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Abstract: In this paper, the existing nonsmooth generalized-alpha method
for the simulation of mechanical systems with frictionless contacts, modeled
as unilateral constraints, is extended to systems with frictional contacts.
On that account, we complement the unilateral constraints with set-valued
Coulomb-type friction laws. Moreover, we devise a set of benchmark systems,
which can be used to validate numerical schemes for mechanical systems with
frictional contacts. Finally, this set of benchmarks is used to numerically as-
sert the properties striven for during the derivation of the presented scheme.
Specifically, we show that the presented scheme can reproduce the dynam-
ics of the frictional contact adequately and no numerical penetration of the
contacting bodies arises - a big issue for most popular time-stepping schemes
such as the one of Moreau. Moreover, we demonstrate that the presented
scheme performs well for multibody systems containing flexible parts and
that it allows general parametrizations such as the use of unit quaternions
for the rotation of rigid bodies.

1 Introduction

In this paper, we derive a nonsmooth generalized-αmethod for the simulation
of mechanical systems with frictional contact. Moreover, we introduce a set
of benchmark systems to validate the presented scheme.

In many engineering applications, systems are modeled through rigid and
flexible bodies, which are interconnected by joints and can come into contact
with each other or their surroundings. Prominent examples are automotive
and robotic systems. The dynamics of mechanical systems with frictional
contact can be described within the theory of nonsmooth mechanics [21,33],
where the velocities of the system are allowed to jump. This is particularly
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important for the description of contact between rigid bodies, where at the
time instant when the contacting bodies touch, an impact might occur, which
due to rigidity instantaneously changes the velocity of the body.

For the simulation of nonsmooth mechanical systems, two approaches can
be distinguished, the event-driven and the event-capturing schemes. The
event-driven schemes use standard ordinary differential equations (ODE)
solvers, or differential algebraic equations (DAE) solvers, to compute the
impact-free motion. Every time an impact event is detected, the algebraic
impact equations are solved to find the post-impact velocities, which are then
used to continue the integration with the ODE solver. The main strength of
event-driven integration is that ODE solvers with high-order accuracy can
be used. However, since every impact is resolved, these schemes are not suit-
able to find motions with accumulation points, i.e., motions with an infinite
number of impacts occurring in a finite interval of time.

In contrast to event-driven schemes, the event-capturing schemes, also
called time-stepping schemes, can overcome accumulation points, because
they smear the effects of impacts over a time step. However, the most
widespread schemes, such as Moreau’s time-stepping scheme [33] and variants
thereof, are of first-order accuracy, show a high level of numerical dissipa-
tion and allow penetration of the contacting bodies. These properties are
problematic, especially for the simulation of mechanical systems containing
elastic parts. Several publications present improved event-capturing schemes
by addressing at least one of these drawbacks. In [10,31], integrators similar
to Moreau’s time-stepping scheme with improved long-term energy behavior
have been derived. To arrive at event-capturing schemes with higher accu-
racy order for the impact-free motion, [1] combines high-order Runge–Kutta
methods with Moreau’s time-stepping scheme, [40] relies on extrapolation
methods and [38] uses a discontinuous Galerkin method to discretize the
dynamics of the mechanical system. The constraint drift, which is also re-
sponsible for contact penetration, is generally solved by a stabilization in the
sense of Gear–Gupta–Leimkuhler (GGL) [18] and/or a projection approach,
see for example [2, 39].

In [8, 9, 11, 14], the nonsmooth generalized-α methods were introduced,
which alleviate many of the problems of the Moreau-type time-stepping
schemes. In particular, the generalized-α schemes are second-order accurate
for the impact-free motion, use the GGL stabilization to avoid penetration of
the contacting bodies and it is known from structural mechanics applications,
see [7,12,26], that generalized-α schemes perform well for flexible multibody
systems. However, the nonsmooth generalized-α methods of [8, 9, 11, 14] are
only applicable to multibody systems with frictionless contacts, i.e., unilat-
eral constraints without Coulomb friction. Furthermore, these nonsmooth
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generalized-α methods are restricted to mechanical systems for which the
velocity of the system corresponds to the time derivative of the position co-
ordinates. In [13,17], the schemes of [8,9,11,14] have been extended to cope
with systems with frictional contact and a more general kinematic equation.
In [17], the augmented Lagrangian approach together with discrete set-valued
Coulomb friction laws on position and velocity level have been used to ar-
rive at a nonsmooth generalized-α scheme, which can describe systems with
frictional contact. The scheme of [17] has been extended in [13] to allow
for different rotation parametrizations for rigid bodies. This represents a
particular case of a general kinematic equation since the angular velocity is
not the time derivative of the rotation matrix describing the orientation of a
rigid body. The nonsmooth generalized-α methods of [8, 9, 11, 13, 14, 17] are
derived from a splitting strategy, where the motion is artificially split into a
nonsmooth and a smooth part. Furthermore, the contact laws describing the
impenetrability of the contacting bodies (Signorini condition) as well as the
impact between these bodies (Newton’s impact law) are introduced either as
inequality complementarity conditions or equivalently as normal cone inclu-
sions. The discrete counterparts of the contact laws are given as an active
set formulation, i.e., depending on the state of the system, conditions are es-
tablished that decide which set of nonlinear equations describes the contact.
This set of nonlinear equations is finally solved by a semi-smooth Newton
method in every time step.

In nonsmooth mechanics, the set-valued Coulomb friction law is naturally
stated as a force law on velocity level. Since in the case of sticking this
friction law acts like a bilateral constraint, it can be brought to acceleration
level through differentiation. Similar to [13, 17], it is the aim of this paper
to extend the nonsmooth generalized-α schemes [8, 9, 11, 14] to account for
friction as well as a general kinematic equation. However, the explained link
between the friction law on velocity and acceleration level will be exploited
instead of formulating the discrete friction laws on position and velocity level
as done in [13,17].

We use the same generalized-α time discretization for the dynamics of
the mechanical system as the schemes of [8,9,11,14], but include the general
kinematic equation. In doing so, the presented scheme shares the beneficial
properties of the existing generalized-α schemes, such as the second-order
accuracy and the absence of numerical contact penetration. To account for
friction, we invoke set-valued Coulomb-type friction laws introduced as nor-
mal cone inclusions. We exploit the fact that also the Signorini condition
and Newton’s impact law can be formulated as normal cone inclusions, such
that the contact laws are given as a set of normal cone inclusions. We di-
rectly discretize these contact laws to arrive at their discrete counterparts,
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which are again a set of normal cone inclusions. This opens the possibility
to numerically solve the time step using any strategy suitable for the so-
lution of normal cone inclusion problems, see for example [3]. We present
two such strategies, which both rely on a reformulation of the normal cone
inclusion invoking the proximal point function to arrive at implicit nonlin-
ear equations. For the first strategy, the proximal point function is used to
achieve an active set formulation of the contact laws, which are then solved
by a semi-smooth Newton method. The second strategy solves the nonlinear
equations including the proximal point functions with fixed point iterations.
Finally, we introduce a set of benchmark systems, which can be used to
validate numerical schemes for mechanical systems with frictional contacts.
Therefore, we devise the systems in such a way, that each benchmark can be
used to test the performance of the scheme with respect to a specific feature.
These are: overcoming accumulation points, slip-stick transitions, handling
the presence of linearly dependent force directions, contact penetration, the
Painlevé paradox, the suitability of the scheme for the simulation of flexi-
ble multibody systems, combined spatial friction laws and general kinematic
equations. We use these benchmark systems, to validate the performance of
the presented scheme.

The mathematical concepts used for the discretization of the contact laws
as well as their numerical treatment is presented in Section 2. In Section 3,
the equations of motion of a mechanical system subjected to ideal bilateral
constraints as well as frictional contacts are established. To avoid that the
resulting generalized-α scheme exhibits numerical constraint drift, and hence
penetration of the contacting bodies, a constraint stabilization in the sense
of Gear–Gupta–Leimkuhler is introduced in Section 4. Subsequently, the
generalized-α discretization of the dynamics is presented in Section 5, the
contact laws in normal direction of the contacting surfaces of the bodies are
discretized in Section 6 and the discretization of the friction laws is conducted
in Section 7. The extension to general relations between velocities and po-
sition is discussed in Section 8. The reformulation of the discrete contact
laws as nonlinear equations and how these are solved with a semi-smooth
Newton method or fixed point iterations is shown in Section 9. Finally, a set
of mechanical benchmark systems is used to validate the derived nonsmooth
generalized-α scheme in Section 10.

4



2 Mathematical preliminaries

2.1 Convex sets and cones

A set C ⊆ Rn is convex if and only if α a + (1 − α)b ∈ C for all a,b ∈ C
and for all α ∈ [0, 1]. For λ ∈ R, we introduce the scalar multiple of a set
C ⊆ Rn as λC = {λx | x ∈ C}. If C is convex then it holds that

x1 ∈ α1C, x2 ∈ α2C =⇒ x1 + x2 ∈ (α1 + α2)C (1)

for α1, α2 ≥ 0. More generally, it holds for a closed convex set C that

xi ∈ αiC, i = 1, 2, 3, . . . =⇒
∑
i

xi ∈ (
∑
i

αi)C, (2)

where αi ≥ 0.
Let K ⊆ Rn be a cone, i.e., the set K fulfills the cone property

a ∈ K =⇒ α a ∈ K ∀α > 0. (3)

For a closed cone K it holds that when a ∈ K also α a ∈ K for all α ≥ 0.
Moreover, if K is a closed convex cone, then it holds that

ai ∈ K, i = 1, 2, 3, . . . =⇒
∑
i

ai ∈ K, (4)

and, likewise,

a(t) ∈ K ∀t ∈ I =⇒
∫
I
a(t) dt ∈ K, (5)

where I ⊆ R and the Lebesgue measure dt may be generalized to any positive
measure.

2.2 Properties of normal cones

Let C ⊆ Rn be a closed convex non-empty set. The normal cone of C at
x ∈ C is defined as

NC(x) =
{
y ∈ C | yT(x∗ − x) ≤ 0,∀x∗ ∈ C

}
, (6)

whereas NC(x) is empty if x /∈ C. One can show that the normal cone NC(x)
is a closed convex cone, see [36]. It can easily be verified, that NC(x) = {0}
if x is an interior point of the set C. Indeed, for an interior point x there
exists a ball around x contained in C. This allows to choose x∗ from this
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ball such that any direction x∗−x can be produced in (6), which leaves only
y = 0 to fulfill the inequality.

The normal cone has a number of less known scaling properties needed
in this paper. These may conveniently be proved using topics from Convex
Analysis such as the subdifferential and the support function. However,
here we will try to introduce as little machinery as possible and derive these
properties by using only the definition (6).

