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Abstract This article is based on the planar beam theories presented in Eugster and
Harsch (2020) and deals with the finite element analysis of their presented beam
models. A Bubnov-Galerkin method, where B-splines are chosen for both ansatz
and test functions, is applied for discretizing the variational formulation of the
beam theories. Five different planar beam finite element formulations are presented:
The Timoshenko beam, the Euler–Bernoulli beam obtained by enforcing the cross-
section’s orthogonality constraint as well as the inextensible Euler–Bernoulli beam
by additionally blocking the beam’s extension. Furthermore, the Euler–Bernoulli
beam is formulated with a minimal set of kinematical descriptors together with a
constrained version that satisfies inextensibility. Whenever possible, the numerical
results of the different formulations are compared with analytical and semi-analytical
solutions. Additionally, numerical results reported in classical beam finite element
literature are collected and reproduced.

1 Introduction

The finite element discretization relies on the variational formulation of the planar
classical beam theories given in Eugster and Harsch (2020). With the mere choice of
ansatz and test functions, the discretization of the virtual work contributions directly
leads to the corresponding beam finite element formulations. Besides the time t, the
virtual work contributions presented in Eugster and Harsch (2020) are parametrized
by a single material coordinate s, the arc length parameter of the reference curve.
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With the subsequent discretization in mind, it is convenient to express the individual
virtual work contributions in terms of a non arc length coordinate ξ given in the unit
interval. This reparametrization is presented in Section 3 and yields the total virtual
work of the different beam formulations given in the so-called parameter space.

The minimal formulation of the Euler–Bernoulli beam, which can be found
in (Eugster and Harsch, 2020, Section 7.2), requires shape functions that are at
least C1-continuous. Hence, the well-known Lagrangian shape functions, being only
C0-continuous, can not be used here. Gontier and Vollmer (1995) proposed the usage
of computer aided design (CAD) curve representation, such as Béziers curves, Basis
splines (B-splines) or non rational B-splines (NURBS), for implementing beamfinite
elements. More recently, Hughes et al (2005) and Cottrell et al (2009) established
the name isogeometric analysis, which unifies the fields of CAD and finite element
analysis. They show the power of combining both tools for numerical analysis of
partial differential equations. Led by these ideas, (Greco and Cuomo, 2013, 2014)
used B-spline shape functions, which meet the above-mentioned C1-continuity re-
quirements, to implement a spatial Euler–Bernoulli beam. B-spline curves, which
go back to the pioneering works of Schöneberg (1946) and de Boor (1972), are
introduced in Section 4, based on the comprehensive monographs (Piegl and Tiller,
1997; Farin, 1997).

Section 5 shows that substituting the B-spline curves into the virtual work con-
tributions in parameter space leads to the semi-discrete equations of motion, which
are still continuous in time. If the discretized model additionally contains geometric
bilateral constraints, either stemming from the constrained beam models or from
enforcing boundary conditions, this leads to a set of differential algebraic equations.
Although the formulations based on the Timoshenko beam model are not restricted
to the above-mentioned continuity requirement, B-splines or NURBS can again be
used for their discretization (Cazzani et al, 2016a,b). Another advantage over standard
shape functions is, by using B-spline shape functions the global polynomial degree
can be chosen arbitrarily. Thus, besides the standard h-refinement (decreasing the
element length), also a p-refinement (increasing the polynomial degree) can easily
be carried out. The combination of h- and p-refinement is called k-refinement (Cot-
trell et al, 2009; Greco and Cuomo, 2013). The discretization and all associated
algorithms are generalized for any polynomial degree, which will later prove to be
advantageous when studying normal modes.

Exclusive numerical examples are studied in Section 6. First, the presented beam
formulations together with their finite element approximations are verified using ana-
lytical and semi-analytical problems from literature. Second, numerical examples of
more advanced problems are treated, e.g., tracing the post-buckling equilibrium path
of precurved beams. The numerical outcomes are compared with results reported
in classical beam finite element literature. The article closes with conclusions and
suggestions for future work.
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2 Notation

LetE3 denote a three-dimensional Euclidean vector space with an orthonormal basis
{e1, e2, e3}. For the discretization, all arising vector quantities from Eugster and
Harsch (2020) will be expressed in this basis. For that, we collect the components of
vectors a = a1e1 + a2e2 + a3e3 ∈ E3 in the tuple Ia = (a1, a2, a3)T ∈ R3.
If not stated otherwise, Rf -tuples are considered in the sense of matrix mul-
tiplication as Rf×1-matrices, i.e., as "column vectors". Its transposed will be
given by a R1×f -matrix, i.e., a "row vector". The components of a vector rotated
around e3 by π

2 is denoted by Ia
⊥ = (−a2, a1, a3)T. Partial derivatives of vec-

tor valued functions f : Rf → R,q 7→ f(q), are introduced as “row vectors”
∂f/∂q = (∂f/∂q1 · · · ∂f/∂qf ) ∈ R1×f . Derivatives of functions f = f(s, t) with
respect to the first argument and t are denoted by a prime f ′ = ∂f/∂s and a dot
ḟ = ∂f/∂t, respectively. The variation of a function f = f(s, t), denoted by a
delta, is the derivative with respect to the parameter ε of a one-parameter family
f̂ = f̂(s, t; ε) evaluated at ε = 0, i.e., δf(s, t) = ∂f̂/∂ε(s, t; 0). The one-parameter
family satisfies f(s, t) = f̂(s, t; 0).

