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Abstract
In this paper we represent second-gradient internal work functionals

in Lagrangian (referential) and Eulerian (spatial) descriptions and we de-
duce the corresponding expressions for the Piola transformations of stress
and double-stress tensors and of external forces and double-forces. We
also derive, in both the Eulerian and Lagrangian description, the expres-
sion of surface and edge contact interactions (which include forces and
double-forces) for second-gradient continua in terms of the normal and
the curvature of contact boundary surfaces and edge shapes.

1 Introduction
We use the postulation scheme for continuum mechanics based on the principle
of virtual work. In it the work is the primitive concept. This was done, for
instance, already in the papers [50, 51, 52, 95, 71], which are all written in the
spirit of the works by D’Alembert, Lagrange, Piola and Hellinger [67, 16, 25,
38]. For a more detailed discussion about this postulation scheme and related
methodological topics, the reader is referred to [31]. Rephrasing D’Alembert and
Lagrange, the principle of virtual work states that the motion of a continuum
can be calculated: “By equating to zero the sum of the internal work plus
external and inertial work expended for any virtual displacement”.

In the context of a D’Alembert–Lagrange postulation scheme, which is foun-
ded on the principle of virtual work, the difference between first-gradient and
second-gradient continua can be simply specified by referring to the order of
internal work functional, when regarding it as a distribution and virtual dis-
placements as the corresponding test functions. On the other hand, in the
light of Cauchy’s postulation scheme, which is based on balance of forces and
moments of forces, to specify such a difference becomes nearly insurmountable.

The first systematic formulation of continuum mechanics based on the prin-
ciple of virtual work (or virtual velocities, as he preferred to say) is due to
Gabrio Piola [25]. In fact, the generalization of the principle of minimum po-
tential energy led him to the definition of an internal work functional, where,
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for a first-gradient theory, the stress appears as dual quantity to the first gra-
dient of the virtual displacement field. Piola started from the formulation of
this principle in the Lagrangian description, transformed the Lagrangian ex-
pression of internal and compatible external work functionals into the Eulerian
description and finally obtained the Eulerian equilibrium conditions as well as
the dependence of contact interactions on the shapes of so-called Cauchy cuts.

In contrast, Cauchy preferred to base continuum mechanics on the balances
of forces and moments of forces formulated at first in the Eulerian description.
Within Cauchy’s postulation scheme forces and moments of forces are the prim-
itives concepts of the theory. Moreover, in Cauchy’s framework, one has to
assume that subbodies interact exclusively by contact surface forces and that
these surface forces depend only on the position in the continuum and on the
normal of the Cauchy cut. The latter assumption is generally referred to as
Cauchy postulate. With his assumption, Cauchy restricted the possible con-
stitutive equations for the continua to be considered. In fact, it results that
Cauchy did limit his theory to first-gradient continua.

Instead, as already envisaged by Piola and fully proved by Mindlin and
Toupin (among many other scholars, see [22]), it is possible to formulate con-
tinuum theories in which contact interactions on Cauchy cuts depend also on
their curvature. This is, for instance, the case for the theory of second-gradient
continua, in which on Cauchy cuts not only contact surface forces but also
contact edge forces and double-forces do appear. While the generalization of
Cauchy’s theory is almost impossible, following D’Alembert–Lagrange contin-
uum mechanics, it is conceptually straightforward to generalize the first-gradient
theory [47] to the second-gradient theory [38]: albeit Piola could not complete
his scientific program, he fully understood this.

1.1 Notation
Following the postulation accepted for Galilean Mechanics, the physical space,
where the material particles of considered second-gradient continua can be
placed, is modeled as a three-dimensional Euclidean vector space E3 with the
inner product denoted by ⟨·, ·⟩. We assume the reference configuration of the
considered continuous body B to be a subset Ω ⊂ E3, which is sufficiently regu-
lar to perform all the required calculations, see Figure 1 for a particular example
of such a configuration. The topological boundary of Ω is denoted by ∂Ω. The
boundary ∂Ω is assumed to be the union of a finite number of two-dimensional
orientable surfaces with boundary, called faces of Ω. The faces are oriented in
accordance with their corresponding outward-pointing unit normal fields N and
therefore the orthogonal projections M∥ on each tangent space is well defined.
Each of the faces’ boundary curves are assumed to have a piecewise continu-
ous tangent T as well as an outward-pointing unit normal V that is tangent to
the face. The union of all boundary curves is denoted by ∂∂Ω. Remark that
each curve constituting the boundaries of the faces, which are called edges of
Ω, must be regarded as part of the boundary of both concurring faces. Edges
of Ω are assumed to concur in a finite number of wedges together with a finite
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Figure 1: Reference and current configuration of a body with a piecewise con-
tinuous boundary surfaces and piecewise continuous boundary curves.

number of other edges. See [30] for more details about the differential-geometric
assumptions and notations used here.

A placement of the body B is defined as a suitably regular map Π: Ω →
E3, X 7→ x = Π(X), which is assumed to be a one-to-one map. The image
ω = Π(Ω) ⊂ E3 is called the current configuration of the body B and represents
the spatial positions occupied by the body B in its deformed state. Due to
the regularity assumption made for the placement, for a current configuration,
we have that the faces ∂ω = Π(∂Ω) and edges ∂∂ω = Π(∂∂Ω). The faces are
oriented by the outward-pointing unit normal n inducing the orthogonal projec-
tion m∥. Clearly, the faces’ boundary curves have still a piecewise continuous
tangent t as well as an outward-pointing unit normal v that is tangent to the
face.

We use the upper-case X ∈ Ω and the lower-case x ∈ ω to denote points in
the reference and current configuration, respectively: they label material parti-
cles and positions occupied by material particles in the considered configuration.
We use an arbitrary right-handed basis (G1, G2, G3) to represent the referential
position of material particles as linear combination X = XAGA. Note that
we apply Levi-Civita–Einstein’s summation convention, which implies summa-
tion over upper contravariant and lower covariant indices that appear twice in
a term. The positions in the current configuration are similarly represented
with respect to an alternative basis (g1, g2, g3). Henceforth, we refer to these
two bases as referential and current basis and follow the convention for the La-
grangian upper-case and Eulerian lower-case letters. The referential and current
metric components are given by GAB = ⟨GA, GB⟩ and gij = ⟨gi, gj⟩. As usually
done in index notation GAB and gij denote the corresponding inverse metrics.
Let u, v ∈ E3 and A be an endomorphism on E3, the transposed AT is defined
by the relation ⟨u, A ·V ⟩ = ⟨AT ·u, V ⟩, whose components can then be expressed
as (AT )B

i = gijAj
CGCB = AB

i . The placement map Π is represented in such a
way that

x = xigi = Π(X) = Πi(X)gi .
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The components of the first gradient F = ∇Π and the second gradient F = ∇F
of the placement map are then given as

F i
A := (∇Π)i

A = ∂Πi

∂XA
, Fi

AB := (∇F )i
AB = ∂2Πi

∂XA∂XB
, (1)

both of which are functions of X.
We introduce virtual displacements δΠ as small variations of the placement

map Π. Note that we still follow our notational convention to denote Lagrangian
fields, which are defined on Ω, with upper-case letters. The first and second
gradient of the virtual displacement are given by the relations

δF i
A = ∂δΠi

∂XA
, δFi

AB = ∂2δΠi

∂XA∂XB
.

In the Lagrangian description all vector and tensor valued functions depend
on the referential points X. Since the placement Π: Ω → E3 is invertible, we
can introduce its inverse for which the position x ∈ Π(Ω) = ω is regarded to
be the independent variable. The inverse function π = Π−1 : ω → Ω is written
with lower case letters, as it will be done henceforth for every map with ω as
its domain. Therefore every Lagrangian field can be regarded to be an Eulerian
field when using the composition with π. In particular, we consider δΠ ◦ π,
called Eulerian virtual displacement, and its first and second Eulerian gradients

δdi
j(x) := ∂(δΠi ◦ π)

∂xj
(x) , δdi

jk(x) := ∂2(δΠi ◦ π)
∂xj∂xk

(x) .

As the Eulerian gradients can only be defined when δΠi is composed with π, we
abbreviate the above expression as

δdi
j = ∂δΠi

∂xj
, δdi

jk := ∂2δΠi

∂xj∂xk
.

We will make the same abuse of notation for every field we introduce, be it
Lagrangian or Eulerian: we use the same symbol independently of the pres-
ence of a composition with π or Π. The indication of the composition may be
complemented by the reader if he feels it is necessary.

1.2 Main results of the paper
D’Alembert–Lagrange continuum mechanics is based on the Lagrangian form of
the principle of virtual work which demands the equality

δW tot
Ω (δΠ) := δW int

Ω (δΠ) + δW ext
Ω (δΠ) = 0 (2)

to hold for every virtual displacement field δΠ, admissible with respect to the
assumed kinematical constraints.

For a second gradient material the internal work functional is defined as

δW int
Ω (δΠ) := −

∫
Ω

(
P A

i δF i
A + PAB

i δFi
AB

)
, (3)
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where P A
i and PAB

i , called Piola–Lagrange stress P and Piola–Lagrange double-
stress P, are work conjugate to the first and second gradient of virtual displace-
ments.

As a consequence of the principle of virtual work, the external work func-
tional compatible to the internal work functional must have the form (see
[50, 95])

δW ext
Ω (δΠ) :=

∫
Ω
FΩ

i δΠi +
∫

∂Ω
F∂Ω

i δΠi +
∫

∂Ω
D∂Ω

i

∂δΠi

∂XC
NC +

∫
∂∂Ω

F∂∂Ω
i δΠi .

In this expression, the co-vector fields FΩ, F∂Ω and F∂∂Ω are dual to virtual dis-
placements and are, due to their integration domain, forces per unit reference
volume, surface and line, respectively. Moreover, an additional surface den-
sity field D∂Ω appears, which is called surface density of double-forces: these
contributions are dual to the normal derivative of the virtual displacement.

After the Lagrangian Eulerian change of variable in the Lagrangian internal
work functional (3), it is easy to verify that the Eulerian internal work functional
is still a second order distribution of the form

δwint
ω (δΠ) = −

∫
ω

(
cj

i δdi
j + c

jk
i δdi

jk

)
,

where cj
i and c

jk
i are the components of the work conjugates to the first and

second gradient of the spatial virtual displacement. We call them the Cauchy–
Euler stress c and the Cauchy–Euler double-stress c.

One of the main results of this paper consists in showing the Piola transfor-
mation of Lagrangian stresses into Eulerian stresses

cj
i = J−1(

P A
i F j

A + PAB
i Fj

AB

)
, c

jk
i = J−1PAB

i F j
AF k

B , (4)

which can be written, with an obvious meaning of the symbols, in a more
synthetic way as

c = J−1(
P · F t+ P : Ft

)
, c = J−1P : (F t ⊗ F t) .

Note that with our notation, either the left hand sides have to be composed
with Π or the right hand sides with π.

The reader will remark that, by simply assuming P = 0, we get the Piola
transformation formula c = J−1P · F t for first-gradient continua. Moreover, in
this case, the Piola transformation is usually obtained by exploiting the rela-
tion between nominal and current surface forces and using so-called Nanson’s
formula. In contrast, already Piola proved that the easiest way to get the trans-
formation of stress consists in the change variables in the volume expression of
the internal work functional. While this procedure naturally generalizes in the
case of second-gradient continua, in Section 5, it is shown that the generalization
of the other one is nearly impossible.

Similarly to what happens for its Lagrangian counterpart, the Eulerian ex-
ternal work functional compatible with a second-gradient Eulerian internal work
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functional is given by

δwext
ω (δΠ) =

∫
ω

fωi δΠi +
∫

∂ω

f∂ω
i δΠi +

∫
∂ω

d∂ω
i

∂δΠi

∂xc
nc +

∫
∂∂ω

f∂∂ω
i δΠi .

The co-vector fields fω, f∂ω and f∂∂ω are forces per unit current volume, surface
and line, respectively. Also in the Eulerian description, a surface density of
double-forces d∂ω appears, which is a density per unit current surface and which
is dual to the normal derivative with respect to the current normal vector.