Proposition 1. Let α > 0 and C be a closed convex non-empty set. It then
holds that

y ∈ NαC(x) ⇐⇒ y ∈ NC
( 1
α

x
)
. (7)

Proof. Consider x ∈ αC. The definition (6) applied on the inclusion y ∈
NαC(x) implies that yT(x∗ − x) ≤ 0,∀x∗ ∈ αC. We divide by α > 0 giving

yT
( 1
α

x∗ − 1
α

x
)
≤ 0 ∀ 1

α
x∗ ∈ C ⇐⇒ y ∈ NC

( 1
α

x
)
. (8)

Furthermore, x /∈ αC implies NαC(x) = ∅, which in turn yields NC( 1
α
x) = ∅.

The other direction of the implication follows by taking the reciprocal value
of α.

Proposition 2. Let C be a closed convex non-empty set and C(α) = αC for
all α ≥ 0. If

y ∈ NC(αi)(xi), i = 1, 2, 3 . . . , (9)
where αi ≥ 0, then it holds that

y ∈ NC(
∑

i
αi)

(∑
i

xi
)
. (10)

Proof. Retaining the case αi = 0 for the end of the proof, we first consider
αi > 0 for all i. By using Proposition 1 together with the homogeneity
C(α) = αC(1) = αC we infer from y ∈ NC(αi)(xi), that

y ∈ NC
( 1
αi

xi
)
, i = 1, 2, 3 . . . (11)

Without loss of generality, consider i = 1, 2 and use the definition (6) for
either, that is,

yT
( 1
α1

x∗1 −
1
α1

x1

)
≤ 0 ∀ 1

α1
x∗1 ∈ C (12)

yT
( 1
α2

x∗2 −
1
α2

x2

)
≤ 0 ∀ 1

α2
x∗2 ∈ C . (13)
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We now sum the inequalities, but multiply by α1 and α2 respectively to arrive
at

yT(x∗1 + x∗2 − x1 − x2) ≤ 0 ∀x∗ = x∗1 + x∗2 ∈ (α1 + α2)C , (14)
where we used property (1) of a convex set C. Repeated summation gives

yT
(∑

i

x∗i −
∑
i

xi
)
≤ 0 ∀x∗ =

∑
i

x∗i ∈
(∑

i

αi
)
C = C

(∑
i

αi
)
, (15)

which is equivalent to
y ∈ NC(

∑
i
αi)

(∑
i

xi
)
. (16)

If αi = 0 for some i, then it holds that C(αi) = C(0) = {0} and xi = 0
whereasN{0}(0) = Rn. One easily verifies that the proposition still holds.

Proposition 2 may also be written in integral form as

y ∈ NC(α(t))
(
x(t)

)
∀t ∈ I ⊆ R =⇒ y ∈ NC(

∫
I
α(t)dt)

( ∫
I
x(t) dt

)
, (17)

where α(t) ≥ 0 and where y is a fixed value, i.e., does not depend on t.

2.3 Reformulations and numerical solution of normal cone inclu-
sion problems

The generalized-α discretization of the dynamics of mechanical systems with
frictional contacts results in a normal cone inclusion problem, that is, a set of
nonlinear equations and normal cone inclusions, describing a time step of the
scheme. Hence, finding a numerical solution to a time step of the presented
scheme in essence corresponds to finding a numerical solution to

y ∈ NC(−z) with Rs(y, z) = 0 , (18)

where Rs : Rn × Rn → Rn is an implicit relationship between y and z. An
extensive collection of solutions strategies for (18) can be found in [3]. In
what follows, we limit ourselves to two strategies based on the reformulation
of the normal cone inclusion as an equation including the proximal point
function.

For a closed convex non-empty set C ⊆ Rn, we define the proximal point
function

proxC : Rn → Rn, p 7→ q = argmin
p∗∈C

(
1
2 ||p− p∗||2

)
, (19)
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which maps a point p to the closest point q ∈ C, where the distance between
the points is measured by the Euclidean norm || . ||. It is immediately clear
from (19) that proxC(p) = p if and only if p ∈ C. Using the just defined
proximal point function, it can be shown that two points x and y fulfill the
normal cone inclusion

y ∈ NC(x) , (20)
if and only if they fulfill the equation

x = proxC(x + ry) (21)

for any r > 0, see [29].
Using the equivalence of (20) and (21) allows to reformulate (18) as

z = −proxC(ry− z) with Rs(y, z) = 0 , (22)

which reduces the problem of finding the solution of (18) to numerically
finding the solution of a nonlinear equation.

The equation (22) can for example be used to define a residual R =
(RT

s RT
c )T, where

Rc(x) := z + proxC(ry− z) = 0 (23)

with x = (yT zT)T. Due to the presence of proxC , the residual R is con-
tinuous but nonsmooth, hence (23) can be solved using the semi-smooth
(nonsmooth) Newton method [3, 4], where in the Newton update

xν+1 = xν −∇R(xν)−1R(xν) (24)

any regular element∇R(xν) of the generalized Jacobian ∂R(xν) can be used.
The semi-smooth Newton method reduces to the Newton method whenever
R is differentiable. In that case, ∇R(xν) is the Jacobian matrix of R at xν .

Solving (23) with the semi-smooth Newton method has two drawbacks if
∇R(xν) is computed by finite differences. Firstly, the accuracy of the Jaco-
bian strongly depends on the parameter r. Moreover, using finite differences
to compute ∇R(xν) at a point where R is not differentiable generally leads
to an arbitrary element in ∂R(xν). Hence, we have no control over which
element of ∂R(xν) is ultimately used for the Newton update.

As a remedy, we can use an active set formulation to treat (23), which
relies on the specific knowledge of the set C. In our case, two sets are of
interest. Either C = R−0 := {z ∈ R | z ≤ 0 } or C = B(R) := {z ∈ Rn | ||z|| ≤
R}, for which the respective proximal point functions are piecewise given as{

p ∈ R−0 : proxR−
0

(p) = p

p /∈ R−0 : proxR−
0

(p) = 0 and
{

p ∈ B(R) : proxB(R)(p) = p
p /∈ B(R) : proxB(R)(p) = R p

||p|| .

(25)
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It follows immediately from using (25) in (23) that for C = R−0 the residual
in (23) is equivalent to

ry − z ∈ R−0 : Rc := y = 0
ry − z /∈ R−0 : Rc := z = 0 , (26)

where we abstain from the bold notation as all variables are scalar. Proceed-
ing all the same for C = B(R), the residual in (23) is equivalent to

ry− z ∈ B(R) : Rc := y = 0
ry− z /∈ B(R) : Rc := z +R y

||y|| = 0 , (27)

where we have used that z +R ry−z
||ry−z|| = 0 is solved by z = −R y

||y|| . Further-
more, ry−z /∈ B(R) implies with z ∈ B(R) that ||y|| > 0. In these active set
formulations of (23) the parameter r is only present in the activation condi-
tion of the residuals and does not affect the accuracy of the computation of
the Jacobian by finite differences. Moreover, since the active set formulation
gives direct access to the non-differentiable points of the residual, we can
choose to not switch between the two pieces of the residual during the nu-
merical differentiation process, which leads to a well-behaved Jacobian and
a more robust scheme.

Another popular strategy to solve (22) is the use of fixed point iterations,
see [4, 40]. For that, we use the implicit function theorem on Rs(y, z) = 0
guaranteeing the existence of a function F such that y = F(z). Hence, the
fixed point iterations follow as

zν+1 = −proxC(rF(zν)− zν) , (28)

where generally F is not known analytically and yν = F(zν) must be found
numerically by solving Rs(yν , zν) = 0 for yν while treating zν as a constant.

3 Mechanical systems with frictional contacts

Consider a finite-dimensional mechanical system whose motion is described
by the generalized coordinates q(t) ∈ Rn which are considered to be functions
of time t. We introduce the generalized velocities u corresponding to the time
derivative q̇ of the generalized coordinates for almost all t, i.e., q̇ = u for
almost all t. Equivalently, we can write

dq = u dt . (29)

We assume the generalized velocities to be special functions of locally bounded
variation, i.e., functions of locally bounded variations with no singular part,
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see [6, 15]. This implies that the left and right limits of u, respectively de-
noted as u− and u+, exist and are bounded at every time instant, and that
the discontinuity points of u are countable. In order to have the notion of
velocity for every time instant, we set u = u+, i.e., we consider the veloci-
ties to be right-continuous. It is well known, see [5, 21], that the differential
measure du can be decomposed into the sum of an absolutely continuous
measure and a singular measure with respect to the Lebesgue measure dt.
To state the decomposition, we define the atomic measure η as a finite sum
of Dirac point measures δtk . Specifically,

dη =
∑
k

dδtk , where
∫
I

dδtk =
{

1 if tk ∈ I
0 if tk /∈ I

. (30)

With that, the velocity measure can be decomposed as

du = a dt+ (u+ − u−) dη , (31)

where we call the density a the generalized acceleration of the mechanical
system and where dη is concentrated on the set of discontinuities tk of u.
To complete the description of the dynamics of the mechanical system, the
link between the change in velocity du and the forces acting on the system
is established by the equality of measures

M(t,q) du = dF , (32)

where M = MT denotes the mass matrix of the system and the forces are
represented by the force measure dF.

We assume that the mechanical system is subjected to ng + nγ ideal
bilateral constraints formulated at position and velocity level, respectively, as

g(t,q) = 0 ∈ Rng and γ(t,q,u) = 0 ∈ Rnγ . (33)

By ideality of the constraint forces [21], the corresponding force directions
are given by

WT
g = ∂g

∂q
and WT

γ = ∂γ

∂u
, (34)

such that the constraint forces are

dFgγ = WgdPg + WγdPγ , (35)

where dPg and dPγ denote the constraint percussion measures. Assuming
that percussions P2 are special functions of locally bounded variation, the
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force measures dP2 are composed by a nonimpulsive force λ2 and an impul-
sive force Λ2, that is

dP2 = λ2dt+ Λ2dη . (36)
Hereby the box 2 is used as a placeholder for any subscript, e.g., for g or γ.

To model the contacts occurring in the mechanical system, we assume
that they can be described by nN ideal unilateral constraints at position
level

gN(t,q) ≥ 0 , (37)
where the inequality holds component-wise and gN(t,q) ∈ RnN are the gap
functions describing the distance between the tangent planes of the pairs of
contact points on either contacting bodies, see [21, 30]. The corresponding
constraint forces are

dFN = WNdPN with WT
N = ∂gN

∂q
. (38)

For the contact (pair) k we say that the contact is

• open if gkN > 0, i.e., the contacting bodies are separated

• closed if gkN = 0, i.e., the contacting bodies are in contact

• penetrating if gkN < 0, i.e., the contacting bodies penetrate each other.

We define the set of active contacts as

A(t,q) =
{
k = 1, . . . , nN

∣∣∣ gkN(t,q) ≤ 0
}
. (39)

It is clear from this definition, that the set of inactive contacts, that is, the
complement Ā = {1, . . . , nN} \ A of the set A, is the set of open contacts.