3 Virtual work contributions in parameter space

Fig. 1: Mapping from the material domain I to the parameter space Ī .

As mentioned in the introduction, the parameter domain can be defined as
Ī = [0, 1] ⊂ R. Points ξ ∈ Ī belonging to the parameter domain are obtained
from material points s ∈ I = [l1, l2] ⊂ R by a mapping ϕ : I → Ī . This new
parametrization can be understood in the sense of a non arc length parametrization.
We can introduce the strictly increasing function

ϕ : I → Ī , s 7→ ξ = ϕ(s) , (1)

depicted in Fig. 1. Using the monotonicity property of (1), there exists an inverse
function ϕ−1 : I → Ī , which is defined on the set Ī = ϕ(I), given by

ϕ−1 : Ī → I , ξ 7→ s = ϕ−1(ξ) . (2)
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Let V denote some linear space, e.g.,R. With the above mappings at hand we can
express an arbitrary function f : I × R → V , e.g., the fields x, y, and θ introduced
in (Eugster and Harsch, 2020), by a new function f̄ : Ī × R → V , defined on the
parameter space Ī .

I × R V

Ī × R

ϕ

f

ϕ−1

f̄

Fig. 2: Commutative diagram for the relations of the material coordinate s and non
arc length coordinate ξ.

Since the diagram in Fig. 2 commutes, we find the relation

f(s, t) = f̄(ϕ(s), t) . (3)

Using (3) together with the chain rule of differential calculus, the first and second
derivatives of f with respect to s are given by

f ′(s, t) =
∂f̄

∂ξ
(ϕ(s), t)

dϕ

ds
(s) = f̄ ′(ϕ(s), t)ϕ′(s) ,

f ′′(s, t) =
∂2f̄

∂ξ2
(ϕ(s), t)

(
dϕ

ds
(s)

)2

+
∂f̄

∂ξ
(ϕ(s), t)

d2ϕ

ds2
(s)

= f̄ ′′(ϕ(s), t)(ϕ′(s))2 + f̄ ′(ϕ(s), t)ϕ′′(s) ,

(4)

where a prime (·)′ denotes the derivative with respect to the first argument, i.e.,
either s or ξ. The arc length parametrization of the reference curve r0 = r0(s) is
defined such that the arc length of a curve can be written as

l2 − l1 =

∫ l2

l1

‖r′0(s)‖ ds =

∫ l2

l1

ds , (5)

from which we identify ‖r′0(s)‖ = 1. This can be further manipulated using (4) and
yields the relation for the Euclidean norm of the reference tangential vector

1 = ‖r′0(s)‖ = ‖r̄′0(ϕ(s))‖ |ϕ′(s)| . (6)

By using the property that ϕ is a strictly increasing function, its derivative with
respect to s is positive and ϕ′(s) coincides with its absolute value. Inserting these
observations into (6), we obtain
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ϕ′(s) =
1

‖r̄′0(ϕ(s))‖ =
1

Ḡ(ϕ(s))
, (7)

where we have introduced Ḡ(ξ) = ‖r̄′0(ξ)‖. The inverse function theorem yields the
relation

(ϕ−1)′(ξ) =
1

ϕ′(ϕ−1(ξ))
= Ḡ(ξ) . (8)

By repeated differentiation, the second derivative of ϕ is given by

ϕ′′(s) = − r̄′0(ϕ(s)) · r̄′′0(ϕ(s))

Ḡ4(ϕ(s))
. (9)

Using the abbreviation G(ξ) =
r̄′0(ξ)·r̄′′0 (ξ)

Ḡ2(ξ)
, we can insert (7) and (9) into (4), to get

f ′(s, t) =
f̄ ′(ϕ(s), t)

Ḡ(ϕ(s))
,

f ′′(s, t) =
1

Ḡ2(ϕ(s))

(
f̄ ′′(ϕ(s), t)− f̄ ′(ϕ(s), t)G(ϕ(s))

)
.

(10)

In the individual virtual work contributions presented by Eugster and Harsch
(2020), integral expressions with respect to the material coordinate s occur. In order
to formulate the total virtual work in the parameter space, all functions depending
on the pair (s, t) have to be replaced with the overlined functions depending on
(ϕ(s), t), as shown in (3), together with their derivatives given in (10). With the help
of (3), these integrals can be expressed by the overlined functions according to∫ l2

l1

f(s, t) ds =

∫ l2

l1

f̄(ϕ(s), t) ds , (11)

where derivatives with respect to s have to be computed in accordance with (4).
Using integration by substitution, together with (8), the integral expression over the
material domain can be computed by an integral over the parameter space given as∫ l2=ϕ−1(1)

l1=ϕ−1(0)

f̄(ϕ(s), t) ds =

∫ 1

0

f̄(ξ, t)(ϕ−1)′(ξ) dξ =

∫ 1

0

f̄(ξ, t)Ḡ(ξ) dξ , (12)

where in the first step the identity map ξ = ϕ(ϕ−1(ξ)) was identified.