To formulate the Piola transformation of external interactions, we introduce
the inverse of the right Cauchy-Green strain C−1 having as components

(C−1)AB = (F −1)A
i gij(F −1)B

j , (5)

as well as the Lagrangian vector field K defined as

KA := M∥
A
C

(C−1)CBNB =
(
(F −1)A

i gij(F −1)B
j − ∥F −T · N∥2GAB

)
NB .

Introducing the Jacobians for volume, area and length J = det(F ), JΣ =
∥JF −T · N∥ and JΛ = ∥F · T∥, respectively, the Piola transformation formulas
in second-gradient continua for the external forces are found to be

FΩ
i = Jfωi , F∂Ω

i = JΣf
∂ω
i − M∥

B
A

∂

∂XB
(Jd∂ω

i KA) ,

F∂∂Ω
i = JΛf

∂∂ω
i +

(
J(C−1)ABVANBd∂ω

i

)+ +
(
J(C−1)ABVANBd∂ω

i

)−
,

(6)

which translated to a direct notation reads as

FΩ = Jfω , F∂Ω = JΣf
∂ω − DIV∂Ω

∥
(
Jd∂ω ⊗ K

)
,

F∂∂Ω = JΛf
∂∂ω +

(
J(V · C−1 · N)d∂ω

)+ +
(
J(V · C−1 · N)d∂ω

)−
.

The Piola transformation of the surface double-force, once in index and once in
direct notation, are given by

D∂Ω
i = J∥F −T · N∥2d∂ω

i , D∂Ω = J∥F −T · N∥2d∂ω . (7)

Finally, we remark that only via a change of variable within the internal
work functional we obtained the Piola transformation of the stresses (4). Since
Eulerian normal derivatives to ∂ω do not transform into Lagrangian normal
derivatives, via the placement Π, extra tangent terms to ∂Ω arise when changing
the variable in the Eulerian double-force functional. This is the reason for which
Eulerian external double-forces give rise to not only Lagrangian external double-
forces (7) but also to extra surface and edge forces (6). In conclusion, we cannot
follow the procedure used for instance in [60, p. 178], where starting from the
transformation of external surface forces the Piola transformation of stress is
deduced: instead the only possibility we have is to resort to the transformation
of the internal and external work functionals via the change of variable given
by the placement Π.
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1.3 Outline of the paper
In the introduction at hand we present the used notation and summarize the
main results of this paper. In Section 2, we postulate the virtual work prin-
ciple for second-gradient continua in Lagrangian description. In fact, it is the
generalization of the principle of minimum of total energy envisaged by Piola
[25] and formalized by Paul Germain [52] in Eulerian description. By using
an integration by parts procedure, we formulate the strong form of the equi-
librium conditions, including the local equilibrium partial differential equations
and corresponding natural boundary conditions. In Section 3, the Eulerian vir-
tual work principle is deduced from the Lagrangian virtual work principle. An
integration by parts procedure similar to the one used in Section 2 allows for
the deduction of the structure of contact interactions in Eulerian description.
The dependence of contact interactions on the shape of Cauchy cuts is explic-
itly shown so that it becomes clear that Cauchy postulate is not applicable to
second-gradient continua. In both Section 2 and 3, we deduce the compatible
form of external interactions between second-gradient continua and the external
world. In Section 4, the transformation formulas between the Lagrangian and
Eulerian fields are presented, generalizing the Piola transformations valid for
first-gradient continua. In the last Section 5, we check the consistency among:
i) Piola transformations of stress and double-stress, ii) Piola transformations of
external forces and double-forces and iii) the obtained expressions of Lagrangian
and Eulerian contact interactions.

2 The Lagrangian virtual work principle for
second-gradient continua: equilibrium condi-
tions

If one insists to use the postulation scheme put forward by Cauchy for con-
tinuum mechanics, in generalizing the theory to the case of second-gradient
continua he finds some intrinsic, and nearly insurmountable, difficulties, see for
instance [29, 21] and [24]. In fact, Cauchy’s approach1 is based on the primitive
concepts of force and moment of forces together with the formulation of cor-
responding balance laws, and, by means of the tetrahedron argument, on the
introduction of the concept of stress. Cauchy’s approach requires some major
and ad hoc modifications to include the case of second-gradient continua, see
[27, 22]. Instead, in D’Alembert–Lagrange continuum mechanics, [16, 67], it is
very easy to define higher gradient continua simply modifying the internal work
functional (see e.g. [50, 52, 34]).

In Cauchy’s approach stress is a derived concept, and its existence must
be proven, while in the D’Alembert–Lagrange approach it is a primitive con-
cept. Vice versa in Cauchy’s approach the concept of force and the balance
law of force are primitive while in D’Alembert–Lagrange’s approach they are

1Whose inspiring ideas are described in [96].

7



derived concepts. As discussed in detail in [38, 39, 40, 41], Truesdell (see [99,
p. 595]) interpreted the D’Alembert–Lagrange postulation scheme from his
point of view and therefore claims “The derivation given by HELLINGER [...]
fails through petitio principi[sic!], since the stress components appear in the
original variational principle. We do not understand the remark attributed to
CARATHÉODORY by MÜLLER and TIMPE [...]. Existence of the stress ten-
sor can be proved from variational principles which assume the existence of an
internal energy having a special functional form.”

In this section, we show how the principle of virtual work can be postulated
to generalize the principle of minimum of total energy, as already discussed by
D’Alembert [16] and in particular for continuum mechanics by Piola [25].

2.1 The principle of minimum of total energy generalized
into the principle of virtual work

Once the kinematics of a mathematical model is established, it is necessary
to find the time sequence of configurations, i.e., the motion, that predicts the
behavior of the modeled system. One can start by looking for the predictions
concerning equilibrium configurations. The principle of minimum of total energy
characterizes the stable equilibrium configurations and states that:

i) in every model for physical phenomena the specification of kinematics
has to be completed by the choice of a functional defined on the set of
admissible configurations, called functional of total (potential) energy and

ii) stable equilibrium configurations are the minima of the total potential
energy functional.

The total potential energy functional, for deformable bodies, includes the de-
formation energy and the potential energy describing the interactions between
the considered body with the external world.

D’Alembert, Lagrange, Piola, Hamilton and Rayleigh (see [16, 67, 25, 20] and
[31, 21, 22, 26] for a historical overview) proposed to generalize the principle of
minimum of total potential energy to enlarge the predictive scope of formulated
models to include the possibility to describe non-conservative interactions and
dissipation phenomena. Their line of thoughts can be reformulated with the
following thread of reasoning.

Let us assume that the total potential energy functional Etot be differen-
tiable. D’Alembert and Lagrange formulated this assumption assuming that
one can calculate its first variation, i.e., the linear term, in its Taylor expansion,
corresponding to an admissible2 infinitesimal variation δΠ of the configuration
and that this first variation is continuous. Using the modern conceptual frame
given by functional analysis, we may state that the total potential energy is
continuously differentiable in the sense of Fréchet (see [83]). Then, in stable
equilibrium configurations Πequi, this first variation must vanish, because these

2An admissible δΠ is such that the placement Π + δΠ is admissible when such is Π.
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configurations are minima for the total energy functional. In formulas: every
equilibrium configuration Πequi verifies the condition

(∀δΠ)
(
δEtot (

Πequi; δΠ
)

= 0
)

(8)

Remark that in the previous condition the dependence on the variable δΠ is
linear, while the dependence on Πequi may be nonlinear, if the functional Etot

is not quadratic. In other words, for every admissible configuration Π, the
linear continuous first-variation functional δEtot, depending on the infinitesimal
variation δΠ, is well-defined and when Π = Πequi such a functional vanishes for
every δΠ.

One may decompose Etot, and consequently δEtot, into the sum of an internal
part E int, relative to the body’s internal interactions, and an external interac-
tions part Eext and assume that both these functionals can be differentiated.
The condition (8) thus becomes3:

(∀δΠ)
(
δE int(Πequi; δΠ

)
+ δEext(Πequi; δΠ

)
= 0

)
D’Alembert generalized the previous condition in the more general case of non-
conservative and dissipative models. He postulates the existence, for every
admissible configuration Π, of linear and continuous functionals depending on
the admissible infinitesimal variations δΠ. These functionals are called by Piola
internal (virtual) work functionals and external (virtual) work functionals. In
the framework of D’Alembert–Lagrange continuum mechanics, then, the mate-
rial properties of a specific continuum are fully mathematically described when
assigning the internal and external work functional. When the system is conser-
vative, these functionals can be calculated as Fréchet derivative of the deforma-
tion energy and potential energy functionals. In fact, in general, internal and
external work functionals are not first variations of some energy functionals: in
this sense the subsequent D’Alembert virtual work identity generalizes the total
energy stationarity condition. Finally, to include inertial effects, and therefore
to find the prediction of the time evolution of considered systems, D’Alembert
postulates the existence of an inertial (virtual) work functional, also specified
by a constitutive equation.

In conclusion, the basic assumption in D’Alembert–Lagrange continuum me-
chanics consists in postulating that the motion of every continuum can be char-
acterized by suitably choosing the constitutive equations for the three work
functionals δW int

Ω , δW ext
Ω , δW dyn

Ω and by assuming that the D’Alembert virtual
work identity

δW tot
Ω (δΠ) := δW int

Ω (δΠ) + δW ext
Ω (δΠ) + δW dyn

Ω (δΠ) = 0

holds, at every time instant, for every small admissible displacement δΠ.
The functional δW int

Ω allows for the calculation of the work expended in the
internal interactions among parts of the considered body on every deformation

3Henceforth the dependence on Π will be omitted, if it does not cause any misunderstand-
ings.
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process involving it. The functional δW ext
Ω allows for the calculation of the work

expended in the interactions of the body with its external world. Finally, δW dyn
Ω

gives the inertial work expended on virtual displacements and deformations. In
the following, we will focus on the static case and apply the principle of virtual
work without the inertial part.

Albeit, in such a generalization, the original meaning of such small variation
of placement (i.e. test displacement used to check minimality of total (poten-
tial) energy) is lost, D’Alembert kept calling “virtual displacement” the generic
displacement that may be added, at any instant, to the configuration attained
by the motion to get another admissible placement.

D’Alembert virtual work identity is intended to hold, at every time instant,
for every admissible virtual displacement δΠ. Commonly, we will face two kinds
of kinematical constraints. Constraints on positions g = g(Π) = 0 as well as
on deformations h = h(F ) = 0. For these types of kinematical restrictions, a
variation of a placement Π̂ = Π + δΠ is admissible if g(Π̂) = 0 and h(∇Π̂) = 0.
Taking the first variation of these expressions leads to the conditions which
must be satisfied by admissible virtual displacements and admissible gradients
of virtual displacements. These are

(∀δΠ = δΠadm) ∂g

∂Πi
δΠi = 0 ,

∂h

∂F i
A

∂δΠi

∂XA
= ∂h

∂F i
A

δF i
A = 0 .

2.2 Work functionals as distributions
A fundamental part of the principle of virtual work as formulated in a modern
language consists in postulating that the functional which associates to every
virtual infinitesimal displacement the work expended in any specific interactions
among and inside bodies is: i) linear and ii) continuous.

Of course one needs to introduce a topology in the set of admissible virtual
displacements, if one wants to be able to talk about continuity of work func-
tionals. Therefore, the distribution theory of L. Schwartz [85] seems suitable to
give the conceptual frame needed to formulate continuum mechanics (see [52]).
The linear continuous functional that associates the virtual work corresponding
to every virtual displacement is a distribution. We assume to have bounded
reference configurations so that Ω is compact. The set of distributions that we
consider here is, in fact, the dual space of the set of C∞(Ω) functions having
compact support and endowed with the topology induced by the derivatives
semi-norms (see [85] and [80, pp. 145ff]).

A very general kinematical assumption that we accept is that the set of
admissible virtual displacements include (let us underline: we are not stating
that it coincides with) the set C∞(Ω) constituted by the infinitely differentiable
functions having compact support in Ω.