The constraint force laws describing a contact in normal direction are for-
mulated separately for the nonimpulsive forces λN and the impulsive forces
ΛN composing the normal contact percussions dPN by (36). For the nonim-
pulsive contact force λkN of the k-th contact we choose Signorini’s law

gkN ∈ NR−
0

(−λkN) , (40)

which assures contact impenetrability and is also known as the Signorini
condition. Hereby, we assume that the contact surfaces can only exert com-
pressive normal contact forces λkN on each other. The physical interpretation
of Signorini’s law is easiest understood by looking at (40) as an inequality
complementarity condition

λkN ≥ 0, gkN ≥ 0, λkN g
k
N = 0. (41)
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Indeed, if λkN > 0, the argument of the normal cone is an interior point of
the set R−0 and the normal cone is zero, implying gkN = 0. On the other
hand, if λkN = 0, it follows from the definition of the normal cone (6) that
NR−

0
(0) is the set of positive numbers including zero and therefore gkN ≥ 0.

It is easy to see from Signorini’s law in the form (41) that for open contacts,
the normal contact force is zero and if the contact is closed, only forces are
allowed which push the contact surfaces apart.

For the impulsive contact forces ΛN , we use the gap velocity defined by

ġN(t,q,u) = WT
N(t,q) u + ∂gN

∂t
(t,q) (42)

to formulate the Newton-type impact law as

k ∈ A : ξkN ∈ NR−
0

(−Λk
N)

k ∈ Ā : Λk
N = 0 . (43)

Herein, we have introduced the kinematic quantity

ξkN(t,q,u−,u+) = ġkN(t,q,u+) + ekN ġ
k
N(t,q,u−) (44)

for the k-th contact with restitution coefficient ekN . The impact law (43)
implies that whenever an impact takes place, i.e., Λk

N > 0, the post-impact
velocity ġk+

N = ġkN(t,q,u+) is related to the similarly defined pre-impact
velocity by Newton’s impact law

ġk+
N = −ekN ġk−N . (45)

More details on the intricacies of the generalized Newton’s impact law (43)
can be found in [22, 41]. Friction between the surfaces of the k-th contact
is described by a set-valued force law. Therefore, nkF velocity parameters
γkF (t,q,u) ∈ RnkF describing the relative motion of the surfaces are typically
introduced, where nkF = 1 for planar friction, nkF = 2 for spatial friction and
nkF ≥ 3 for combined friction laws such as Coulomb–Contensou friction [28].
The friction forces have the form

dFF = WFdPF =
nN∑
k=1

Wk
FdPk

F with (Wk
F )T = ∂γkF

∂u
, (46)

where WF = (W1
F . . .W

nN
F ) and dPF =

(
(dP1

F )T . . . (dPnN
F )T

)T.
With CF denoting the set of admissible (negative) friction forces, the

constitutive laws for the nonimpulsive and impulsive friction forces of the
k-th contact are

γkF ∈ NCF (λkN )(−λkF ) and ξkF ∈ NCF (ΛkN )(−Λk
F ) (47)
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whenever the contact k is active, i.e., k ∈ A. Moreover, the set CF depends
on the normal contact forces and we have introduced

ξkF (t,q,u−,u+) = γkF (t,q,u+) + ekF γ
k
F (t,q,u−) (48)

with restitution coefficient ekF . Otherwise, if the contact k is open, the friction
forces are zero.

For the sake of simplicity, in this paper we restrict ourselves to sets of
admissible (negative) friction forces having the form

CF (λkN) =
{
λkF ∈ RnkF

∣∣∣ ||λkF || ≤ µkλkN

}
(49)

with friction coefficient µk and mention how the general case can be treated
wherever it seems appropriate.

The most prominent example having the form (49) is isotropic spatial
Coulomb friction. As described in [30], in that case we have nkF = 2 since
the velocity parameters correspond to two orthogonal velocities which are
tangent to the contact surfaces.

Under the premise that all forces which are not constraint or contact
forces, such as spring forces, gyroscopic terms and dashpot forces, are non-
impulsive and can therefore be represented by a Lebesgue-density h(t,q,u),
the totality of forces acting on the mechanical system is represented by

dF = h dt+ dFgγ + dFN + dFF

= h dt+ WgdPg + WγdPγ + WNdPN + WFdPF .
(50)

Consequently, the equality of measure (32) takes the form

M du = h dt+ WgdPg + WγdPγ + WNdPN + WFdPF . (51)

With (31) and (36) in mind, we conclude from (51) that the acceleration of
the system is characterized by the equations of motion

M a = h + Wgλg + Wγλγ + WN λN + WF λF (52)

holding for dt-almost everywhere in time and the velocity jumps are given
by the impact equations

M (u+ − u−) = WgΛg + WγΛγ + WN ΛN + WF ΛF . (53)
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4 Acceleration level constraints and stabilization

In this section, we formulate the bilateral constraints as well as Signorini’s
law on acceleration level. Moreover, a stabilization on velocity and position
level in the sense of Gear-Gupta-Leimkuhler is introduced to avoid constraint
drift in the numerical scheme.

In order to formulate the bilateral constraints (33) on acceleration level,
we introduce the constraint velocity

ġ(t,q,u) = WT
g (t,q)u + ∂g

∂t
(t,q) (54)

as well as the constraint accelerations

g̈(t,q,u, a) = WT
g (t,q) a + ∂ġ

∂q
(t,q,u) u + ∂ġ

∂t
(t,q,u)

γ̇(t,q,u, a) = WT
γ (t,q) a + ∂γ

∂q
(t,q,u) u + ∂γ

∂t
(t,q,u) .

(55)

With those, the bilateral constraints (33) are equivalently formulated by
demanding

g̈(t,q,u, a) = 0 and γ̇(t,q,u, a) = 0 (56)
for dt-almost everywhere as well as

ġ(t,q,u+) = 0 and γ(t,q,u+) = 0 (57)

whenever a velocity jump occurs. Clearly, these conditions are equivalent to
the original constraints only if the initial conditions are chosen appropriately,
i.e., the initial conditions must fulfill the original constraints (33).

As described in [21, p.138], we can use the gap velocity (42) and the gap
acceleration

g̈N(t,q,u, a) = WT
N(t,q) a + ∂ġN

∂q
(t,q,u) u + ∂ġN

∂t
(t,q,u) (58)

to formulate the Signorini condition (40) at velocity and acceleration level,
respectively. Specifically, on velocity level Signorini’s law reads as

k ∈ A : ġkN ∈ NR−
0

(−λkN)
k ∈ Ā : λkN = 0 dt-a.e. , (59)

whereas on acceleration level we have

k ∈ B : g̈kN ∈ NR−
0

(−λkN)
k ∈ B̄ : λkN = 0 dt-a.e. , (60)
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where we have introduced the set

B(t,q,u) =
{
k ∈ A

∣∣∣ ġkN(t,q,u) ≤ 0
}

(61)

characterizing the contacts that are active on position as well as on velocity
level. The complement of B is again denoted as B̄ = {1, . . . , nN} \ B and
by definition includes Ā as a subset, i.e., Ā ⊆ B̄. It is important to point
out that if the motion fulfills Signorini’s law on one kinematic level, it does
so also on all other kinematic levels provided that the initial conditions are
compatible with the other kinematic levels.

It is well known that the constraints of a mechanical system can be for-
mulated on acceleration level dt-almost everywhere without changing its
motions. Moreover, the acceleration level constraints come with favorable
mathematical properties. During impact free time intervals for example, the
presence of position level constraints leads to a DAE of index three. A formu-
lation of the system with constraints on acceleration level reduces to a DAE
of index one, which are often easier to solve numerically than higher index
DAEs. However, the described index reduction by differentiation is prone
to numerical drift, meaning that although the constraint is satisfied on ac-
celeration level, the corresponding position and velocity level constraints are
violated due to numerical integration errors. As a remedy, the position and
velocity level constraints can be stabilized by introducing additional Lagrange
multipliers. This stabilization, initially proposed by [18] and hence known
by the name Gear–Gupta–Leimkuhler (GGL) method, can analogously be
extended to unilateral constraints, see [9].

To stabilize the constraints, we formally extend the kinematics of the
system to

dq = (u + uS) dt
du = (a + aS) dt+ (u+ − u−) dη ,

(62)

where we have added the velocity uS and the acceleration aS caused by
the stabilization to (29) and (31), respectively. The multipliers νg, νγ and
νN then take care of the stabilization of (56) and (60) on velocity level by
demanding

M aS = Wgνg + Wγνγ + WNνN

ġ(t,q,u) = 0 dt-a.e.
γ(t,q,u) = 0 dt-a.e.
k ∈ A : ġkN ∈ NR−

0
(−νkN)

k ∈ Ā : νkN = 0 . dt-a.e.

(63)

Note, that the stabilization (63) demands ġ = 0 for almost all time instants,
which combined to (57) yields the condition ġ = 0 for all time instants. The
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same reasoning holds for γ = 0.
We use the multipliers µg and µN to stabilize the constraints (56) and

(60) on position level by

M uS = Wgµg + WNµN

g(t,q) = 0
gkN ∈ NR−

0
(−µkN)

(64)

for all contacts k.
It can be shown that, in absence of numerical errors, the solution of the

equations of motion formulated with stabilized acceleration level constraints
have vanishing Lagrange multipliers ν2 and µ2 dt-almost everywhere and
therefore aS = uS = 0 for almost all time instants. Moreover, it can be shown
that the remaining quantities solve the equations of motion with constraints
formulated on position and velocity level described in Section 3. This fact
establishes the mechanical equivalence of the original equations of motion
of Section 3 and the equations of motion with stabilized acceleration level
constraints presented in this section.

5 Nonsmooth generalized-α discretization

To compute the motion of the mechanical system numerically, in this section
we derive a time-stepping scheme from the family of generalized-α methods.
The scheme is derived by integrating the equations of motion with stabilized
acceleration level constraints over a time interval I = (ti, ti+1] and introduc-
ing appropriate discrete variables.

