) are applied to the boundaries. Moreover, the constitu-
tive parameter setting is given by ν = 1 and α = 0.195 which corresponds to the so
called disordered state of the problem and shows a chaotic behavior of the solution, see
Paniconi and Elder [57].

The solutions obtained via the novel space-time approach and a classical midpoint time
integration scheme are compared in Figure 17. Although the system is chaotic, we expect
the same results for an identical initial random field. Obviously, this is given in Figure
17. Note that we used quadratic NURBS functions in space and time and thus, this
example demonstrates additionally the application of higher-order shape functions in
time as well.

9 Conclusions

We have introduced a new framework for the numerical analysis of general transient
continuum problems. The proposed formulation leads to a massive large-scale system
with all degrees of freedom over all time-steps to be solved simultaneously. In contrast to
classical time-stepping schemes, which decompose the temporal direction artificially in
time steps, a more efficient domain-decomposition can be applied by modern multigrid
solver, which can now deploy their full potential and capabilities.

The proposed formulation conserves the necessary constants of motion and provide a
high level of accuracy, as shown by several examples. The applicability to the presented
wide range of examples demonstrates also the generality of the proposed formulation.
Moreover, this approach allows for refinement simultaneously in space and time. This
leads to new opportunities for research, e.g. for contact problems, where we will be able
to resolve not only the contact area, we can directly refine the space-time in a contact
event. Further investigations on phase-field methods to brittle and ductile fracture can
be considered as well, where we will be able to refine the fracturing event directly.
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Figure 14: Flow field at time t = [0.25, 5, 10].
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Figure 16: Initial configuration of the Kuramoto-Sivashinsky problem.
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Figure 17: Solution of the Kuramoto-Sivashinsky problem. Left: result of the space-time approach,
right: result of a classical time stepping scheme.
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