Note that, the smaller is the space of test functions the larger is its dual
space4. Therefore, considering the dual of C∞(Ω) supplies us, under the stated

4The dual spaces are decreasing, in the partial order relation given by the inclusion, when
the sets of test functions are increasing.

10



assumption, with the widest possible set of linear and continuous functionals.
This set seems suitable for giving a firm mathematical basis for D’Alembert–
Lagrange continuum mechanics.

2.3 Second-gradient deformation energy functional
An internal work functional is said to be conservative if it is the derivative of
an energy functional, which we call deformation energy functional. We assume
that, in general, internal work functionals are the sum of a conservative plus a
non-conservative part. For instance, following Hamilton–Rayleigh’s postulation
scheme (see e.g. [31, 14]) the non-conservative part of the internal work func-
tional can be calculated from a so-called Rayleigh dissipation functional. An
interesting physical system in which a phase transition occurs (similar to what
has been described in [65]) in large deformations is given in [90]: Pantographic
metamaterials may behave as second-gradient continua until a certain thresh-
old is reached, beyond which, because of friction phenomena, they behave as
standard first-gradient continuum.

Elastic second-gradient continua are continua whose deformation energies
depend on F and ∇F. In Lagrangian description this means that there exists a
constitutive function for volume density of deformation energy

W def = W def(X, F, ∇F ) ,

such that the total deformation energy Edef corresponding to a placement Π is
given by the functional

Edef (Π) =
∫

Ω
W def(X, F (X), ∇F (X)) .

When calculating the first variation of the deformation energy a special role
is played by the elastic Piola–Lagrange stress and double-stress tensors defined
as:

(P e)A
i := ∂W def

∂F i
A

, (Pe)AB
i := ∂W def

∂Fi
AB

.

The first variation of the second-gradient deformation energy functional has
the following form

δEdef =
∫

Ω
(P e)A

i δF i
A +

∫
Ω

(Pe)AB
i δFi

AB . (9)

D’Alembert and, then, Lagrange and Piola, generalized this approach to
non-conservative internal interactions. Albeit, in this last case, the internal
interactions are not fully determined by a volume density of deformation en-
ergy, they assume that it is still possible to introduce a linear (and continuous)
functional δW int

Ω depending on the variation δΠ, which has the same structure
as (9). The functional δW int

Ω allows for the calculation of the work expended
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on the virtual displacements by the continuum’s internal interactions. In gen-
eral, it is not the first variation of a deformation energy functional but can, for
second-gradient continua, always be represented as follows:

δW int
Ω (Π; δΠ) := −

∫
Ω

(
P A

i (X)δF i
A(X) + PAB

i (X)δFi
AB(X)

)
, (10)

where we have introduced the Piola–Lagrange stress and double-stress tensors
P A

i and PAB
i , which are to be assigned by means of suitable constitutive as-

sumptions depending on (Π, F, ∇F ).5 In case of elastic continua, we have

δW int
Ω (δΠ) = −δE def(δΠ) .

2.4 External work functionals in second-gradient continua
The external work functional specifies the interactions between the considered
continuum and its external world. Once we have defined the internal, inertial
and external work functionals, postulating the D’Alembert identity for every
virtual displacement δΠ allows for the determination of the motion. However,
this determination is possible only if the external work functional belongs to
a specific class, which is compatible with δW int

Ω and δW dyn
Ω . In other words:

when an internal and inertial work functional are postulated, then, in the cor-
responding D’Alembert identity, only external work functional of a particular
class can be used.

A classical illustration of this fact, already presented by Piola [25, 20], is
given by perfect fluids. One assumes that perfect fluid’s internal energy de-
pends only on their current mass density ρ = (det F )−1ρ0. As a consequence of
the D’Alembert identity, it is easy to prove that perfect fluids cannot interact
with the external world by shear contact forces on the boundary of the region
that they currently occupy (see for instance [2]). Therefore, one should not
be surprised when observing that the inclusion of second gradient of placement
in the volume density of the deformation energy enlarges the “possibilities” of
interactions that are allowed to second-gradient materials in comparison to first-
gradient materials6. This section is dedicated to the description of the class of
those “compatible” external interactions which are allowed in the case of first-
and second-gradient continua.

The internal virtual work (10) is, in fact, a representation of a second order
distribution. Using the generalized Schwartz representation theorem for second
order distributions (see [85, p. 102]) as proven in Appendix A by successive
application of the divergence theorem, the internal work functional can also be

5Note that as the tensor PAB
i represents a linear form over the variations δFi

AB , which
satisfy the symmetry δFi

AB = δFi
BA, then the symmetry PAB

i = PBA
i is satisfied.

6This is another consequence of the fact that the dual space is decreasing with increasing
set of test functions: considering test functions in H2 instead of test functions in H1 enlarges
the set of work functionals.
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represented7 as

δW int
Ω (δΠ) =

∫
Ω

∂P̄ A
i

∂XA
δΠi −

∫
∂Ω

P̄ A
i NA δΠi +

∫
∂Ω

M∥
C
L

∂

∂XC

(
PAB

i NBM∥
L
A

)
δΠi

−
∫

∂Ω

(
PAB

i NANB

)∂δΠi

∂XC
NC −

∫
∂∂Ω

(
PAB

i VANB

)
δΠi ,

(11)
where

P̄ A
i = P A

i − ∂PAB
i

∂XB
.

Therefore, the representation (11) together with the virtual work principle
(2), implies that the external work functionals must have the form

δW ext
Ω (δΠ) =

∫
Ω
FΩ

i δΠi +
∫

∂Ω
F∂Ω

i δΠi +
∫

∂Ω
D∂Ω

i

∂δΠi

∂XC
NC +

∫
∂∂Ω

F∂∂Ω
i δΠi .

(12)
As already discussed in the introduction, in this expression, the co-vector fields
FΩ, F∂Ω and F∂∂Ω are dual to virtual displacements and are, due to their inte-
gration domain, forces per unit reference volume, surface and line, respectively.
Moreover, an additional surface density field D∂Ω appears, which is called sur-
face density of double-forces. This last field is dual to the normal derivatives of
the virtual displacement.

2.5 Boundary value problem in second-gradient continua
When the class of external work functionals compatible with the internal work
functionals is specified, the essential and natural boundary conditions, supplying
well-posed boundary value problems, can be easily determined. We underline
that the variational methods introduced in modern mechanics by D’Alembert
allow for the simultaneous and logically coherent determination of the strong
form of the PDEs that govern the evolution of the considered systems together
with the corresponding boundary conditions. Other postulation schemes must,
instead, face a difficult problem related to the independent postulations of bulk
PDEs and boundary conditions: one has to verify then that the chosen postu-
lates lead to well-posed problems.

The PDEs implied by the D’Alembert identity (2), when using δF = ∇(δΠ)
and δF = ∇(δF ), in view of (11) and (12) are given by

∂

∂XA

(
P A

i − ∂PAB
i

∂XB

)
+ FΩ

i = 0 in Ω . (13)

In order to get well-posed problems, to these PDEs suitable boundary condi-
tions must be added. The structure of both (11) and (12) obviously indicate that
in second-gradient continua one can assign as essential (kinematical) boundary
conditions not only the placements on a subset ΣΠ of the boundary ∂Ω but

7This representation in terms of transverse to ∂Ω derivatives is unique.
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also the placements’ normal derivatives on another subset Σ⊥ of ∂Ω.8 The
natural boundary conditions associated to (13) can be found by considering, in
the D’Alembert identity, all the non-vanishing admissible virtual displacements
(outside of ΣΠ) and normal derivatives of virtual displacements (outside of Σ⊥)
on the boundary of Ω, allowed by essential boundary conditions, to get

F∂Ω
i = P̄ A

i NA − M∥
C
L

∂

∂XC

(
PAB

i NBM∥
L
A

)
on ∂Ω \ ΣΠ (14)

F∂∂Ω
i =

(
PAB

i VANB

)++
(
PAB

i VANB

)− on ∂∂Ω \ ΣΠ (15)
D∂Ω

i = PAB
i NANB on ∂Ω \ Σ⊥ . (16)

We recall that (see (56) in Appendix A) the symbols ()± denote the limits on
the curves constituting ∂∂Ω from the faces ± of the quantities in the brackets.

2.6 Contact interactions in second-gradient continua: de-
pendence on the shape of Cauchy cuts

The concept of contact interactions inside deformable bodies was developed in
the third decade of the XIX century by Piola and Cauchy (a detailed discussion
about the priority between them deserves further investigations: see e.g. [20,
70]). While Piola, following Lagrange, considered contact interactions as derived
concepts, Cauchy based his analysis on the laws of balance of forces and moments
of forces and therefore treated contact forces as primitive concepts.

Cauchy cuts inside deformable bodies

Cauchy cuts are (suitably regular) surfaces in the Lagrangian or Eulerian con-
figurations that are introduced to divide a continuum into disjoint subbodies.
Cauchy, in his foundation of continuum mechanics, assumed that the interac-
tion between two subbodies of a given deformable body, having in common a
surface, is localized on such cuts. As shown in [98] using a modern formalism,
the contact interactions concentrated on Cauchy cuts represent the primitive
concept by means of which, assuming as fundamental hypotheses the balance of
force and balance of momentum of forces, the existence of the stress tensor can
be proven. The key point of this proof is given by the celebrated Cauchy tetra-
hedron argument. However, Cauchy’s argument is based on some assumptions
which complicate the generalization to the case of second-gradient continua: for
instance the absence of edge contact forces (for a more detailed discussion of
this point see [27, 29]).

Following an analysis that can already be found in the works by Piola and
choosing the principle of virtual work as the most fundamental postulate of
continuum mechanics, we show, in this section, that the concept of contact
interaction can be formulated also for second gradient continua, but as a derived

8Note that ΣΠ and Σ⊥ must be nonvanishing subsets of ∂Ω, where the trace of H2 functions
can be defined.
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concept. The question is rather delicate: in fact, it is true that even for Nth
gradient continua9 the interaction between subbodies is concentrated on Cauchy
cuts, see [30] and [21] where a discussion of the original results by Piola and
Lagrange can be found.

In this aspect D’Alembert–Lagrange’s approach to continuum mechanics
does not differ from Cauchy’s. However, as we will show in the following of
this subsection, one of the most important among the assumptions accepted by
Cauchy, the so-called Cauchy postulate10, has not a general validity.

The so-called Cauchy postulate has to be regarded as a property spe-
cific to first-gradient continua being valid for a particular class of de-
formation energy constitutive equations. As a consequence the choice
of the word “postulate” seems rather inappropriate.

Indeed, within the variational postulation scheme, where the stresses are
defined as duals in work to the gradients of the virtual displacement, the contact
interactions between a subbody and its complement, divided by the Cauchy cut,
are a derived concept.

Validity of the principle of virtual work for subbodies and contact
interactions in second-gradient continua: reasoning à la Piola

In the following, we define contact interactions also in second-gradient continua
and we show how they do depend on the shape of the Cauchy cut. We will see
that the contact interactions for second-gradient continua can be expressed in
terms of:

i) the value of the Piola–Lagrange stress and double-stress tensors in the
considered point of a Cauchy cut,

ii) the local shape of a Cauchy cut.

Let us consider an inner subbody Ω̂ of Ω: that is a connected subset of Ω as
regular as Ω and which has no common boundary points neither with the faces
nor with the edges of Ω, i.e., ∂Ω̂ ∩ ∂Ω = ∅ and ∂∂Ω̂ ∩ ∂∂Ω = ∅. Following
our notation, we denote by N̂ and V̂ the outward-pointing unit normals to the
boundary surface ∂Ω̂ and to the boundary curves ∂∂Ω̂. For what concerns the
complement Ω̂c = Ω \ Ω̂, clearly the normals N̂ c and V̂ c are given by N̂ c = N
on ∂Ω and V̂ c = V on ∂∂Ω as well as N̂ c = −N̂ on the part of ∂Ω̂c which is
included in ∂Ω̂ and V̂ c = −V̂ on the part of ∂∂Ω̂c which is included in ∂∂Ω̂.

9An elastic Nth gradient continuum is a continuum whose deformation energy is given by
W def = W def(X, F, ∇F, ..., ∇N F ).