Considering the velocity u(t) as a right-continuous function, the velocity
of the system at a time t can be written as

u(t) = u(ti) +
∫

(ti,t]
du = u(ti) +

∫ t

ti
a dt+

∫
(ti,t]

(aS dt+ (u+−u−) dη) , (65)

where we have used (62). Similarly, the position of the system at time ti+1 is

q(ti+1) = q(ti) +
∫
I

dq = q(ti) +
∫
I
u dt+

∫
I
uS dt , (66)

which with the help of (65) can be reformulated to

q(ti+1) = q(ti) +
∫
I
u(ti) dt+

∫
I

∫ t

ti
a dτ dt+

∫
I
U(t, ti) dt+

∫
I
uS dt , (67)

where we have denoted the last integral in (65) by

U(t, ti) =
∫

(ti,t]
(aS dt+ (u+ − u−) dη) . (68)
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To derive the position and velocity updates of the scheme, numerical
approximations of the integrals in (65) and (67) using quadratures have to
be introduced. As approximants for the position, velocity and acceleration
at some time instant ti we introduce qi, ui and ai, respectively. Moreover,
we define the discrete variables

Ui+1 = U(ti+1, ti) and Qi+1 =
∫
I
U(t, ti) dt+

∫
I
uS dt . (69)

The integrals of the acceleration a in (65) and (67) are discretized in the
fashion of a generalized-α method [9] using the quadratures∫

I
a dt ≈ ∆t

(
(1− γ)āi + γāi+1

)
∫
I

∫ t

ti
a dτ dt ≈ ∆t2

2
(
(1− 2β)āi + 2βāi+1

)
,

(70)

where the auxiliary acceleration variables ā are linked to the approximants
of the acceleration by

αmāi + (1− αm)āi+1 = αfai + (1− αf )ai+1 (71)

and the time step of the scheme is introduced as ∆t = ti+1 − ti. The coef-
ficients αf , αm, β and γ can be chosen according to Newmark [34], Hilber–
Hughes–Taylor [26] or Chung and Hulbert [12]. We choose the last option,
which results in a second-order scheme with an adjustable level of numerical
dissipation in the high-frequency range. We introduce the spectral radius at
infinite frequencies ρ∞ ∈ [0, 1], which controls the dissipation in the high-
frequency range. The coefficients of the scheme are then given by

αm = 2ρ∞ − 1
ρ∞ + 1 , αf = ρ∞

ρ∞ + 1 , γ = 1
2 +αf −αm and β = 1

4

(
1
2 + γ

)2

. (72)

For ρ∞ = 1 the scheme shows the minimal and for ρ∞ = 0 the maximal
amount of dissipation in the high-frequency regime.

Finally, the position and velocity updates

ui+1 = ui + ∆t
(
(1− γ)āi + γāi+1

)
+ Ui+1

qi+1 = qi + ∆tui + ∆t2
2
(
(1− 2β)āi + 2βāi+1

)
+ Qi+1

(73)

are obtained by using (70) and (69) in (65) and (67), respectively.
The equations of motion (52) are discretized as

Mi+1 ai+1 = hi+1 +
∑

2∈{g,γ,N,F}
W2,i+1 λ2,i+1 , (74)
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where the subscript i + 1 indicates that the quantity is evaluated at ti+1,
qi+1 and when applicable at ui+1, e.g., hi+1 = h(ti+1,qi+1,ui+1) and Mi+1 =
M(ti+1,qi+1). Moreover, we have introduced λ2,i+1 to approximate the forces
λ2.

To find the discrete equations for Ui+1, consider the approximation∫
I
M(aS dt+ (u+ − u−) dη) ≈Mi+1Ui+1 , (75)

which is exact for a constant mass matrix. Furthermore, we approximate∫
I
WK(νKdt+ΛKdη) ≈WK,i+1ΛK,i+1 and

∫
I
WFΛFdη ≈WF,i+1ΛF,i+1 ,

(76)
which are exact if W2 is constant and where we have introduced the discrete
variables

ΛK,i+1 :=
∫
I
νKdt+ ΛKdη and ΛF,i+1 :=

∫
I
ΛFdη (77)

with K ∈ {g, γ,N}. In view of (53) and (63), the above discretizations (75)
and (76) yield the discrete impact equations

Mi+1Ui+1 =
∑

K∈{g,γ,N}
WK,i+1ΛK,i+1 + WF,i+1ΛF,i+1 . (78)

From the definition of the atomic measure (30), we see that the discrete
variables ΛK,i+1 and ΛF,i+1 consist of the sum of impulsive forces ∑k ΛK(tk),
respectively ∑

k ΛF (tk), corresponding to collisions in the time interval I.
In addition, ΛK,i+1 contains a contribution due to the stabilization of the
constraints.

The discrete equation for Qi+1 is found from the approximation∫
I

∫
(ti,t]

M(aS dτ + (u+ − u−) dη)dt+
∫
I
MuSdt ≈Mi+1Qi+1 . (79)

Finally, it is by combining the impact equation (53) with the stabilizing
conditions (63) and (64) that we can motivate the discrete equation

Mi+1Qi+1 =
∑

K∈{g,N}
WK,i+1κK,i+1 +

∑
R∈{γ,F}

∆t
2 WR,i+1ΛR,i+1 . (80)

Hereby, we have introduced the discrete variables κK,i+1 with K ∈ {g,N} as

κK,i+1 :=
∫
I

∫
(ti,t]

(νKdτ + ΛKdη)dt+
∫
I
µKdt (81)
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and have used the approximation∫
I

∫
(ti,t]

WK(νKdt+ ΛKdη)dt+
∫
I
WKµKdt ≈WK,i+1κK,i+1 , (82)

similar to (76). Moreover, we have approximated the remaining double inte-
grals by∫
I

∫
(ti,t]

(νγdt+ Λγ dη) dt ≈ ∆t
2 Λγ,i+1 and

∫
I

∫
(ti,t]

ΛF dη dt ≈ ∆t
2 ΛF,i+1 .

(83)
Similar to standard DAE solvers [24], the bilateral constraints on all kine-

matic levels are discretized by just evaluating them at the end of the time
step. For the constraints originating from a position level constraint that is

g(ti+1,qi+1) = 0, ġ(ti+1,qi+1,ui+1) = 0 and g̈(ti+1,qi+1,ui+1, ai+1) = 0 ,
(84)

whereas for constraints originating from a velocity level constraint, we have

γ(ti+1,qi+1,ui+1) = 0 and γ̇(ti+1,qi+1,ui+1, ai+1) = 0 . (85)

6 Discrete normal contact laws

Since we aim at an event-capturing time-stepping scheme, we do not resolve
the contact dynamics during a time step I = (ti, ti+1] in all detail, but rather
derive discrete contact laws capturing the contact dynamics occurring during
the time step. More precisely, we derive discrete normal contact laws such
that at the end of the time step impenetrability is satisfied on all kinematic
levels while capturing the effects of Newton’s impact law.

We start the discretization of the normal contact laws from the accel-
eration level Signorini conditions (60). Since the velocity of the system is
continuous between velocity jumps, implying ġk+

N = ġk−N = ġkN dt-a.e., we
have that

(1 + ekN)ġkN = ġk+
N + ekN ġ

k−
N = ξkN dt-a.e. , (86)

where we have used the definition (44) of ξkN . Consequently, in view of
ekN ≥ 0, we can replace the condition ġkN ≤ 0 with ξkN ≤ 0 in (61). The
discrete Signorini conditions then result by evaluating all quantities in (60)
at the end of the time step. Thus, we have

k ∈ Bi+1 : g̈kN,i+1 ∈ NR−
0

(−λkN,i+1)
k ∈ B̄i+1 : λkN,i+1 = 0 , (87)
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where we have used the notation

gkN,i+1 = gkN(ti+1,qi+1)
ξkN,i+1 = ξkN(ti+1,qi+1,ui,ui+1)
g̈kN,i+1 = g̈kN(ti+1,qi+1,ui+1, ai+1)

(88)

and defined the discrete version of (61) as

Bi+1 =
{
k ∈ Ai+1

∣∣∣ ξkN,i+1 ≤ 0
}
, where Ai+1 = A(ti+1,qi+1) . (89)

To formulate the normal contact law on velocity level, we combine Sig-
norini’s law on velocity level, the impact law and the stabilization condition.
For that, consider the case of active normal contact, i.e., k ∈ A. Then,
Signorini’s law and the stabilization condition

ġkN ∈ NR−
0

(−λkN) and ġkN ∈ NR−
0

(−νkN) (90)

hold dt-almost everywhere, respectively. Using the cone property of the
normal cone, we may write (1 + ekN) in front of ġkN in (90), which in view of
(86) takes the form

ξkN ∈ NR−
0

(−λkN) and ξkN ∈ NR−
0

(−νkN) . (91)

The proposed reformulation of the combined Signorini and stabilization
condition has the same form as the impact law (43), which reads as

ξkN ∈ NR−
0

(−Λk
N) . (92)

With this preparatory work, we can finally proceed toward a discrete
law. Since we are interested in the end of the time step, we use the set Ai+1
introduced in (89) to determine whether the contact k is active on position
level at the end of the time step. If this contact is active, that is k ∈ Ai+1, we
assume the contact to be active during the whole time step. Furthermore, we
assume ξkN to be constant within a time step I = (ti, ti+1] and to correspond
to ξkN,i+1, which allows to combine (91) and (92) in integral form as

k ∈ Ai+1 : ξkN,i+1 ∈ NR−
0

(
−
∫
I

(
(λkN + νkN)dt+ Λk

Ndη
))

, (93)

where we have used Proposition 2. If k ∈ Āi+1, the integral in (93) is zero.
At this point it is appropriate to qualitatively discuss the assumptions

leading to (93). For that, we look at two cases. Either there is no collision in
the time interval I and only non-impulsive motion takes place on I (case i)
or there is impulsive motion during the time interval I (case ii).
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(i) Purely non-impulsive motion on I: Since the contact is closed at the
end of the time step and there is no collision, the contact must either
have been closed during the whole time step, or it must have closed at
some tc ∈ I = (ti, ti+1] with ġkN(tc) = 0. In the first case, the contact
velocity ġkN vanishes on I and by (86) we have ξkN = 0 on I justifying the
approximation. In the second case, for which the contact closes during
the time step we have ġkN(ti) < 0 and ġkN(ti+1) ≥ 0, which is at best
approximated by ξkN,i+1 = 0. This allows the integral over the contact
forces in (93) to be non-zero, which can capture the exact dynamics.

(ii) Impulsive motion on I: There are one or more collisions or other events
causing impulsive motion (a dynamic catastrophe). Then we have to
admit that the impulsive part of the motion is dominating the dynam-
ics on I and we may neglect the non-impulsive motion. The error which
we then make in the non-impulsive description by falsely considering
ξkN to be constant is then small and of the order of the time step. If
the collision takes place at tc ∈ I = (ti, ti+1], then we approximate
ξkN(tc,q(tc),u−(tc),u+(tc)) by ξkN(ti+1,q(ti+1),u(ti),u(ti+1)). This ap-
proximation becomes exact in the limit of ∆t ↓ 0.

Finally, equation (93) suggests a discrete normal contact law on velocity
level given by

k ∈ Ai+1 : ξkN,i+1 ∈ NR−
0

(−P k
N,i+1)

k ∈ Āi+1 : P k
N,i+1 = 0 , (94)

where the discrete percussion is defined by

PN,i+1 = ΛN,i+1 + ∆t
(
(1− γ)λ̄N,i + γλ̄N,i+1

)
. (95)

Hereby, we have introduced the auxiliary force variables λ̄N linked to the
approximants of the contact forces by

αmλ̄N,i + (1− αm)λ̄N,i+1 = αfλN,i + (1− αf )λN,i+1 . (96)

To motivate (94) as an approximation of (93), we first state that the second
part of the discrete percussion (95) is a generalized-α discretization of the
integral of λN over I, see (70) and (71). This, in combination with (77), in-
deed shows that the discrete percussion approximates the integral appearing
in (93), that is,

PN,i+1 ≈
∫
I

(
(λN + νN)dt+ ΛNdη

) (36)=
∫
I

(
dPN + νNdt

)
. (97)

We use the terminology “percussion”, even though the discrete variable in-
cludes the stabilizing Lagrange multipliers.
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In order to state the contact law on position level, we observe that (93)
also holds if we only integrate over a time span (ti, t] ⊆ I. Moreover, the
inclusion (93) implies that the integral is non-negative if the contact k is
closed at the end of the time step. Since, in addition, the integral is zero if
the contact k is open at the end of the time step, it follows that

gkN,i+1 ∈ NR−
0

(
−
∫

(ti,t]

(
(λkN + νkN)dτ + Λk

Ndη
))

(98)

for all t ∈ I. Moreover, we approximate the stabilization on position level
(64) by

gkN,i+1 ∈ NR−
0

(−µkN(t)) (99)

for all times t in I. Finally, we use the Proposition 2 to combine (98) and
(99) to

gkN,i+1 ∈ NR−
0

(
−
( ∫

I

∫
(ti,t]

(
(λkN + νkN)dτ + Λk

Ndη
)
dt+

∫
I
µkNdt

))
. (100)

This inclusion suggests a discrete normal contact law on position level given
by

gkN,i+1 ∈ NR−
0

(−κ̂kN,i+1) with k = 1, . . . , nN , (101)
together with

κ̂N,i+1 = κN,i+1 + ∆t2
2
(
(1− 2β)λ̄N,i + 2βλ̄N,i+1

)
. (102)

Hereby, the second part in (102) approximates the double integral of λN
using the generalized-α method, see (70) and (71), and it therefore follows
from (81) that

κ̂N,i+1 ≈
∫
I

∫
(ti,t]

(
(λN + νN)dτ + ΛNdη

)
dt+

∫
I
µNdt , (103)

which confirms that (101) is indeed an approximation of (100).

7 Discrete friction laws

In (47) we stated the friction law of the k-th contact as

γkF ∈ NCF (λkN )(−λkF ) (104)

for the case where the contact is active, i.e., k ∈ A. Using the cone property of
the normal cone, we may write (1+ekF ) in front of γkF in (104). Furthermore,
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for almost all t it holds that u+(t) = u−(t) = u(t). Hence, it follows from
(48) that we may equivalently write the friction law as

ξkF ∈ NCF (λkN )(−λkF ). (105)

This reformulation of the friction law brings it in a similar form as the fric-
tional impact law (47)

ξkF ∈ NCF (ΛkN )(−Λk
F ) . (106)

In the following discretization process, we exploit that the set of admissi-
ble (negative) friction forces has the homogeneity property CF (α) = αCF (1).
Moreover, similar as for the laws in normal direction, we consider ξkF to be
constant on the short time-interval I and assume it to take the value

ξkF,i+1 = ξkF (ti+1,qi+1,ui,ui+1) .

Specifically, this translates to the friction law as

ξkF,i+1 ∈ NCF (λkN (t))

(
− λkF (t)

)
, ∀t ∈ I. (107)

Because ξkF,i+1 is constant on I, we can invoke (17), i.e., Proposition 2 in
integral form, which directly gives

ξkF,i+1 ∈ NCF (
∫
I
λkNdt)

(
−
∫
I
λkF dt

)
. (108)

For the impulsive part of the motion on I, we similarly have the approxima-
tion

ξkF,i+1 ∈ NCF (ΛkN (t))

(
−Λk

F (t)
)
, ∀t ∈ I (109)

and using (17) cast the impact law in integral form

ξkF,i+1 ∈ NCF (
∫
I

ΛkN dη)

(
−
∫
I
Λk
Fdη

)
. (110)

Finally, we combine (108) and (110) by using Proposition 2 to

ξkF,i+1 ∈ NCF (
∫
I
λkNdt+ΛkNdη)

(
−
∫
I
(λkFdt+ Λk

Fdη)
)
, (111)

which motivates as approximation the discrete friction law

k ∈ Ai+1 : ξkF,i+1 ∈ NCF (PkN,i+1)(−Pk
F,i+1)

k ∈ Āi+1 : Pk
F,i+1 = 0 ,

(112)

where
PF,i+1 = ΛF,i+1 + ∆t

(
(1− γ)λ̄F,i + γλ̄F,i+1

)
. (113)
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Hereby, we have introduced the auxiliary discrete friction forces linked to the
actual forces by

αmλ̄F,i + (1− αm)λ̄F,i+1 = αfλF,i + (1− αf )λF,i+1 . (114)

Clearly, because of (77) and interpreting the second part of (113) as the
generalized-α approximation of the integral of the nonimpulsive friction forces,
we have

PF,i+1 ≈
∫
I
(ΛFdη + λFdt) (36)=

∫
I

dPF . (115)

Using the discrete percussion P k
N,i+1 in (112) is finally justified by (97) since

the stabilizing Lagrange multipliers are zero for the exact solution.
Since the discrete friction law (112) combines the effects of nonimpulsive

and impulsive friction forces, an additional friction law is needed to distin-
guish these effects and compute values for both λkF,i+1 and Λk

F,i+1. For that,
we first state that the friction law (112) basically consists of three cases.
Either the k-th contact is open (k ∈ Āi+1) and Pk

F,i+1 = 0 or the contact is
active (k ∈ Ai+1) and one of the following two cases holds. In the first case,
the negative discrete percussion lies in the interior of the set of admissible
negative friction forces CF (P k

N,i+1), which by the normal cone inclusion in
(112) implies ξkF,i+1 = 0. Hence, this can be seen as the case of sticking
contact and we introduce the set of sticking contacts

Dst
i+1 =

{
k ∈ Ai+1

∣∣∣ ξkF,i+1 = 0
}
. (116)

The second case is the case of slipping contact, where ξkF,i+1 is nonzero and the
negative discrete percussion must lie on the boundary of the set CF (P k

N,i+1)
by (112). We write k ∈ Dsl

i+1 in that case, where obviously the set of slipping
contacts is just the complement of the set of sticking contacts, that is, Dsl

i+1 =
Ai+1 \Dst

i+1.
We are now ready to state the remaining discrete friction law as

k ∈ Dst
i+1 : γ̇kF,i+1 ∈ NCF (λkN,i+1)(−λkF,i+1)

k ∈ Dsl
i+1 : λkF,i+1 = λk,slF,i+1

k ∈ Āi+1 : λkF,i+1 = 0 ,
(117)

where λk,slF,i+1 denotes the element on the boundary of CF (λkN,i+1) such that

γkF,i+1 ∈ NCF (λkN,i+1)(−λ
k,sl
F,i+1) (118)

and γ̇kF,i+1 denotes the evaluation at the end of the time step of the acceler-
ation

γ̇kF (t,q,u, a) = (Wk
F )T(t,q) a + ∂γkF

∂q
(t,q,u) u + ∂γkF

∂t
(t,q,u) . (119)
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In our case, the set of admissible friction forces is given by (49) and one can
easily verify that

λk,slF,i+1 = −µkλkN,i+1
γkF,i+1

||γkF,i+1||
. (120)

In essence, the discrete friction law (117) corresponds to the evaluation
of (104) at the end of the time step, with the difference that in the sticking
case, the friction law is formulated on acceleration level. We refer to [21,
Sect. 10.4] for more details on this matter. We conclude this section with
the remark, that the formulation of the sticking case on acceleration level
is strictly necessary, because otherwise the two discrete friction laws would
lead to an ambiguity. Specifically, in the sticking case, (112) would imply
ξkF,i+1 = 0 and the evaluation of (104) at the end of the time step would
imply γkF,i+1 = 0, which are the same condition in the case of ekF = 0. Hence,
in that case the two conditions collapse and create an ambiguity which does
not allow to compute λkF,i+1 and Λk

F,i+1 independently.

8 Extension to general velocities

We generalize the kinematic equation (29) to

dq = q̇(t,q,u) dt , where q̇(t,q,u) = B(t,q)u + β(t,q) (121)

with u(t) ∈ Rm and B(t,q(t)) ∈ Rn×m. Such a generalization is for exam-
ple needed in rigid body dynamics, when the orientations of the bodies are
described by unit quaternions and the components of the angular velocities
with respect to a body fixed frame are chosen as velocity parameters of the
system. Another prominent example is the use of minimal coordinates and
minimal velocities for a nonholonomic system, where typically m < n.

It follows immediately from (121) that

dq̇ = B(t,q)du + ∂q̇(t,q,u)
∂q

dq + ∂q̇(t,q,u)
∂t

dt .

Gathering the densities with respect to dt after using (31) and (121) allows
to rewrite the differential measure of q̇ as

dq̇ = q̈(t,q,u, a)dt+ B(t,q)(u+ − u−)dη , (122)

where we have introduced the function

q̈(t,q,u, a) = B(t,q)a + ∂q̇(t,q,u)
∂q

q̇(t,q,u) + ∂q̇(t,q,u)
∂t

. (123)
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It is straightforward to see, that after introducing the stabilization as
in (62), we have

dq = q̇(t,q,u + uS) dt
dq̇ = q̈(t,q,u, a + aS)dt+ B(t,q)(u+ − u−)dη .

(124)

By a similar reasoning as in Section 5, we can arrive at the corresponding
position update formula given as

qi+1 = qi+∆t q̇(ti,qi,ui)+
∆t2
2 q̈

(
ti,qi,ui, (1−2β)āi+2βāi+1

)
+B(ti,qi)Qi+1 ,

(125)
which generalizes the update formula (73).

9 Numerical implementation

In this section we apply the ideas of Section 2.3 to the nonsmooth generalized-
α method. As initial conditions of the stepping scheme, we assume that we
know the values of the kinematic quantities q0, u0, a0, U0 and Q0 as well
as all discrete forces at the initial time t0. The initial conditions must be
compatible in the sense that they solve the discrete equations of motion as
well as satisfy all constraints at the initial time t0. As initial value for the
auxiliary variables we choose the first order approximation1 ā0 = a0 and
λ̄2,0 = λ2,0.

We assume the quantities at the beginning of the time step to be known
and formulate the presented scheme as a system of nonlinear equations
R(x) = 0, where

xT =
(
aT
i+1 UT

i+1 QT
i+1 κ

T
g,i+1 ΛT

g,i+1 λ
T
g,i+1 ΛT

γ,i+1 λ
T
γ,i+1

κT
N,i+1 ΛT

N,i+1 λ
T
N,i+1 ΛT

F,i+1 λ
T
F,i+1

)
.

(126)

The nonlinear equations are then solved by a semi-smooth Newton method.
The computed x can subsequently be used to find the remaining quantities
at the end of the time step. Hence, the positions, velocities and percussions
at ti+1 are regarded as dependent on x. In fact, we can solve (71) for āi+1 and
use it to compute qi+1 and ui+1 from (73) or its generalized counterparts of
Section 8. Similarly, the auxiliary contact forces can be computed from (96)
and (114), respectively. In turn, these can be directly inserted into (102),
(95) and (113) to retrieve the respective values of κ̂N,i+1, PN,i+1 and PF,i+1.