10It has many equivalent versions including those which are formulated as hypotheses in
the Hamel–Noll theorem (see e.g. [97, p. 172]). A careful reading of the hypotheses presented
there shows that, in Noll’s analysis, it is systematically assumed that contact forces cannot
be concentrated on curves. This seems to be, ultimately, one of the most important parts of
the basic assumptions in Cauchy’s approach.
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The virtual work identiy (2), valid for every admissible δΠ, can be written as

−
∫

Ω̂
(P A

i δF i
A + PAB

i δFi
AB) +

∫
Ω̂
FΩ

i δΠi + δW tot
Ω |Ω̂c(δΠ) = 0 , (17)

where:

δW tot
Ω |Ω̂c(δΠ) = −

∫
Ω̂c

(P A
i δF i

A + PAB
i δFi

AB) +
∫

Ω̂c

FΩ
i δΠi +

∫
∂Ω

F∂Ω
i δΠi

+
∫

∂Ω
D∂Ω

i

∂δΠi

∂XC
NC +

∫
∂∂Ω

F∂∂Ω
i δΠi

Inserting the representation of internal work given by generalized Schwartz theo-
rem (11) in its unique form involving transverse derivatives to the boundary ∂Ω̂c,
we obtain

δW tot
Ω |Ω̂c(δΠ) =

∫
Ω̂c

∂P̄ A
i

∂XA
δΠi −

∫
∂Ω̂c

P̄ A
i (N̂ c)A δΠi +

∫
∂Ω̂c

M̂ c
∥

C
L

∂

∂XC

(
PAB

i (N̂ c)BM̂ c
∥

L
A

)
δΠi

−
∫

∂Ω̂c

(
PAB

i (N̂ c)A(N̂ c)B

)∂δΠi

∂XC
(N̂ c)C −

∫
∂∂Ω̂c

(
PAB

i (V̂ c)A(N̂ c)B

)
δΠi ,

+
∫

Ω̂c

FΩ
i δΠi +

∫
∂Ω

F∂Ω
i δΠi +

∫
∂Ω

D∂Ω
i

∂δΠi

∂XC
NC +

∫
∂∂Ω

F∂∂Ω
i δΠi

Using ∂Ω̂c = ∂Ω̂ ∪ ∂Ω and ∂∂Ω̂c = ∂∂Ω̂ ∪ ∂∂Ω together with the boundary
conditions (14), (15) and (16) as well as the equilibrium equations (13), the
expression can be simplified to

δW tot
Ω |Ω̂c(δΠ) =

∫
∂Ω̂

P̄ A
i N̂A δΠi −

∫
∂Ω̂

M̂∥
C
L

∂

∂XC

(
PAB

i N̂BM̂∥
L
A

)
δΠi

+
∫

∂Ω̂

(
PAB

i N̂AN̂B

)∂δΠi

∂XC
N̂C +

∫
∂∂Ω̂

(
PAB

i V̂AN̂B

)
δΠi .

By defining the work functional of contact interaction for Ω̂ as follows

δW ext,con
Ω̂ (δΠ) :=

∫
∂Ω̂
F∂Ω̂

i δΠi +
∫

∂Ω̂
D∂Ω̂

i

∂δΠi

∂XC
N̂C +

∫
∂∂Ω̂

F∂∂Ω̂
i δΠi

with
F∂Ω̂

i = P̄ A
i N̂A − M̂∥

C
L

∂

∂XC

(
PAB

i N̂BM̂∥
L
A

)
on ∂Ω̂

D∂Ω̂
i = PAB

i N̂AN̂B on ∂Ω̂

F∂∂Ω̂
i =

(
PAB

i V̂AN̂B

)++
(
PAB

i V̂AN̂B

)− on ∂∂Ω̂

(18)

we are let to define the external work functional for Ω̂ as

δW ext
Ω̂ (δΠ) :=

∫
Ω̂
FΩ

i δΠi + δW ext,con
Ω̂ (δΠ) . (19)

16



By defining
δW int

Ω̂ (δΠ) := −
∫

Ω̂
(P A

i δF i
A + PAB

i δFi
AB) ,

we get that the D’Alembert identity (17) for Ω implies the D’Alembert identity
for Ω̂:

δW int
Ω̂ + δW ext

Ω̂ = 0 .

The presented derivation proves that we can obtain the formulation of the prin-
ciple of virtual work for any inner subbody Ω̂ from its formulation for the body
Ω. The definition (19) can be interpreted saying that the complement Ω̂c acts
on the subbody Ω̂ via contact interactions which are seen from the subbody as
external virtual work functionals.

We recall here that the presented definitions and reasonings parallel closely
those used by Piola (see [20]) for introducing contact interactions in the context
of first-gradient theory.

Unfortunately, this circumstance was not remarked somewhere in the lit-
erature: In [49] the principle of virtual work is postulated for every subbody
introducing a so-called non-standard form of the principle of virtual power.
However, this non-standard form was already presented by Germain [50, 52].

How contact interactions in second-gradient continua depend on the
shape of the Cauchy cut

Considering (18), evidently one sees that

• Contact double-forces D∂Ω̂ at X depend: i) on the shape of the Cauchy
cuts only via its unit normal at X, and this dependence is quadratic, ii) on
the values at X of the Piola–Lagrange double-stress tensor.

• Edge contact forces F∂∂Ω̂ at X depend: i) on the shape of the edge of the
Cauchy cuts only via the normals N̂± and V̂ ± at X and this dependence is
bilinear, ii) on the values at X of the Piola–Lagrange double-stress tensor.

Very important, for understanding the true nature of the so-called Cauchy
postulate, is the dependence of the surface contact forces F∂Ω̂ with respect to
the shape of the Cauchy cut ∂Ω̂ at the point X ∈ ∂Ω̂. To make more explicit
this dependence we use (57) of Appendix A together with PAB

i = PBA
i , which

leads to

F∂Ω̂
i =

(
P A

i −2∂PAB
i

∂XB

)
N̂A−PAB

i

∂N̂A

∂XB
+ ∂PAB

i

∂XC
N̂BN̂CN̂A+PAB

i

∂N̂C

∂XC
N̂BN̂A .

Hence, for second-gradient continua, the Lagrangian expression for surface con-
tact forces depends polynomially on the normal and on the curvature of Cauchy
cuts.11 This polynomial includes a linear and a cubic term in the components
of the normal vector, a linear term in the curvature and a mixed third order

11This property holds more generally also for Nth gradient continua, see [30].
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polynomial quadratic in the normals and linear on the surface mean curvature.
Only, when P vanishes, we recover that contact interactions depend only linearly
on the normal of Cauchy cuts.

3 The Eulerian virtual work principle for second-
gradient continua: equilibrium conditions

Whether the problem is formulated in Lagrangian or Eulerian description, we
still model the same physical phenomena. For this reason, the value of the
virtual work for corresponding virtual displacements must be the same in La-
grangian and Eulerian descriptions:

δwint
ω (δΠ) := δW int

Ω (δΠ) , δwext
ω (δΠ) := δW ext

Ω (δΠ) . (20)

Consequently, the virtual work equality holds also in the Eulerian description
for every admissible Eulerian virtual displacement:

δwtot
ω (δΠ) := δwint

ω (δΠ) + δwext
ω (δΠ) = 0 . (21)

Since, after the simple change of variables given by Π, the Eulerian internal
virtual work is still a second order distribution (see [85] and the subsequent
Section 4) and can be represented as

δwint
ω (δΠ) = −

∫
ω

(
cj

i δdi
j + c

jk
i δdi

jk

)
, (22)

where cj
i and c

jk
i are the components of the work conjugates to the first and

second gradient of the spatial virtual displacement. We call them the Cauchy–
Euler stress c and the Cauchy–Euler double-stress c.

The “Axiom of Power of Internal Forces”12 in Eulerian form (as postulated
in [52]), which must hold for any suitably regular subbody ω̂ ⊆ ω, requires the
following identity

δwint
ω |ω̂(δΠrig) = 0 ∀δΠrig ,

whereas the rigid virtual displacements in Eulerian form are parameterized by

δΠi
rig = ai + W i

j xj , where W = −W T .

Since the second gradient of the rigid virtual displacement vanishes, we get the
symmetry of the Cauchy–Euler stress c, that is

c = cT .

To characterize the compatible external work functional, the same integra-
tion by parts procedure as in the Lagrangian formulation can be applied. Defin-
ing

c̄j
i = cj

i − ∂cjk
i

∂xk
,

12Certainly, in our context it is a condition on the internal work functional.
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and using the results presented in Appendix A, it is proven that the Eulerian
internal work functional has the following representation:

δwint
ω (δΠ) =

∫
ω

∂c̄j
i

∂xj
δΠi −

∫
∂ω

c̄j
i nj δΠi +

∫
∂ω

m∥
c
l

∂

∂xc

(
c

jk
i nkm∥

l
j

)
δΠi

−
∫

∂ω

(
c

jk
i njnk

)∂δΠi

∂xc
nc −

∫
∂∂ω

(
c

jk
i vjnk

)
δΠi .

(23)

Consequently, the compatible external work functionals must be of the form

δwext
ω (δΠ) =

∫
ω

fωi δΠi +
∫

∂ω

f∂ω
i δΠi +

∫
∂ω

d∂ω
i

∂δΠi

∂xc
nc +

∫
∂∂ω

f∂∂ω
i δΠi , (24)

where the co-vector fields fω, f∂ω and f∂∂ω are forces per unit current volume,
surface and line, respectively. Also in the Eulerian framework, there appears a
surface density of double-forces d∂ω, which is a density per unit current surface
and which is dual to the derivative of the Eulerian virtual displacement with
respect to the current normal vector.

Inserting (23) and (24) in (21), we obtain the equilibrium equations

∂

∂xj

(
cj

i − ∂cjk
i

∂xk

)
+ fωi = 0 in ω , (25)

and by considering the dual in work of virtual displacement left free by imposed
essential boundary conditions, we get

f∂ω
i = c̄j

i nj − m∥
c
l

∂

∂xc

(
c

jk
i nkm∥

l
j

)
on ∂ω \ Π(ΣΠ) , (26)

f∂∂ω
i =

(
c

jk
i vjnk

)++
(
c

jk
i vjnk

)− on ∂∂ω \ Π(ΣΠ) . (27)

We recall that (see (56) in Appendix A) the symbols ()± denote the limits on
the curves constituting ∂∂ω from the faces ± of the quantities in the brackets.

By considering the dual in work of the normal derivative of virtual displace-
ment left free by imposed essential boundary conditions, we get

d∂ω
i = c

jk
i njnk on ∂ω \ Π(Σ⊥). (28)

Using the same procedure as in the Lagrangian framework, the virtual work
of the contact interaction between a subbody ω̂ ⊂ ω and its complement ω̂c can
be recognized as

δwext,con
ω̂ (δΠ) =

∫
∂ω̂

f∂ω̂
i δΠi +

∫
∂ω̂

d∂ω̂
i

∂δΠi

∂xc
n̂c +

∫
∂∂ω̂

f∂∂ω̂
i δΠi ,

where the contact surface forces f∂ω̂, contact surface double-forces d∂ω̂ and con-
tact line forces f∂∂ω̂ are given as

f∂ω̂
i = c̄j

i n̂j − m̂∥
c
l

∂

∂xc

(
c

jk
i n̂km̂∥

l
j

)
on ∂ω̂

d∂ω̂
i = c

jk
i n̂j n̂k on ∂ω̂

f∂∂ω̂
i =

(
c

jk
i v̂j n̂k

)+−
(
c

jk
i v̂j n̂k

)− on ∂∂ω̂ .

(29)
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Here, n̂ denotes the outward-pointing unit normal to ∂ω̂ and v̂ the outward-
pointing unit normal to the boundary curves ∂∂ω̂. Using (57) of Appendix A
together with c

jk
i = c

kj
i , the contact surface force can be expressed as

f∂ω̂
i =

(
cj

i − 2∂cjk
i

∂xk

)
n̂j − c

jk
i

∂n̂j

∂xk
+ ∂cjk

i

∂xl
n̂kn̂ln̂j + c

jk
i

∂n̂l

∂xl
n̂j n̂k . (30)

The expression for contact forces, which we just obtained, must be compared
with the expression obtained following the Cauchy tetrahedron procedure. First
of all, we note that when c vanishes, we recover Cauchy’s representation formula.
However, in the case of non-vanishing c, we can immediately see in (30) that f∂ω̂

depends also on the curvature of the Cauchy cut. Clearly the so-called Cauchy
postulate is not verified for second-gradient continua. As the dependence of
the deformation energy on the second gradient of placement produces a non-
vanishing tensor c, we must conclude that the logical status of the Cauchy
postulate is different from that of the principle of virtual work, as it holds only
for a specific class of continua.

Finally, we remark that, in second-gradient continua, contact interactions
must include double-forces. As shown in [52], the tangent part of contact double-
forces can be interpreted as contact couples (see also [95]), whereas the normal
part of contact double-forces are a kind of interaction completely independent
of forces (i.e. interactions expending work on displacements) and couples (i.e.
interactions expending work on rotations). Therefore, it appears evident that
postulating the balance of forces and moment of forces is not enough, in second-
gradient continua, to get all necessary conditions which follow from the principle
of virtual work. This circumstance shows the intrinsic weakness of Cauchy’s
postulation scheme in producing the theory of generalized continua.

4 Piola transformations in second-gradient con-
tinua

In the previous section, we have introduced as Eulerian dual quantities the
Cauchy–Euler stresses together with the Eulerian external forces and double-
forces. The Piola transformation problem consists in finding the relationships
between the Lagrangian and Eulerian stresses and double-stresses as well as
external forces and double-forces implied by the identities (20).

Let Φ be a Lagrangian field with domain Ω related to the corresponding Eu-
lerian field ϕ with domain ω by Φ(X) = ϕ(Π(X)). Recalling (1), the chain rule
implies that the gradients of the Lagrangian and Eulerian fields are connected
by

∂Φ
∂XA

(X) = ∂ϕ

∂xj
(Π(X)) ∂Πj

∂XA
(X) = ∂ϕ

∂xj
(Π(X))F j

A(X) . (31)

As this relation can also be written as
∂Φ

∂XA
(π(x)) = ∂ϕ

∂xj
(x)F j

A(π(x)) , (32)
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we will drop the arguments in what follows. Using this convention together with
(1), we obtain, by taking once more the gradient of (31), the expression

∂2Φ
∂XA∂XB

= ∂2ϕ

∂xj∂xk
F j

AF k
B + ∂ϕ

∂xj
Fj

AB .

Consequently, the gradients of the Lagrangian and Eulerian virtual displacement
fields are related by

δF i
A = δdi

jF j
A , δFi

AB = δdi
jkF j

AF k
B + δdi

jF
j
AB . (33)

When the gradient of the Eulerian field ϕ should be expressed in terms of
its Lagrangian counterpart, we use the relation ϕ = Φ ◦ π as well as (F −1)A

i =
∂πA/∂xi to end up with

∂ϕ

∂xi
= ∂Φ

∂XA

∂πA

∂xi
= ∂Φ

∂XA
(F −1)A

i . (34)

In the following subsections, we will use these relations together with the
formulas of the change of variables of volume, surface and line integrals of Ap-
pendix B.4. We obtain the Piola transformations for stresses, double-stresses as
well as external forces and external double-forces.

4.1 Piola transformation of stress and double-stress
For a scalar valued function Φ : Ω → R, the change of variables is of the form∫

Ω
Φ(X) =

∫
π(ω)

Φ(X) =
∫

ω

Φ(π(x))j(x) , (35)

where j(x) = J−1(π(x)) = det(F (π(x)))−1 is the volume density change induced
by π and J = det(F ). The change of variables of the internal work functional
leads to

δW int
Ω (δΠ) = −

∫
ω

J−1(
P A

i δF i
A + PAB

i δFi
AB

)
,

where all functions in the integral are to be composed with π. If we introduce
the relation (33), we obtain the functional

δW int
Ω (δΠ) = −

∫
ω

J−1P A
i δdi

jF j
A −

∫
ω

J−1PAB
i (δdi

jkF j
AF k

B + δdi
jF

j
AB) . (36)

Because of (20), δwint
ω is a second order distribution, which can be represented

as
δwint

ω (δΠ) = −
∫

ω

(
cj

i δdi
j + c

jk
i δdi

jk

)
. (37)

By using (20), (36) and (37), we get the relations between the Piola–Lagrange
and the Cauchy–Euler stresses and double-stresses

cj
i = J−1(

P A
i F j

A + PAB
i Fj

AB

)
, c

jk
i = J−1PAB

i F j
AF k

B , (38)

which are called the Piola transformation of stress and double-stress.
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4.2 Piola transformations of external forces and double-
forces

The Eulerian external work functional (24) is the sum of four different terms∫
ω

fωi δΠi ,

∫
∂ω

f∂ω
i δΠi ,

∫
∂ω

d∂ω
i

∂δΠi

∂xc
nc ,

∫
∂∂ω

f∂∂ω
i δΠi .

The Lagrangian work functional (12) admits a similar decomposition in four
terms ∫

Ω
FΩ

i δΠi ,

∫
∂Ω

F∂Ω
i δΠi ,

∫
∂Ω

D∂Ω
i

∂δΠi

∂XC
NC ,

∫
∂∂Ω

F∂∂Ω
i δΠi .

The difficulty arises, because the change of variable from Eulerian to Lagrangian
descriptions does not induce a one-to-one correspondence between the listed
terms. In particular, the work of external double-forces in Eulerian description
does not produce only a term which can be recognized as work of Lagrangian
double-forces. In fact, Eulerian work of double-forces, once transformed into
Lagrangian description can be uniquely decomposed into the sum of work func-
tional of double-forces plus work of surface forces plus work of edge forces. This
is due to the fact that Eulerian normal derivatives, once transformed into La-
grangian description, are derivatives along a direction not orthogonal to the
referential boundary ∂Ω.

Transformations of external forces

The external work functionals due to Eulerian force densities can readily be
transformed into Lagrangian description when applying the corresponding change
of variables according to (64) with the volume Jacobian J = det(F ), the area
Jacobian JΣ = ∥JF −T · N∥ as well as the length Jacobian JΛ = ∥F · T∥.

The transformations are: for the volume forces∫
ω

fωi δΠi =
∫

Ω
Jfωi δΠi , (39)

for the surface forces ∫
∂ω

f∂ω
i δΠi =

∫
∂Ω

JΣf
∂ω
i δΠi , (40)

and finally for the edge forces∫
∂∂ω

f∂∂ω
i δΠi =

∫
∂∂Ω

JΛf
∂∂ω
i δΠi . (41)

Transformation of external surface double-forces

The external work functional of Eulerian surface double-forces is
∫

∂ω
d∂ω

i
∂δΠi

∂xr nr.
Using the change of variable (64) together with (34) for the current gradient of
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the virtual displacement as well as the expression (62) of the Eulerian unit
normal in terms of the Lagrangian unit normal, the work functional takes the
form ∫

∂Ω
d∂ω

i

∂δΠi

∂XR
(F −1)R

r

(
grs (F −1)S

s NS

∥F −T · N∥

)
∥JF −T · N∥

Identifying the inverse of the right Cauchy–Green strain C−1 from (5), using
simple algebra, the work functional becomes∫

∂Ω
Jd∂ω

i

∂δΠi

∂XR
(C−1)RSNS . (42)

Clearly, this expression involves derivatives of δΠ which are not normal to the
boundary ∂Ω. Hence, it cannot coincide with the work expended by the La-
grangian double-forces.

We decompose it into Lagrangian normal and tangential derivatives as fol-
lows: using the Kronecker-delta δE

R and writing the gradient as

∂δΠi

∂XR
= ∂δΠi

∂XE
δE

R = ∂δΠi

∂XE
(NENR + M∥

E
R

) ,

together with the equality

NR(C−1)RSNS = NR(F −1)R
r grs(F −1)S

s NS = ∥F −T · N∥2 ,

the normal part of (42) is given by∫
∂Ω

Jd∂ω
i

∂δΠi

∂XE
NENR(C−1)RSNS =

∫
∂Ω

Jd∂ω
i

∂δΠi

∂XE
NE∥F −T · N∥2 .

The residual tangential part is written as∫
∂Ω

Jd∂ω
i

∂δΠi

∂XE
M∥

E
R

(C−1)RSNS =
∫

∂Ω
SRS

i NS
∂δΠi

∂XE
M∥

E
R

with
SRS

i = Jd∂ω
i (C−1)RS .

For a fixed index i, this functional is of the form studied in Appendix A (53).
Hence, it can be represented by the sum of the two functionals as given by (54)
and (55), which reads in the present case as the sum of the following terms∫

∂∂Ω

(
Jd∂ω

i (C−1)RSNSVR

)
δΠi

and
−

∫
∂Ω

M∥
E
D

∂

∂XE

(
Jd∂ω

i KD
)
δΠi .

where we have introduced the Lagrangian vector field

KD := M∥
D
R

(C−1)RSNS =
(
(F −1)D

i gij(F −1)S
j − ∥F −T · N∥2GDS

)
NS .
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Consequently, the external work functional of Eulerian double-forces can be
written as∫

∂ω

d∂ω
i

∂δΠi

∂xc
nc =

∫
∂Ω

Jd∂ω
i

∂δΠi

∂XE
NE∥F −T · N∥2

−
∫

∂Ω
M∥

E
D

∂

∂XE

(
Jd∂ω

i KD
)
δΠi +

∫
∂∂Ω

(
Jd∂ω

i (C−1)RSNSVR

)
δΠi . (43)

Remark that the two last terms will intervene in the Lagrangian expression for
external surface and edge work functionals.

4.3 Identification of Piola transformations
Both Lagrangian and Eulerian external work functionals (12) and (24) are
unique representations in terms of transverse derivatives. Hence, when trans-
forming the Eulerian work functional into Lagrangian description, the unique
relationships between the Lagrangian and Eulerian external forces and double-
forces can be identified.

Owing to the previously discussed transformations (39), (40), (41) and to ex-
pression (43) for the external double-force work functional, the external virtual
work functional can be written as

δwext
ω (δΠ) =

∫
Ω

Jfωi δΠi +
∫

∂Ω

(
JΣf

∂ω
i − M∥

E
D

∂

∂XE

(
Jd∂ω

i KD
))

δΠi

+
∫

∂Ω
Jd∂ω

i ∥F −T · N∥2 ∂δΠi

∂XE
NE

+
∫

∂∂Ω
JΛf

∂∂ω
i +

∫
∂∂Ω

(
Jd∂ω

i (C−1)RSNSVR

)
δΠi .

(44)

Note, the last integral expression must be understood in the sense of the con-
vention specified in (56) of Appendix A. In agreement with the identity (20),
comparison of (44) with (12), induces the following transformation formulas of
the force densities

FΩ
i = Jfωi , (45)

F∂Ω
i = JΣf

∂ω
i − M∥

E
D

∂

∂XE
(Jd∂ω

i KD) , (46)

F∂∂Ω
i = JΛf

∂∂ω
i +

(
Jd∂ω

i (C−1)RSVRNS

)+ +
(
Jd∂ω

i (C−1)RSVRNS

)−
, (47)

as well as the Piola transformation of the surface double-force

D∂Ω
i = J∥F −T · N∥2d∂ω

i . (48)

5 Consistency of Piola transformations
In Section 2, we have derived the equilibrium equations and boundary conditions
in Lagrangian description. In Section 3, we have repeated the same procedure
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to obtain the corresponding Eulerian boundary value problem. Section 4 was
then dedicated to find the Piola transformations relating Piola–Lagrange stress
and double-stress with Cauchy–Euler stress and double-stress. Moreover, the
transformation formulas for the external force and double-force contributions
have been derived. Essentially, we have obtained all the desired results. How-
ever, as the transformation formulas (46)–(48) are novel and not very intuitive,
a consistency check would be desirable. This is exactly what this section is
for. Indeed, Piola transformation for external forces and double-forces can also
been deduced from the Piola transformations (38) of stress and double-stress,
by making use of the equilibrium conditions both in Eulerian and Lagrangian
frameworks.