1A more accurate initialization can be found on page 351 in [9].
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Having in mind that the just mentioned quantities depend on x, the first
part of the residual R is stated as

Rs =



Mi+1 ai+1 − hi+1 −
∑

2∈{g,γ,N,F}W2,i+1 λ2,i+1
Mi+1Ui+1 −

∑
2∈{g,γ,N,F}W2,i+1 Λ2,i+1

Mi+1Qi+1 −
∑
K∈{g,N}WK,i+1κK,i+1 −

∑
R∈{γ,F}

∆t
2 WR,i+1ΛR,i+1

g(ti+1,qi+1)
ġ(ti+1,qi+1,ui+1)
g̈(ti+1,qi+1,ui+1, ai+1)
γ(ti+1,qi+1,ui+1)
γ̇(ti+1,qi+1,ui+1, ai+1)


,

(127)
where we assumed a splitting of the residual R = (RT

s RT
c )T into a part Rs

containing all equations except the discrete contact laws, which are contem-
plated in Rc. Hereby, we have chosen the subscript “s” for Rs to indicate the
smooth part of the residual. In order to state the remaining part of the resid-
ual, we have to formulate the normal cone inclusions arising in the discrete
contact laws as equations. This is done using the results from Section 2.3 and
gives a piecewise smooth residual RT

c = (RT
κN

RT
ΛN RT

λN
RT

ΛF RT
λF

), which
we subsequently set up part by part.

We start with the normal contact law on position level (101) and use (22)
to restate the law as

κ̂kN,i+1 = −proxR−
0

(
rgkN,i+1 − κ̂kN,i+1

)
k = 1, . . . , nN . (128)

Equivalently, we can by (26) restate (101) as the residual

k ∈ Ai+1 : Rk
κN

:= gkN,i+1 = 0
k ∈ Āi+1 : Rk

κN
:= κ̂kN,i+1 = 0 ,

(129)

where we have implicitly defined the k-th component Rk
κN

of RκN and where
we have introduced the set

Ai+1 =
{
k = 1, . . . , nN

∣∣∣ rgkN,i+1 − κ̂kN,i+1 ≤ 0
}

(130)

together with its complement Āi+1 = {1, . . . , nN} \ Ai+1.
Since for contacts in Ai+1 we are demanding the gap to be closed at the

end of the time step, see (129), we have that Ai+1 contains the same contacts
as Ai+1 because due to the stabilization no contact is penetrated at the end
of the time step. We can use this fact to state the residual for the contact
law on velocity level.
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We use again (26) to formulate the normal contact law (94) as

k ∈ Ai+1 : P k
N,i+1 = −proxR−

0

(
rξkN,i+1 − P k

N,i+1

)
k ∈ Āi+1 : P k

N,i+1 = 0 .
(131)

Similar to before, the k-th component Rk
ΛN of RΛN follows from (26) as

k ∈ Bi+1 : Rk
ΛN := ξkN,i+1 = 0

k ∈ B̄i+1 : Rk
ΛN := P k

N,i+1 = 0 ,
(132)

where we have introduced the set

Bi+1 =
{
k ∈ Ai+1

∣∣∣ rξkN,i+1 − P k
N,i+1 ≤ 0

}
(133)

as well as its complement B̄i+1 = {1, . . . , nN}\Bi+1. Since, Bi+1 is the subset
of closed contacts Ai+1 for which by (132) ξkN,i+1 = 0, the set Bi+1 and Bi+1
contain the same contacts. The reasoning here is similar as on position level.

Finally, we can proceed in the same manner with the acceleration level
constraint (87) and state it as

k ∈ Bi+1 : λkN,i+1 = −proxR−
0

(
rg̈kN,i+1 − λkN,i+1

)
k ∈ B̄i+1 : λkN,i+1 = 0 .

(134)

With this intermediate step, the k-th component Rk
λN

of RλN is then implic-
itly defined by

k ∈ Ci+1 : Rk
λN

:= g̈kN,i+1 = 0
k ∈ C̄i+1 : Rk

λN
:= λkN,i+1 = 0 ,

(135)

where we have introduced the set

Ci+1 =
{
k ∈ Bi+1

∣∣∣ rg̈kN,i+1 − λkN,i+1 ≤ 0
}

(136)

as well as its complement C̄i+1 = {1, . . . , nN} \ Ci+1. Again, due to the
stabilization and (135), the sets Ci+1 and Ci+1 contain the same contacts
along the discrete motion.

For the discrete friction laws the procedure is the same and we start with
reformulating (112) as

k ∈ Ai+1 : Pk
F,i+1 = −proxCF (PkN,i+1)

(
rξkF,i+1 −Pk

F,i+1

)
k ∈ Āi+1 : Pk

F,i+1 = 0 ,
(137)
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where we used (22). We can now use (27) to implicitly define the k-th
contribution of the residual RT

ΛF =
(
(R1

ΛF )T . . . (RnN
ΛF )T

)
as

k ∈ Dst
i+1 : Rk

ΛF := ξkF,i+1 = 0

k ∈ Dsl
i+1 : Rk

ΛF := Pk
F,i+1 + µkP k

N,i+1
ξkF,i+1

||ξkF,i+1||
= 0

k ∈ Āi+1 : Rk
ΛF := Pk

F,i+1 = 0 ,

(138)

where we have introduced the sets

Dst
i+1 =

{
k ∈ Ai+1

∣∣∣ rξkF,i+1 −Pk
F,i+1 ∈ CF (P k

N,i+1)
}

(139)

and Dsl
i+1 = Ai+1 \ Dst

i+1. Again it is clear from (138) that the set Dst
i+1

corresponds the set of sticking contacts Dst
i+1 and consequently Dsl

i+1 to the
set of slipping contacts Dsl

i+1. This, together with (22), allows to rewrite
(117) as

k ∈ Dst
i+1 : λkF,i+1 = −proxCF (λkN,i+1)

(
rγ̇kF,i+1 − λkF,i+1

)
k ∈ Dsl

i+1 : λkF,i+1 = −µkλkN,i+1
γkF,i+1

||γkF,i+1||
k ∈ Āi+1 : λkF,i+1 = 0 .

(140)

We gather the sticking contacts which are also sticking on acceleration level
by

E st
i+1 =

{
k ∈ Dst

i+1

∣∣∣ rγ̇kF,i+1 − λkF,i+1 ∈ CF (λkN,i+1)
}

(141)

and define E sl
i+1 = Dst

i+1 \E st
i+1. Consequently, (27) allows to reformulate (140)

as
k ∈ E st

i+1 : Rk
λF

:= γ̇kF,i+1 = 0

k ∈ E sl
i+1 : Rk

λF
:= λkF,i+1 + µkλkN,i+1

γ̇kF,i+1

||γ̇kF,i+1||
= 0

k ∈ Dsl
i+1 : Rk

λF
:= λkF,i+1 + µkλkN,i+1

γkF,i+1

||γkF,i+1||
= 0

k ∈ Āi+1 : Rk
λF

:= λkF,i+1 = 0 ,

(142)

where we implicitly defined the k-th contribution of the residual RT
λF

=(
(R1

λF
)T . . . (RnN

λF
)T
)
.

Now that we have defined the residual R, we can see that it is piecewise
smooth, i.e., it is smooth (differentiable) in x if the index sets Ai+1,Bi+1, . . .
do not change in the vicinity of x. This enables us to use a semi-smooth
Newton method to solve R(x) = 0. Hence, a time step of the scheme can be
summarized as follows:
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Time step with semi-smooth Newton method:

1) As starting value (ν = 0) we use the vector x0 constructed like (126)
but by choosing the known values at the beginning of the time step.

2) While ||R(xν)||∞ ≤ TOLn and ν ≤ MAXITERn do the Newton update

xν+1 = xν −∇R(xν)−1R(xν) (143)

and increase ν by one. Hereby, ∇R(xν) denotes the Jacobian matrix
of R evaluated at xν , where the index sets Ai+1,Bi+1, . . . are held
constant (equal to the sets arising in the computation of R(xν)) while
taking the partial derivatives.

3) Solve (71) for āi+1 and use it to compute qi+1 and ui+1 from (73) or its
generalized counterparts of Section 8. Similarly, compute the auxiliary
contact forces from (96) and (114), respectively and insert these into
(102), (95) and (113) leading to κ̂N,i+1, PN,i+1 and PF,i+1.

For the sake of completeness, we remark that step 3) is only needed for
output purposes and is basically the first part of the computation of R in
the subsequent time step. Moreover, it is clear from (143) that the Jacobian
matrix ∇R must have full rank.

For mechanical systems without friction, the here presented scheme is very
similar to the generalized-α method presented in [9]. The only difference lies
in the residuals describing the normal contact law on position and velocity
level. Specifically, in [9] the authors use κkN,i+1 = 0 instead of κ̂kN,i+1 = 0
in (129) as well as Λk

N,i+1 = 0 instead of P k
N,i+1 = 0 in (132). Even though

by our experience, this small difference produces if at all minimal differences
in the motion and the forces of the simulated system, it is more than just
a subtlety. In fact, replacing the contact force quantities in (129) and (132)
destroys the equivalence of the contact law formulated using the sets Ai+1
and Bi+1 with the corresponding discrete contact laws formulated as normal
cone inclusions.

In cases where multiple contacts with linearly dependent generalized force
directions are present in the system, the Jacobian matrix ∇R is singular.
Hence, for this kind of system the equation R(x) = 0 must be solved by a
method that does not invert this Jacobian matrix. A popular choice is to
reformulate the system R(x) = 0 such that it can be solved by fixed point
iterations, see Section 2.3 and [4,40]. For the aforementioned reformulation,
we split the vector of unknowns as xT = (yT zT), where

yT = (aT
i+1 UT

i+1 QT
i+1 κ

T
g,i+1 ΛT

g,i+1 λ
T
g,i+1 ΛT

γ,i+1 λ
T
γ,i+1)

zT = (κT
N,i+1 ΛT

N,i+1 λ
T
N,i+1 ΛT

F,i+1 λ
T
F,i+1) .

(144)
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Since y does not contain any contact forces, ∂Rs
∂y can be regular despite the

presence of linearly dependent contact force directions. Assuming that this
is the case, the implicit function theorem applied to Rs(y, z) = 0 states
the existence of a function F such that y = F(z), i.e., we can regard y as
depending on the contact forces at the end of the time step. Moreover, it
can be seen from the derivation of the residual Rc above, that it can be
equivalently formulated as z = p(y, z), where p makes use of the proximal
point function. Indeed, see for example that (129) is equivalent to (128)
or that (138) is equivalent to (137). This leaves us with an equation z =
p(F(z), z), which we can solve using fixed point iterations.

Numerically, we can find the value y = F(z) by solving Rs(y, z) = 0 for
a fixed value of z using Newton’s method. The computed value y in turn is
then used in the fixed point iteration. Therefore, a time step of the scheme
can be implemented as follows:

Time step with fixed point iterations:

1) As starting value (ν = µ = 0) we use the vectors y0 and z0 constructed
like (144) but by choosing the known values at the beginning of the
time step.

2) While ||zµ − p(y0, zµ)||∞ ≤ TOLfp and µ ≤ MAXITERfp do the fixed
point update

(i) While ||Rs(yν , zµ)||∞ ≤ TOLn and ν ≤ MAXITERn, perform a
Newton step

yν+1 = yν −∇yRs(yν , zµ)−1Rs(yν , zµ) (145)

and increase ν by one. Hereby, ∇yRs(yν , zµ) denotes the Jacobian
matrix of Rs with respect to its y dependence.

(ii) Use the converged solution yν of step (i) to perform the fixed point
update

zµ+1 = p(yν , zµ) . (146)
Subsequently increase µ by one and set ν = 0 as well as y0 = yν .

3) Solve (71) for āi+1 and use it to compute qi+1 and ui+1 from (73) or its
generalized counterparts of Section 8. Similarly, compute the auxiliary
contact forces from (96) and (114), respectively and insert these into
(102), (95) and (113) leading to κ̂N,i+1, PN,i+1 and PF,i+1.
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Last but not least, it has to be mentioned that the parameter r used in
the prox-equations as well as in the index sets Ai+1,Bi+1, . . . could be chosen
differently for every contact and even differently for the normal contact law
and the friction law of the same contact.

10 Examples

In this section we use the presented nonsmooth generalized-α scheme to
obtain the time evolution of some benchmark systems, which are all chosen
such that particular features of the scheme can be validated separately.

10.1 Rotating bouncing ball

Following [20, 35], we look at a homogeneous rigid sphere of radius R = 0.1
and mass m = 1 which is constrained to move in the (eIx-eIy)-plane and which
under the influence of gravity with gravitational acceleration g = 9.81 falls
on a horizontal plane, see Figure 1. To parametrize the motion of the ball, we
choose the minimal coordinates q = (x y ϕ)T, where the center of mass S of
the sphere is addressed by the representation IrOS = (x y 0)T of the position
vector rOS with respect to the basis I. Moreover, the angle ϕ describes the
orientation of the sphere. The velocity parameters u = (ux uy uϕ)T are
chosen to correspond to q̇ whenever the time derivative of the coordinates
exist. Consequently, we have

M =

m 0 0
0 m 0
0 0 θS

 and h =

 0
−mg

0

 (147)

with the rotational inertia θS = 2
5mR

2 of the sphere. Finally, the contact
with the plane is described by the gap function

gN = y −R and γF = ux +Ruϕ , (148)

which is the relative horizontal velocity of the contact point with respect to
the plane and with (49) describes planar Coulomb friction. We choose the
friction coefficient µ = 0.2 and the restitution coefficient eF = 0.

To validate the presented scheme, three simulations are instructive. For
all of them we choose q(0) = (0 1 0)T as initial configuration and use u(0) =
(0 0 ω)T, such that the ball has an initial rotational velocity ω.

The first case starts from rest, that is ω = 0, and we choose eN = 0.5. This
results in the typical bouncing motion, which exhibits the Zeno phenomenon.
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The simulation result2 is shown in Figure 1 and asserts that the proposed
scheme can overcome accumulation points.

Figure 1: Sketch of the bouncing ball system (left) and simulated time evolution for the
case where ω = 0 and eN = 0.5 (right).

The subsequent two cases are used to test the behavior of the scheme
with respect to friction forces. For both cases, we set eN = 0 implying that
once the contact closes it remains closed, i.e., the post impact velocity is
u+
y = 0, which allows us to validate friction. At the closing time instant a

frictional impact occurs. Moreover, because the ball is constantly accelerated
by gravitation, the pre-impact velocity is u−y = −

√
2g(y(0)−R). It then

follows from the impact equations (53), that the impulsive normal contact
force is ΛN = m

√
2g(y(0)−R) ≈ 4.2. Furthermore, after the impact the

non-impulsive normal contact force compensates the gravitational force and
therefore takes the value λN = mg = 9.81. Depending on the value of ω, two
cases arise.

In the first case, the rotational velocity is high, we choose ω = 50, and
the contact slides after the impact, implying that the friction forces attain
the maximally allowed values ΛF = µΛN ≈ 0.84 and λF = µλN ≈ 1.96.
After a period of sliding contact, finally, the ball has slowed down enough
such that a slip-stick transition takes place and the ball begins a pure rolling
motion described by the kinematic condition γF = 0. Since the rolling motion
is described by constant velocities, no net forces occur, implying λF = 0.
Hence, at the slip-stick transition the non-impulsive friction force instantly

2The generalized-α scheme with the following parameters was used: r = 0.3; ∆t =
2 ·10−3; ρ∞ = 0.5; TOLn = 10−6. The semi-smooth Newton method was used for all time
steps and the Jacobian matrix ∇R was computed by finite differences with a step size of
ε = 10−6. The maximal number of Newton steps (143) encountered in a time step was
νmax = 1 and the average was νavg = 0.01.
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jumps to zero. Figure 2 shows that the described behavior of the friction
forces is perfectly reproduced by the presented generalized-α scheme2.

Figure 2: Simulated friction forces λF (dashed) and ΛF (solid) for the cases ω = 50 (left)
and ω = 10 (right).

In the second case, when the rotational velocity is small enough, the
contact sticks at impact and the ball exhibits a rolling motion directly after.
As no friction force is needed for rolling, we have λF = 0 for all times. The
pre-impact velocities are u−x = 0 as well as u−ϕ = ω. Since the contact sticks
directly after the impact, i.e., γ+

F = 0, from the impact equations (53) we
can deduce that the impulsive friction force takes the value ΛF = −2

7mRω ≈
−0.29. Again this behavior is in perfect accordance with the simulation2, see
Figure 2.

10.2 Ball in corner

A ball making frictional contact with a corner is a simple case where the
Newton step (143) fails due to the singularity of the Jacobian matrix ∇R.
Consider the ball described in Section 10.1 and assume it can get in con-
tact with two inclined planes with inclination angles α = 45◦ and β = 45◦,
respectively, see Figure 3. The gap functions and the friction velocities are

gN =
(
−x sinα + y cosα−R
x sin β + y cos β −R

)
and γF =

(
ux cosα + uy sinα + ruϕ
ux cos β − uy sin β + ruϕ

)
.

(149)
For the simulation3 shown in Figure 3, we assumed the restitution coefficients
to be e1

N = 0.5, e2
N = 0 and e1

F = e2
F = 0. For the friction coefficients we

3The generalized-α scheme with the following parameters was used: r = 0.2; ∆t = 10−4;
ρ∞ = 0.5; TOLn = TOLfp = 10−6. The semi-smooth Newton method was used for all
time steps, except for 13 time steps, where we had to switch to fixed-point iterations. The
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Figure 3: Sketch of the ball in corner system (left) and simulated time evolution of the
gaps (right).

set µ1 = µ2 = 0.3. Starting at rest with q(0) = (−0.5 1 0)T, the ball
will eventually come to rest with both contacts closed. It is exactly in that
situation that the Jacobian matrix ∇R becomes singular and the simulation
can only be continued with fixed point iterations as solution strategy. In
Figure 3, this is the case for t ≈ 1.36.

10.3 Ball in cylinder

The importance of the stabilization of the unilateral constraint at position
level can impressively be shown by simulating the ball of Section 10.1 rolling
inside a cylinder of radius Rc = 1. We assume that the centerline of the
cylinder is orthogonal to the eIx-eIy-plane, such that it can be identified with
the point P , see Figure 4. The normal contact with the cylinder is described
by the gap function

gN = Rc −R− ||rSP || (150)
with eN = 0. Using In = (nx ny 0)T to denote the components of the inward
normal n = rSP/||rSP || of the cylinder, we define the tangent unit vector
It = (ny − nx 0)T. With that, we can define the tangent velocity

γF = IvT
S It +Ruϕ , (151)

where the velocity of S is IvS = (ux uy 0)T. We choose the friction coefficient
µ = 0.1 and the restitution coefficient eF = 0. Looking at the trajectory of

Jacobian matrix ∇R was computed by finite differences with a step size of ε = 10−6. The
maximal number of Newton steps (143) encountered in a time step was νmax = 7 and the
average was νavg = 0.36. The maximal number of fixed-point iterations (146) encountered
in a time step was µmax = 281 and the average was µavg = 44.3.
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Figure 4: Sketch of the ball in cylinder system (left) and simulated time evolution of S
(right). black: generalized-α scheme, gray: Moreau’s time-stepping scheme.

S simulated4 with the generalized-α scheme shows that the contact does not
penetrate. To show that contact penetration is a big issue for this system,
we compared the trajectory of S resulting from the generalized-α scheme to
the one gotten from a simulation5 with the widely used time-stepping scheme
of Moreau [23, 33, 40], which does not stabilize the unilateral constraint on
position level. The comparison is shown in Figure 4. For the simulation we
assume that the ball is initially at rest with q(0) = (−0.9 1 0)T.

10.4 Painlevé rod

It is well known that during the sliding motion of rigid bodies over a rough
surface, a “frictional dynamic catastrophe” can occur, i.e., impulsive motion
which is not the result of a collision. This phenomenon, called Painlevé
paradox, is for example studied in [19,20,27], where the following benchmark
system is used.

Consider a rigid homogeneous slender rod of mass m = 1, length 2l
and rotational inertia θS = 1

3ml
2, where l = 1. As shown in Figure 5,

the rod moves in the eIx-eIy-plane and is under the influence of gravity with
gravitational acceleration g = 10. Describing the orientation of the rod by

4The generalized-α scheme with the following parameters was used: r = 0.3; ∆t = 10−2;
ρ∞ = 0.5; TOLn = 10−6. The semi-smooth Newton method was used for all time steps and
the Jacobian matrix ∇R was computed by finite differences with a step size of ε = 10−6.
The maximal number of Newton steps (143) encountered in a time step was νmax = 74
and the average was νavg = 0.37.