5.1 Transformation of local equilibrium equations
From the Eulerian principle of virtual work, we obtain the equilibrium equations
(25), which are

∂ca
i

∂xa
−

(
∂2
c

ab
i

∂xb∂xa

)
+ fωi = 0 . (49)

Inserting the relations from (38) into (49) leads to

∂

∂xa

(
J−1 P A

i F a
A + J−1PAB

i Fa
AB

)
− ∂

∂xa

(
∂

∂xb

(
J−1 PAB

i F a
AF b

B

))
+ fωi = 0 .

For a fixed index i, applying the Piola identity div(J−1F ·T ) = J−1Div(T ) from
(65), Appendix C, we obtain

J−1 ∂P A
i

∂XA
+ ∂

∂xa

(
J−1PAB

i Fa
AB − J−1 ∂

∂XB

(
PAB

i F a
A

))
+ fωi = 0 .

Using Leibniz’ rule in the last term, two terms cancel and we end up with

J−1 ∂P A
i

∂XA
− ∂

∂xa

(
J−1F a

A

∂PAB
i

∂XB

)
+ fωi = 0 .

Applying once more the Piola identity (65) on the second term, the equality
reduces to

J−1 ∂P A
i

∂XA
− J−1 ∂

∂XA

(
∂PAB

i

∂XB

)
+ fωi = 0 .

Using the Lagrangian equilibrium equations (13) in the last expression, we im-
mediately obtain the relation

Jfωi = −∂P A
i

∂XA
+ ∂

∂XA

(
∂PAB

i

∂XB

)
= FΩ

i ,

and we recover the Piola transformation (45) relating Eulerian and Lagrangian
external volume force densities.
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5.2 Transformation of boundary conditions
The boundary conditions (14), (15) and (16) in Lagrangian or (26), (27) and (28)
in Eulerian form relate the external interactions with the stresses and double-
stresses. In the following we show that inserting the Piola transformation of the
stress and double-stress into the boundary conditions, confirms the transforma-
tion rules for the external force and double-force densities. The transformations
are carried out in the same order as in Section 4. Hence, we start with the
double-force density followed by the edge forces and close the subsection with
the most tedious transformation of the surface force densities.

External surface double-forces

The external double-force densities must satisfy the boundary condition (28),
which, after inserting (38), can be expressed as

d∂ω
i = c

jk
i njnk = J−1PAB

i F j
AF k

Bnjnk .

Using (62) to get F j
Anj = NA∥F −T · N∥−1, the previous expression becomes

d∂ω
i = J−1PAB

i NANB∥F −T · N∥−2 = J−1D∂Ω
i ∥F −T · N∥−2 ,

where the Lagrangian boundary condition (16) has been used. Clearly, this
identity is equivalent to the Piola transformation (48) of external double-forces.

External edge forces

When dealing with edge force densities, we use the transformations (62) and
(63) for the normal to the faces and for the tangent-normal to the edge (Ap-
pendix B.2). We obtain

c
jk
i vjnk = c

jk
i nk

[
(F −1)R

j VR −
(C−1)RSVRNS(F −1)Q

j NQ

∥F −T · N∥2

]
JΣJ−1

Λ

= c
jk
i

(F −1)L
k NL

∥F −T · N∥
(F −1)R

j VR∥JF −T · N∥J−1
Λ

− c
jk
i nk

(C−1)RSVRNS(F −1)Q
j NQ

∥F −T · N∥
JJ−1

Λ .

Replacing the Cauchy-Euler double-stress with (38) in the first term of the right
hand side and using (62) in the second term, we obtain the following equation:

c
jk
i vjnk =

(
PAB

i F j
AF k

B(F −1)L
k NL(F −1)R

j VR − Jcjk
i nknj(C−1)RSVRNS

)
J−1

Λ .

Using the boundary condition (28), we get

c
jk
i vjnk =

(
PAB

i VANB − Jd∂ω
i (C−1)RSVRNS

)
J−1

Λ .
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Using the last expression in the Eulerian boundary condition (27) together with
the Lagrangian boundary condition (15), we obtain

JΛf
∂∂ω
i = JΛ

[(
c

jk
i vjnk

)++
(
c

jk
i vjnk

)−]
=

(
PAB

i VANB

)+ +
(
PAB

i VANB

)−

−
(
Jd∂ω

i (C−1)RSVRNS

)+ −
(
Jd∂ω

i (C−1)RSVRNS

)−

= F∂∂Ω
i −

(
Jd∂ω

i (C−1)RSVRNS

)+ −
(
Jd∂ω

i (C−1)RSVRNS

)−
,

which corresponds to the Piola transformation of edge forces (47).

External surface forces

For the transformation of the surface force density, we consider the two terms
in the boundary conditions (26) separately. Using (38) and (62), we get(

cj
i − ∂cjk

i

∂xk

)
nj =

(
J−1P A

i F j
A+J−1PAB

i Fj
AB − ∂

∂xk

(
J−1PAB

i F j
AF k

B

)) (F −1)L
j NL

∥F −T · N∥

Using the Piola identity (65) in the third term, we obtain(
cj

i − ∂cjk
i

∂xk

)
nj =

(
P A

i F j
A + PAB

i Fj
AB − ∂

∂XB

(
PAB

i F j
A

)) (F −1)L
j NL

∥JF −T · N∥
.

Applying Leibniz’ rule in the last term, the expression simplifies further to(
cj

i − ∂cjk
i

∂xk

)
nj = J−1

Σ

(
P A

i − ∂PAB
i

∂XB

)
NA .

For treating the second term that appears in the Eulerian boundary condi-
tion (26), we must use the surface Piola-type identity in the form (69) (Appendix
C). We get the relation

m∥
c
l

∂

∂xc

(
c

jk
i nkm∥

l
j

)
= J−1

Σ M∥
A
S

∂

∂XA

(
JΣM∥

S
R

(F −1)R
l m∥

l
j
c

jk
i nk

)
.

Inserting m∥
l
j

= δl
j − nlnj and using (38) and (28), we get

m∥
c
l

∂

∂xc

(
c

jk
i nkm∥

l
j

)
= J−1

Σ M∥
A
S

∂

∂XA

(
M∥

S
R

∥JF −T · N∥(F −1)R
j J−1PCD

i F j
CF k

Dnk

− M∥
S
R

∥JF −T · N∥(F −1)R
l d

∂ω
i nl

)
.

Since ∥F −T · N∥F k
Dnk = ND and

M∥
S
R

(F −1)R
l nl∥F −T ·N∥ = M∥

S
R

(F −1)R
l glj(F −1)C

j NC = M∥
S
R

(C−1)RCNC = KS ,

we can modify the expression further to

m∥
c
l

∂

∂xc

(
c

jk
i nkm∥

l
j

)
= J−1

Σ M∥
A
S

∂

∂XA

(
M∥

S
C
PCD

i ND − Jd∂ω
i KS

)
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and use it to finally write

f∂ω
i = J−1

Σ

[(
P A

i − ∂PAB
i

∂XB

)
NA − M∥

A
S

∂

∂XA

(
M∥

S
C
PCD

i ND

)
+ M∥

A
S

∂

∂XA

(
Jd∂ω

i KS
)]

= J−1
Σ

[
F∂Ω

i + M∥
A
S

∂

∂XA

(
Jd∂ω

i KS
)]

.

The last equality confirms the Piola transformation (46) for external surface
forces. Hence, we succeeded in showing with an alternative way the Piola trans-
formation formulas for the external forces and double-forces.

In first-gradient theory, where P = 0, it is quite common (see e.g. [62, 60])
to show the Piola transformation of the stresses by assuming the transformation
rule for the surface forces

J−1
Σ F∂Ω̂

i = f∂ω̂
i ,

and then representing contact surface forces in terms of stress, by using (18)
and (29) into the above expression to get

∥JF −T · N∥−1P A
i NA = cj

i nj = cj
i (F −1)A

j ∥F −T · N∥−1NA .

This results in the Piola transformation cj
i = J−1P A

i F j
A. For second-gradient

continua, however, we have seen that this procedure cannot be applied as even
the external surface force density transforms in a completely unexpected way.

In fact, Piola transformations can be deduced only by considering the change
of variables introduced by the placement Π in the work functionals.

6 Conclusions
In this paper, it has been chosen to base continuum mechanics on the principle
of virtual work. Note that this principle, established by D’Alembert and La-
grange, has been first called “principle of virtual velocities” and was applied to
fluid mechanics. This is true also for its application to second-gradient continua.
Indeed the so-called “capillary fluids” were the first continua of this type to be
described ([82, 2, 35], more historical remarks can be found in [91, 3, 100, 43]).
We have argued that D’Alembert–Lagrange postulation scheme is more suitable
than Cauchy’s postulation scheme for introducing generalized continuum mod-
els (see among others [18, 56, 55, 36, 69, 66, 72]). In fact, while it is impossible
to generalize Cauchy’s tetrahedron argument based on the postulation of bal-
ance of forces and moments of forces to formulate generalized higher gradient
continuum models, instead by using different forms of internal work function-
als such a generalization becomes very natural. Specifically, we have discussed
how the definition of the internal work functional as a second order distribution
restricts the compatible external work functionals and how it determines the
contact interactions which can be exerted in second-gradient continua. More-
over, we deduced the equilibrium conditions from the principle of virtual work
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in Lagrangian description first and then in Eulerian description. The novel con-
tribution of the present paper is the Piola transformations of all mechanically
relevant tensor quantities from Lagrangian to Eulerian description in the case
of second-gradient continua.

With the transformations given by (46)–(48), we found that, in addition to
the geometry of the boundary

i) Lagrangian surface forces are expressed in terms of the Eulerian surface
forces and of Eulerian double-forces.

ii) Lagrangian edge forces are expressed in terms of the Eulerian edge forces
and of the jump of the Eulerian double-forces.

iii) Lagrangian double-forces are simply expressed in terms of the Eulerian
double-forces.

Sometimes, it has been questioned the importance of second-gradient con-
tinuum theories based on a presumed absence of physical systems which are
described by such theories. The homogenization methods in [6, 104], or meth-
ods based on statistical mechanics [12, 13, 10, 11], prove that there exist spe-
cific micro-structures that, at macro level, produce a second-gradient behavior
[89, 53, 5, 45, 108, 23, 28, 32]. The pertinent micro-structures are constituted
by lattices of beams [77, 88, 37, 102, 94, 101, 44, 61] connected via elastic or
perfect pivots [92]. Experimentally, the deformation of such micro-structures
can be captured by X-ray micro-tomography in combination with digital image
correlation procedures [48, 46].

It has to be remarked that already Piola considered Nth gradient continua
as a local approximation of continua in which particles can interact over dis-
tance [21, 25]. Piola started from non-local energies and based his reasoning
on a truncated Taylor expansion: more recently in [86] Piola’s results were re-
discovered and used for getting predictions in crack generation and many other
applications [108, 63, 107, 64, 106]. However, in peridynamics literature the
generalization of Piola transformations are not yet fully developed.

Piola transformation for second-gradient continua can have a great impact in
applications. In fact, a large class of novel metamaterials (those showing a pan-
tographic micro-structure [54, 9, 68, 76, 93, 92, 73]) produces greater exotic ef-
fects in large deformation regimes (e.g. low sensitivity to micro-structure defects
[17, 105, 19]) and this is exactly the context where the Piola transformations
play the most important role. Moreover, in the study of problems in which nat-
ural boundary conditions are assigned, deadloads are usually formulated in the
Eulerian description. In that case numerical methods ([81, 17, 58, 15, 57, 4, 8])
are generally used to get predictions and Piola transformations are mandatory
for formulating effective numerical integration schemes ([79, 59, 103, 1]) in La-
grangian description.