5Parameters for Moreau’s time-stepping scheme: r = 0.3; ∆t = 10−2; TOLfp = 10−6.
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Figure 5: Sketch of the Painlevé rod (left) and simulated time evolution of the angular
velocity of the rod (right).

the angle ϕ, we choose the minimal coordinates q = (x y ϕ)T, where the
center of mass S of the rod is addressed by IrOS = (x y 0)T. Using the
natural velocity coordinates u corresponding to q̇ almost everywhere, the
mass matrix and the force vector of the system have the form (147). The
contact of the rod’s tip with the ground is described by

gN = y − l sinϕ and γF = ux − luϕ sinϕ . (152)

The friction coefficient is set to µ = 5/3 and eN = eF = 0 is used to model
inelastic impact behavior. With the initial conditions q(0) = (0 l sin(ϕ0) ϕ0)T

and u(0) = (v 0 0)T, the rod’s tip is initially in contact and the rod slides with
an initial inclination of ϕ0 = 31◦ and an initial horizontal velocity v = 30.
As analyzed in [20], this sliding motion eventually results in detaching of
the contact. This detaching comes with a blowup of the accelerations and
nonimpulsive contact forces, which is seen as an impact. The blowup of the
accelerations leads to vertical asymptotes in the velocities, which constitute
problems for integration schemes. However, since the asymptote is just an
isolated singularity, event-capturing schemes with constant time step might
overcome these blowups, as they do not try to fully resolve it. The simulation6

result in Figure 5 shows that the presented generalize-α scheme can indeed
deal with the Painlevé paradox.

6The generalized-α scheme with the following parameters was used: r = 0.1; ∆t =
8 ·10−4; ρ∞ = 0.9; TOLn = 10−8. The semi-smooth Newton method was used for all time
steps and the Jacobian matrix ∇R was computed by finite differences with a step size of
ε = 10−6. The maximal number of Newton steps (143) encountered in a time step was
νmax = 2 and the average was νavg = 0.07.
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10.5 Guided hopper

The suitability of the presented nonsmooth generalized-α scheme for the
simulation of flexible multibody systems is demonstrated by simulating a
guided hopper. It consists of a vertically guided main body of mass M = 3,
which is addressed by the coordinate y. At the hip H with IrOH = (x0 y 0)T

a rigid homogeneous rod of mass m = 1.56, length L = 0.2 and rotational
inertia θS = 8.5 ·10−3 around the rod’s center of mass is attached to the main
body. x0 is the arbitrary horizontal position of the guidance. The orientation
of the rod is prescribed by the angle α(t) which is a given function of time.
A straight planar Euler–Bernoulli beam [16] with undeformed length L is
connected to the knee K of the rod by an actuated rotational joint with
prescribed actuation angle β(t) as a given function of time. For the linear
elastic beam we choose the axial stiffness EA = 1.89·107, the bending stiffness
EI = 14.2 and the mass line density % = 0.71. Moreover, we follow [25] and
discretize the centerline of the beam with B-Spline shape functions. Using the
parameter ξ ∈ [0, 1] to parametrize the beam and denoting the generalized
coordinates of the beam by qb, a point C on the centerline of the beam
is addressed by rOC(ξ,qb). We introduce the generalized coordinates q =
(y qT

b )T of the hopper as well as the auxiliary quantities d = rOK−rOC(0,qb)
and ϕ = ](rKH , r′OC(0,qb)), where (·)′ denotes the derivative with respect to
ξ. With these quantities, the bilateral constraints composing the knee joint
are

g =

eIx · d
eIy · d
ϕ− β

 . (153)

Finally, the contact of the endpoint P of the beam with the horizontal plane
is described by

gN = eIy · rOC(1,qb) and γF = eIx · vC(1,qb, q̇b) , (154)

where vC is the velocity of the centerline and corresponds to the time deriva-
tive of rOC almost everywhere. The contact parameters are set to eN = eF =
0 and µ = 0.2.

For the simulation,7 the system is initially assumed to be at rest with
y(0) = 0.31. Moreover, the beam is undeformed initially. For the actuation

7The generalized-α scheme with the following parameters was used: r = 0.15; ∆t =
5 · 10−5; ρ∞ = 0; TOLn = 10−6. The beam was discretized by two elements of polynomial
degree 2 and 5 Gauss quadrature points were used. The semi-smooth Newton method
was used for all time steps and the Jacobian matrix ∇R was computed analytically. The
maximal number of Newton steps (143) encountered in a time step was νmax = 5 and the
average was νavg = 1.23.
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Figure 6: Sketch of the guided hopper (left) and simulated time evolution of the percussions
(right). black: PF , gray: ±µPN .

angles
α(t) = π

3 −
π

30
(
1− cos(4π t)

)
and β(t) = π − 2α(t) (155)

have been chosen and gravity is contemplated by the gravitational accel-
eration g = 9.81. The percussions, plotted in Figure 6, show that the
generalized-α scheme can cope with the complex contact dynamics arising
in multibody systems containing flexible parts and time dependent bilateral
constraints. This makes the presented scheme well suited for engineering
applications.

10.6 Tippetop

The tippetop consists of a spherical main body at which a stick is attached.
Starting from the standing position with stick pointing up and with high
spinning velocity around its symmetry axis, the top inverts and spins on
the stick. Since the spinning velocity decreases due to dissipation, the top
tumbles back to the standing position after a while.

Let R1 = 1.5 · 10−2 be the radius of the sphere with center C1 character-
izing the main body of the top. The rounded end of the stick is described
by a sphere of radius R2 = 5 · 10−3 and midpoint C2. The two midpoints
as well as the top’s center of mass S lie on the axis of symmetry of the top
and the distances between S and the points C1 and C2 are a1 = 3 · 10−3 and
a2 = 1.6 · 10−2, respectively, see Figure 7. We describe the position of the
top by the components IrOS of the position vector of S with respect to the
resting basis I. To characterize the orientation of the top, we introduce the
body fixed K-frame such that eKz lies on the symmetry axis of the top and
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points towards the stick. The transformation matrix AIK = (IeKx IeKy IeKz )
is then parametrized using a unit quaternion p. Hence, the configuration of
the top is described by q = (IrT

OS pT)T. As generalized velocities we choose
u = (IvT

S KΩT)T composed by the representations of the velocity vS of S
and the angular velocity of the top Ω with respect to the bases I and K,
respectively. As mentioned in Section 8, this choice leads to a model with
the generalized kinematic equation (121). For the relevant quantities B, β,
M and h describing a so parameterized rigid body under the influence of
gravity, we refer to [37].

The mass of the top is m = 6 · 10−3 and the representation of the inertia
tensor is the diagonal matrix KΘS = diag(I1, I1, I3) with I1 = 8 · 10−7 and
I3 = 7 · 10−7.

Figure 7: Sketch of the tippetop (left) and simulated time evolution of the angle θ (right).
Black: presented model, gray: [32].

To describe the contact between the ground and either the main body
(k = 1) or the stick (k = 2), we use the gap

gkN = eIz · rOCk −Rk . (156)

The friction between the top and the ground is modeled as Coulomb–Contensou
friction [28], which uses the nkF = 3 velocity parameters

γkF =

 eIx · vPk
eIy · vPk

3πR
16 eIz ·Ω

 , (157)

where vPk = vCk − RkΩ × eIz denotes the velocity of the respective contact
point and R = 5 · 10−4 denotes the assumed contact radius. This friction
model assumes that the normal contact force λkN stems from a parabolic
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force distribution over a circular contact area of radius R. A closer look at
the velocity parameters (157) reveals that the first two velocities correspond
to tangential contact velocities and capture translational Coulomb friction.
Moreover, the third component is a representative radial contact velocity,
which accounts for drilling friction. It is shown in [32] that using the friction
velocity (157) together with the set of admissible friction forces (49) results
in a good approximation for the Coulomb–Contensou friction law used for
the tippetop simulation in [28].

For the simulation,8 the top is initially at the position IrOS(0) = (0 0 z0)T

with z0 = 1.2015 · 10−2 and is inclined by the angle θ(0) = 0.1, where θ
denotes the angle between eIz and eKz , i.e., eIz · eKz = cos θ. The center
of mass S is assumed at rest and the top spins with initial angular velocity
KΩ = (0 0 180)T. To assure that the quaternion p remains a unit-quaternion,
p is normalized after every step.

It is apparent from Figure 7 that the simulation results using the pre-
sented scheme are in line with the results of [32]9. This shows that the
presented scheme is well suited for mechanical systems with spatial friction
as well as models with a general kinematic equation (121).

11 Conclusion

We presented a nonsmooth generalized-α method for the simulation of me-
chanical systems with frictional contact. The dynamics of such systems,
which additionally to the contacts can be subjected to ideal bilateral con-
straints, is described within the theory of nonsmooth mechanics. We have
modeled the frictional contact as unilateral constraints described by Sig-
norini’s law, the generalized Newton’s impact law and a Coulomb-type fric-
tion law. All these laws are formulated as normal cone inclusions, allowing
for a coherent discretization of the contact laws. All constraints are for-
mulated on acceleration level and a numerical constraint drift, and hence
contact penetration, is avoided by stabilizing the constraints on velocity and
position level using the Gear–Gupta–Leimkuhler approach. The stabilized
dynamics is discretized using generalized-α quadratures, which leads to a
second-order accurate scheme during impact-free time intervals. Exploit-

8The generalized-α scheme with the following parameters was used: r = 0.001; ∆t =
1 ·10−3; ρ∞ = 0.5; TOLn = 10−6. The semi-smooth Newton method was used for all time
steps and the Jacobian matrix ∇R was computed by finite differences with a step size of
ε = 10−6. The maximal number of Newton steps (143) encountered in a time step was
νmax = 3 and the average was νavg = 0.36.

9To reproduce the result of [32] with Moreau’s time-stepping scheme, we used: r =
0.001; ∆t = 1 · 10−4; TOLfp = 10−6.
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ing particular properties of the normal cone enabled to directly discretize
the contact laws leading to their discrete counterparts, which depend on
the discrete kinematic and kinetic quantities arising from the generalized-α
discretization of the dynamics. The resulting time-stepping scheme still con-
tains normal cone inclusions, which we have proposed to numerically treat by
either a semi-smooth Newton method or by fixed point iterations. Finally,
the derived nonsmooth generalized-α method has been validated using a set
of mechanical benchmark systems.

The main contribution of this paper is the extension of the nonsmooth
generalized-α schemes [8, 9, 11, 14] to systems with frictional contact and
general kinematic equations. This has been achieved by formulating the set-
valued Coulomb-type friction on velocity and acceleration level. Moreover,
we have introduced the discrete contact laws as normal cone inclusions, which
are shown to be a convenient interface to the numerical implementation of
the scheme. Last but not least, we have devised a collection of benchmark
systems suitable for validating the performance of any numerical scheme
for mechanical systems with frictional contact, where every benchmark lies
the focus on a different characteristics of such systems or of the numerical
scheme. These characteristics are: accumulation points, slip-stick transitions,
the presence of linearly dependent force directions, contact penetration, the
Painlevé paradox, the suitability of the scheme for the simulation of flexible
multibody systems, combined spatial friction laws and general kinematic
equations. We showed that the presented nonsmooth generalized-α scheme
performs very well for all benchmark systems and hence qualifies for a broad
range of engineering applications.

In fact, the presented scheme can reproduce the dynamics of a frictional
contact adequately. Moreover, it performs well for multibody systems con-
taining flexible parts and allows general parametrizations such as the use of
unit quaternions for the rotation of rigid bodies.
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