Concerning the modeling of damage and plasticity pheneomena ([75, 78, 87,
74]), we remark that second-gradient continua supply an important tool for
getting mathematically well-posed problems. The problem of force concentra-
tion on crack tips has attracted particular interest: In this context describing
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edge force effects is of utmost relevance. Because of the different nature of
Lagrangian and Eulerian edge forces, the presented results may clarify some
apparent paradoxes.

In perspective, it is interesting to consider the case of second-gradient con-
tinua in which new edges can appear in the Eulerian configuration. We mean
here, Eulerian edges which are not the image, under the placement mapping, of
Lagrangian edges. Moreover, it is challenging to generalize the presented results
to the case of Nth gradient continua, albeit the related formulas of tensor cal-
culus seem to have a complex recursive structure, see [30]. For what concerns
applications, second-gradient continua in large deformations may be useful in
describing bone reconstruction [84] and pantographic metamaterial properties
may be optimized for being resilient to damage phenomena [33].

A Equivalent form for second order distribu-
tions

Let us consider a regular manifold V embedded in n-dimensional Euclidean
vector space En and the projectors m∥ and m⊥ on its tangent and normal spaces.
When V has co-dimension one, and if n denotes its unit normal vector, we have

m⊥
γ
α

= nγnα , m∥
γ
α

= δγ
α − nγnα . (50)

Given a vector field w defined in the neighborhood of V, the divergence theorem
for Riemannian submanifolds with boundaries is stated as∫

V
m∥

γ
α

∂

∂xγ

(
m∥

α
β

wβ
)

=
∫

∂V

(
m∥

α
β

wβ
)

m∥
γ
α

vγ =
∫

∂V
wβvβ , (51)

where ∂V denotes the boundary of V and where the unit vector v is tangent to
V and normal to ∂V. Defining divV

∥ by setting for all smooth fields ϕ

(
divV

∥ (ϕ)
)

α
:= m∥

γ
α

∂

∂xγ
(ϕ) ,

the divergence theorem, see [7], reads∫
V

divV
∥ (m∥ · w) =

∫
∂V

w · v .

In accordance with the theory of distributions [85], both the virtual work
expressions in Lagrangian and Eulerian descriptions can be considered as dis-
tributions D represented in the form

D(ϕ) =
∫

v

(
sα ∂ϕ

∂yα
+ s

αβ ∂2ϕ

∂yα∂yβ

)
, (52)

where the derivatives of the test functions ϕ are taken with respect to the coor-
dinates yα of a 3-dimensional Euclidean space. Note that the index i appearing
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in both (10) and (22) does not play any role in the present considerations and is
therefore omitted. D is a second order distribution. The symbol ϖ denotes the
generic integration domain which satisfies the same regularity requirements as
discussed in Section 1.1 for the reference configuration Ω. The faces of the sub-
set v are denoted by ∂ϖ and come along with the outward-pointing unit normal
field n. The symbol ∂∂ϖ denotes the edges on which the outward-pointing unit
normals v are defined. Moreover, the unit normal v lies in the tangent plane to
the faces constituting ∂v.

Using the product rule in the second integrand of (52), we can write

D(ϕ) =
∫

ϖ

(
sα − ∂sαβ

∂yβ

)
∂ϕ

∂yα
+

∫
ϖ

∂

∂yβ

(
s

αβ ∂ϕ

∂yα

)
.

With the abbreviation s̄α = sα − ∂sαβ/∂yβ and applying Leibniz’ rule for the
first integrand, we end up with

D(ϕ) =
∫

ϖ

∂

∂yα
(s̄αϕ) −

∫
ϖ

∂s̄α

∂yα
ϕ +

∫
ϖ

∂

∂yβ

(
s

αβ ∂ϕ

∂yα

)
.

Using the divergence theorem for the first and the third term and introducing
the distributions

D0
ϖ(ϕ) := −

∫
ϖ

∂s̄α

∂yα
ϕ , D0

∂ϖ(ϕ) :=
∫

∂ϖ

s̄αnαϕ ,

Equation (52) can be written in the form

D(ϕ) = D0
ϖ(ϕ) + D0

∂ϖ(ϕ) +
∫

∂ϖ

s
αβ ∂ϕ

∂yα
nβ .

The last term here, is the only expression in which derivatives of ϕ yet appear.
Therefore, we will manipulate this term further by using the projectors (50) for
the faces ∂ϖ ∫

∂ϖ

s
αβ ∂ϕ

∂yα
nβ =

∫
∂ϖ

s
αβ ∂ϕ

∂yγ
nβ δγ

α

=
∫

∂ϖ

s
αβ ∂ϕ

∂yγ
nβ

(
m∥

γ
α

+ m⊥
γ
α

)
=

∫
∂ϖ

s
αβ ∂ϕ

∂yγ
nβm∥

γ
α

+ DI
∂ϖ(ϕ) ,

(53)

where we have introduced the distribution

DI
∂ϖ(ϕ) :=

∫
∂ϖ

(
s

αβnαnβ

) ∂ϕ

∂yγ
nγ .

The distribution DI
∂ϖ involves the normal derivative of the test function (∂ϕ/∂yγ)nγ

and cannot be reduced any further.
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Applying once more Leibniz’ rule, we can manipulate the first term in the
last line of (53) in the following way∫

∂ϖ

(
s

αβ ∂ϕ

∂yγ
nβm∥

λ
α

)
m∥

γ
λ

=
∫

∂ϖ

{
∂

∂yγ

(
s

αβnβm∥
λ
α

ϕ
)
m∥

γ
λ

− m∥
γ
λ

∂

∂yγ

(
s

αβnβm∥
λ
α

)
ϕ

}
= D0

∂∂ϖ(ϕ) + D̃0
∂ϖ(ϕ) .

In the last step, we have introduced the distributions

D0
∂∂ϖ(ϕ) :=

∫
∂∂ϖ

(
s

αβnβvα

)
ϕ . (54)

D̃0
∂ϖ(ϕ) := −

∫
∂ϖ

m∥
γ
λ

∂

∂yγ

(
s

αβnβm∥
λ
α

)
ϕ . (55)

To obtain D0
∂∂ϖ, the divergence theorem (51) has been applied leading to a

line integral along the edges of ϖ. We explicitly remark that in (54) we used
a notational convention: as depicted in Figure 1, we observe that in an edge
γ two faces σ+ and σ− concur. Hence, in the performed integration by parts,
γ is traversed twice: with the surface normal n−, edge normal v− and the
limit (s−)αβ approach from the surface σ−, and similarly from σ+ with the
corresponding n+, v+ and (s+)αβ . Consequently, if we denote each edge curve
by γi for i = 1, . . . , ne, then the integral expression of (54) reads13∫

∂∂ϖ

(
s

αβnβvα

)
ϕ :=

ne∑
i=1

∫
γi

[(
s

αβ nβvα

)+ +
(
s

αβ nβvα

)−
]

ϕ . (56)

In conclusion, from the point of view of the theory of distributions, the
second order distribution D(ϕ) from (52) can equivalently be represented as

D = D0
ϖ + (D0

∂ϖ + D̃0
∂ϖ) + DI

∂ϖ + D0
∂∂ϖ .

This equivalence can be applied to the Lagrangian or Eulerian internal work
functionals.

As a last thing, we work out the explicit dependence of D̃0
∂ϖ on the normal

and the curvature of the faces ∂ϖ. For the sake of compact notation, in the
following computations, partial derivatives ∂/∂yα are written as (·),α and the
abbreviation s

α
n = s

αβnβ is used. Inserting the tangent projector (50), we obtain(
s

α
nm∥

λ
α

)
,γm∥

γ
λ =

(
s

α
nδλ

α

)
,γδγ

λ −
(
s

α
nδλ

α

)
,γnγnλ

−
(
s

α
nnλnα

)
,γδγ

λ +
(
s

α
nnλnα

)
,γnγnλ ,

which is obviously equivalent to(
s

α
nm∥

λ
α

)
,γm∥

γ
λ = (sα

n),α − (sα
n),γnγnα − (sα

nnγnα),γ + (sα
nnλnα),γnγnλ .

13Note that some authors introduce v̄± = t+ ∧n±, see [52, 95, 42]. Then they get a different
sign in the second term of (56).
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We can further manipulate the expression to(
s

α
nm∥

λ
α

)
,γm∥

γ
λ =(sαβnβ),α − (sαβnβ),γnγnα − (sαβ),γnβnγnα − s

αβ(nβnγnα),γ
+ (sαβ),γnγnβnλnαnλ + s

αβ(nβnλnα),γnγnλ .

We assume that the faces are regular enough for extending any field in their
vicinity as constant along the normal. Using

nλnλ = 1 ,

(
∂nλ

∂yγ

)
nγ = 0 ,

(
∂nδ

∂yγ

)
nγ = 0 ,

the above expression simplifies to(
s

α
nm∥

λ
α

)
,γm∥

γ
λ = (sαβnβ),α − (sαβ),γnβnγnα − s

αβnβnα(nγ),γ . (57)

Inserting (57) in (55), the distribution D̃0
∂ϖ can finally be written as

D̃0
∂ϖ(ϕ) = −

∫
∂v

(
(sαβnβ),α − (sαβ),γnβnγnα − s

αβnβnα(nγ),γ
)

ϕ .

B Piola transformations of tangents, surface nor-
mals and edge normals

B.1 Piola transformation of unit tangent vectors
Given any curve in the reference configuration Γ : S 7→ Γ(S) ⊂ Ω, this curve is
transported by the placement Π to a curve in the current configuration γ(S) =
Π(Γ(S)). Assume S to be the arc length parameter of Γ such that T = dΓ/dS
is a unit vector. The application of the chain rule readily implies that the
referential tangent vector T is mapped to the current tangent vector t̃ by

t̃i(S) := dγi

dS
(S) = F i

A(Γ(s))T A(S) ,

which following the convention of omitting the arguments is written as

t̃i = F i
AT A . (58)

Because t̃ is generally not a unit vector, the Piola transformation of the unit
tangent vector T to the curve Γ to the unit tangent vector t to the curve γ is
given by

t = t̃∥t̃∥−1 = F i
AT A∥F · T∥−1 . (59)

B.2 Piola transformation of unit normals
Let Σ ⊂ Ω be a surface that is transported by the placement Π to the surface
σ ⊂ ω. Considering a pair of independent vectors (V, W ) both of which are
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tangent to the surface Σ. Then the referential unit normal to the surface Σ can
be constructed by

N = V ∧ W

∥V ∧ W∥
, NA =

√
det(GLM )εABCV BW C

∥V ∧ W∥
,

where εABC denotes the Levi-Civita permutation symbol and ∧ the vector prod-
uct in E3. According to (58), the tangent vectors V and W are mapped to
ṽ = F · V and w̃ = F · W , respectively, both of which are tangent to σ. The
current unit normal to the surface σ is then given by

n = ṽ ∧ w̃

∥ṽ ∧ w̃∥
, ni =

√
det(glm)εijkṽiw̃j

∥ṽ ∧ w̃∥
.

As for any U, V, W ∈ E3, the determinant det(F ) of the map F is defined by
⟨F · U, (F · V ) ∧ (F · W )⟩ = det(F )⟨U, V ∧ W ⟩ and consequently√

det(gij)εijkF i
AUAF j

BV BF k
CW C = det(F )

√
det(GIJ)εABCUAV BW C ,

one can carry out the following computations:

(ṽ ∧ w̃)l =
√

det(gij)εljkṽjw̃k

=
√

det(gij)εljkF j
BV BF k

CW C

=
√

det(gij)εijk(F i
A(F −1)A

l )F j
BV BF k

CW C

= det(F )(F −1)A
l

√
det(GIJ)εABCV BW C

= J(F −T · (V ∧ W ))l . (60)

Note, in the last line we have introduced J := det(F ) and used (F −T · B)l =
(F −1)A

l BA, see [2] for more details. Using the Piola transformation of the vector
product (60), we can relate the referential and current normals in accordance
with

n = ṽ ∧ w̃

∥ṽ ∧ w̃∥
= (F · V ) ∧ (F · W )

∥(F · V ) ∧ (F · W )∥ = JF −T · (V ∧ W )
∥JF −T · (V ∧ W )∥

= JF −T · (V ∧ W )
∥JF −T · N∥∥(V ∧ W )∥ = F −T · N

∥F −T · N∥
. (61)

In components, this transformation reads as

ni = (F −1)A
i NA

∥F −T · N∥
, ni =

gij(F −1)A
j NA

∥F −T · N∥
. (62)

This formula appears already in Piola, see [25].
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B.3 Piola transformation of unit edge normals
Consider two surfaces Σ+ and Σ− that concur in an edge Γ. As depicted in
Figure 1, the referential edge normals V ± are the outward-pointing unit normals
to the edge Γ that are tangent to the surfaces Σ±, i.e., the unit vectors that
are normal to T + and N±. When the tangent vector T + is introduced as in
Figure 1, then V ± = ±T + ∧ N±. In the following we consider only Σ+ for
which the triple (T +, N+, V +) constitute a right-handed orthonormal system of
E3 and we drop the superscript (·)+. Through the placement Π, the surface is
transported to σ = Π(Σ) and the edge to γ = Π(Γ). The tangent and normal
vector T and N are transported to the unit vectors t and n following (59) and
(61). The question is now how the current edge normal v = t∧n is related to the
referential edge normal V . To derive this relation, we will essentially apply the
Gram-Schmidt process. The transformation rules (59) and (61) were derived
such that ⟨t, t⟩ = 1 and ⟨n, n⟩ = 1. Moreover, the orthogonality between n and
t is preserved. Introducing JΛ = ∥F · T∥ and JΣ = ∥F −T · N∥, we remark that

JΣJΛ⟨t, n⟩ = ⟨F · T, F −T · N⟩ = ⟨T, F T · F −T · N⟩ = ⟨T, N⟩ = 0 .

The triple (t, n, F −T · V ) generates a basis for E3. Indeed,

JΣ
(
n ∧ (F −T · V )

)
= (F −T · N) ∧ (F −T · V ) = J−1F (N ∧ V ) = J−1t

is not the zero vector and (t, n, F −T · V ) spans the three-dimensional E3. More-
over,

JΛ⟨t, F −T · V ⟩ = ⟨F · T, F −T · V ⟩ = ⟨T, V ⟩ = 0 ,

which shows that F −T · V lies in a plane orthogonal to t. To get a basis vector
ṽ which is orthogonal also to n, we must subtract from F −T · V its component
in n direction. Setting

ṽ := F −T · V − ⟨F −T · V, n⟩n = F −T · V − ⟨F −T · V, F −T · N⟩
⟨F −T · N, F −T · N⟩

F −T · N .

Introducing a = F −T · V and b = F −T · N , the norm of ṽ can be computed as

⟨ṽ, ṽ⟩ = ⟨a, a⟩ − 2 ⟨a, b⟩2

⟨b, b⟩
+ ⟨a, b⟩2

⟨b, b⟩2 ⟨b, b⟩ = ⟨a, a⟩⟨b, b⟩ − ⟨a, b⟩2

⟨b, b⟩
= ∥a ∧ b∥

⟨b, b⟩

= ∥(F −T · V ) ∧ (F −T · N)∥2

∥F −T · N∥2 = ∥J−1F · (V ∧ N)∥2

∥F −T · N∥2 = ∥F · T∥2

∥JF −T · N∥2

Consequently, the current unit edge normal v is given by

v = JΣJ−1
Λ

[
F −T · V − ⟨F −T · V, F −T · N⟩

∥F −T · N∥2 F −T · N

]
.
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In terms of the covariant components of the edge normal, the transformation
rule can be written as

vi = JΣJ−1
Λ

[
(F −1)R

i VR − (F −1)S
k VSgkl(F −1)P

l NP

∥F −T · N∥2 (F −1)R
i NR

]
= JΣJ−1

Λ

[
(F −1)R

i VR − (C−1)SP VSNP

∥F −T · N∥2 (F −1)R
i NR

]
. (63)

B.4 Change of variables for volume, surface and line inte-
grals

In this subsection, we give a brief summary of the transformation rules for the
change of variables for volumes, surfaces and line integrals. With the regu-
larity assumptions made in Section 1.1, the reference configuration Ω ⊂ E3

with boundary faces ∂Ω and edges ∂∂Ω is mapped to ω = Π(Ω) with faces
∂ω = Π(∂Ω) and edges ∂∂ω = Π(∂∂Ω). Denoting the outward-pointing unit
normal to the boundary surfaces ∂Ω by N and the tangent vector to ∂∂Ω by T ,
the volume, area and length Jacobians can be introduced as

J := det F , JΣ := ∥JF −T · N∥ , JΛ := ∥F · T∥ .

It can be shown that the following equalities hold when changing the variables
within the integral:∫

ω

1 =
∫

Ω
J ,

∫
∂ω

1 =
∫

∂Ω
JΣ ,

∫
∂∂ω

1 =
∫

∂∂Ω
JΛ . (64)

The proof of these relation makes use of the incremental version of the following
equalities.

Let U, V, W ∈ E3 be three independent referential vectors. These are mapped
by the deformation gradient F to the current vectors u = F ·U, v = F ·V and w =
F · W . Then the current volume Vol(u, v, w) = |⟨u, v ∧ w⟩| spanned by the triad
(u, v, w) can be related to the referential volume Vol(U, V, W ) = |⟨U, V ∧ W ⟩|
by

Vol(u, v, w) = |⟨u, v ∧ w⟩| = | det(F )||⟨U, V ∧ W ⟩| = JVol(U, V, W ) .

Using (60), the current area spanned by the two vectors u and v can be expressed
as

Area(u, v) = ∥u ∧ v∥ = ∥(F · U) ∧ (F · V )∥ = ∥JF −T · (U ∧ V )∥
= ∥JF −T · N∥∥(U ∧ V )∥ = JΣArea(U, V ) .

Introducing T = U∥U∥−1, the length of the vector u is given as

Length(u) = ∥u∥ = ∥F · U∥ = ∥F · T∥∥U∥ = JΛLength(U) .
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C Piola-type identities
The Piola-type identities are essential in getting a direct transformation between
the equilibrium equations in Lagrangian and Eulerian form. In fact, they allow
for the expression of the Lagrangian divergence operator in terms of the Eule-
rian divergence operators. As the divergence operator can also be defined on
an arbitrary submanifold, Piola identities for such submanifolds can be formu-
lated. For our purposes, we need such an identity for two- and three-dimensional
domains.

C.1 Volume Piola identities
It is well known (see e.g. [2]) that the Lagrangian and Eulerian volume di-
vergence operators can be related by means of celebrated identities that are
unanimously attributed to Gabrio Piola (see [21, 22]). Let T = T (X) be a
vector field over the reference configuration. Then the first Piola identity is

∂

∂xa
((J−1F a

AT A) ◦ π)(x) =
(

J−1 ∂T A

∂XA

)
◦ π(x) ,

which, after dropping the arguments, reads as

∂

∂xa
(J−1F a

AT A) = J−1 ∂T A

∂XA
, div(J−1F · T ) = J−1Div(T ) . (65)

The proof of this identity can be carried out as follows. Let ϕ = ϕ(x) be
a scalar test function on the current configuration ω with compact support
vanishing on the boundary ∂ω, i.e., ϕ(x) = 0 for x ∈ ∂ω. The integral over
ω of the left hand side of (65) multiplied with the test function leads after an
integration by parts to∫

ω

∂

∂xa
(J−1F a

AT A)ϕ = −
∫

ω

J−1F a
AT A ∂ϕ

∂xa
.

Introducing the Lagrangian test function Φ = ϕ ◦ Π, together with (32), we can
write ∫

ω

∂

∂xa
(J−1F a

AT A)ϕ = −
∫

ω

J−1T A ∂Φ
∂XA

= −
∫

Ω
T A ∂Φ

∂XA
,

where in the last equality we made use of the change of variables (35). A
subsequent integration by parts followed by a change of variables with (64)
leads to ∫

ω

∂

∂xa
(J−1F a

AT A)ϕ =
∫

Ω

∂T A

∂XA
Φ =

∫
ω

J−1 ∂T A

∂XA
ϕ .

Since the equality must hold for all test functions, (65) follows directly.
Note that, setting t := J−1F · T , we get the so-called second Piola identity:

J
∂ta

∂xa
= ∂

∂XA

(
J(F −1)A

a ta
)

, Jdiv(t) = Div(JF −1 · t) . (66)

37



Note also that, considering in (65) and (66) constant tensor fields T or t, the
equalities reduce to

0 = ∂

∂xa
(J−1F a

A) , 0 = ∂

∂XA

(
J(F −1)A

a

)
. (67)

C.2 Surface Piola-type identity
Similar to the volume Piola-type identity, which relates the current volume
divergence operator with the referential one, we can derive an identity for the
surface divergence operators. The relation corresponding to (66) in terms of the
surface operators is expressed in a symbolic way as

JΣ divσ
∥ (t∥) = DIVΣ

∥ (JΣF −1 · t∥)

which in components reads as

JΣ
∂

∂xc
(m∥

a
b
tb)m∥

c
a

= ∂

∂XC
(JΣ(F −1)A

a m∥
a
b
tb)M∥

C
A

. (68)

The proof follows the same strategy as for the volume identity. Let Σ be
a Lagrangian surface with boundary ∂Σ. Then, the surface with boundary
σ = Π(Σ) is diffeomorphic to Σ. Let us assume that a sufficiently regular
Eulerian vector field t is defined in the neighborhood of σ. Let ϕ = ϕ(x) be a
scalar test function on the current surface σ with compact support vanishing on
the boundary ∂σ. We have∫

σ

∂

∂xc

(
m∥

a
b
tb

)
m∥

c
a
ϕ = −

∫
σ

m∥
a
b
tb ∂ϕ

∂xc
m∥

c
a

.

Changing integration variable in agreement with (64), using (34) and the idem-
potence of m∥, one obtains∫

σ

∂

∂xc

(
m∥

a
b
tb

)
m∥

c
a
ϕ = −

∫
Σ

JΣm∥
c
b
tb ∂Φ

∂XA
(F −1)A

c .

By definition of m∥, the vector t = m∥ ·w is a vector tangent to σ. According
to (58), T = F −1 · t is tangent to Σ. We have T = M∥ · T that is F −1 · t =
M∥ · F −1 · t, hence

t = F · M∥ · F −1 · t , tc = F c
I M∥

I
J
(F −1)J

a ta .
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Using this identity, we can modify our expression further to∫
σ

∂

∂xc

(
m∥

a
b
tb

)
m∥

c
a
ϕ = −

∫
Σ

JΣ
(
F c

I M∥
I
J
(F −1)J

a

)
m∥

a
b
tb ∂Φ

∂XA
(F −1)A

c

= −
∫

Σ
JΣ(M∥

A
J

(F −1)J
a )m∥

a
b
tb ∂Φ

∂XA

= −
∫

Σ
JΣ(M∥

A
B

M∥
B
J

(F −1)J
a )m∥

a
b
tb ∂Φ

∂XA

=
∫

Σ
Φ M∥

A
B

∂

∂XA

(
JΣ(F −1)J

a m∥
a
b
tbM∥

B
J

)
.

=
∫

σ

ϕ M∥
A
B

∂

∂XA

(
JΣ(F −1)J

a m∥
a
b
tbM∥

B
J

)
J−1

Σ

resulting in the identity

∂

∂xc
(m∥

a
b
tb)m∥

c
a

= J−1
Σ M∥

A
B

∂

∂XA
(JΣM∥

B
J

(F −1)J
a m∥

a
b
tb) . (69)

Since m∥ · t is tangent to σ, the Lagrangian vector F −1 · m∥ · t is tangent to Σ
and

M∥
B
J

(F −1)J
a m∥

a
b
tb = (F −1)B

a m∥
a
b
tb,

with which the Piola-type identity (68) follows.
We conclude this subsection by remarking that, the volume Piola iden-

tity (67)
0 = ∂

∂xa
(J−1F a

A)

cannot be generalized easily for surfaces. To discuss this point we should delve
into the problem of determining Levi-Civita parallel transport on the submani-
folds ∂Ω and ∂ω.
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