3.1 Timoshenko beam

Next, we express the components of the beam’s centerline r and the rotation angle θ
by the overlined functions r̄ and θ̄. Moreover, we can collect their components given
in the ei-basis in the generalized state tuple
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s(ξ, t) = (x̄(ξ, t), ȳ(ξ, t), θ̄(ξ, t))T ∈ R3 . (13)

By substituting the mapping ϕ into all arising functions, we reformulate the virtual
work contributions of the inertia forces (Eugster and Harsch, 2020, (91)) in the
following compact form

δW dyn = −
∫ 1

0

δsTΘ̄s̈Ḡ dξ , Θ̄ =

Āρ0 0 0
0 Āρ0 0
0 0 Ī3

 . (14)

The virtual work contributions of the internal forces (Eugster and Harsch, 2020,
(87)) can be computed by

δW int =

∫ 1

0

{δsTt̄1 − δs′Tt̄2} dξ ,

t̄1 = (0, 0, (I n̄× Ie3)Ts′)T , t̄2 = (n̄1, n̄2, M̄)T ,

(15)

where we have used x̄′n̄2 − ȳ′n̄1 = IeT
3 (s′ × I n̄) = (I n̄ × Ie3)Ts′. Note that in

both terms of the sum, Ḡ cancels with the substituted change of integration domain.
In the same way the external virtual work contributions (Eugster and Harsch, 2020,
(88)) can be expressed in the parameter domain as

δW ext =

∫ 1

0

δsTt̄Ḡ dξ +

2∑
i=1

δsTt̄i|ξ=ϕ(li) ,

t̄ = (n̄1, n̄2, M̄)T , t̄i = (n̄
i
1, n̄

i
2, M̄ i)T .

(16)

3.2 Euler–Bernoulli beam

Also for the Euler–Bernoulli beam, the overlined expressions have to be inserted.
From (10) and the fact that the variation and the partial derivative with respect to s
can be interchanged, we get

r′ =
r̄′

Ḡ
, r′′ =

r̄′′ − r̄′G
Ḡ2

, δr′ =
δr̄′

Ḡ
, δr′′ =

δr̄′′ − δr̄′G
Ḡ2

. (17)

The kinematical quantities defined in (Eugster and Harsch, 2020, (95) and (99)) are
of the form

g =
‖r̄′‖
Ḡ

=
ḡ

Ḡ
, θ′ =

r̄′⊥ · r̄′′
ḡ2Ḡ

=
θ̄′

Ḡ
, (18)

where for the second identity we have used the property a⊥ · a = 0 ∀a ∈ E3.
Carrying out an integration by substitution, we obtain the virtual work contri-

butions of the internal forces (Eugster and Harsch, 2020, (102)) given in parameter
space
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δW int = −
∫ 1

0

{
Iδr̄
′T
(
I r̄
′N̄
ḡ
− M̄

ḡ2

[
2θ̄′I r̄

′ + I r̄
′′⊥])

+ Iδr̄
′′T

I r̄
′⊥ M̄
ḡ2

}
dξ .

(19)

It is remarkable that all terms involving G cancel.
Next we can express the variation of the angle θ, its velocity and acceleration (Eu-

gster and Harsch, 2020, (99) and (100)) by

δθ =
r̄′⊥ · δr̄′
ḡ2

, θ̇ =
r̄′⊥ · ˙̄r′

ḡ2
, θ̈ =

r̄′⊥ · ¨̄r′
ḡ2

− 2θ̇r̄′ · ˙̄r′

ḡ2
. (20)

Inserting the above relations into (Eugster and Harsch, 2020, (104)), the virtual work
contributions of the inertia forces in parameter space are transformed to

δW dyn = −
∫ 1

0

{
Ī3
I r̄
′⊥T

Iδr̄
′

ḡ4

(
I r̄
′⊥T

I ¨̄r
′ − 2θ̇I r̄

′T
I ˙̄r′
)

+ Āρ0Iδr̄
T
I ¨̄r

}
Ḡ dξ .

(21)

Finally, the virtual work contributions for the external forces (Eugster and Harsch,
2020, (103)) have to be expressed in parameter space. This can be done analogously
to the above procedure and yields

δW ext =

∫ 1

0

{
Iδr̄T

I n̄ +
I r̄
′⊥T

Iδr̄
′

ḡ2
M̄

}
Ḡ dξ

+

2∑
i=1

{
Iδr̄T

I n̄i +
I r̄
′⊥T

Iδr̄
′

ḡ2
M̄ i

} ∣∣∣∣
ξ=ϕ(li)

.

(22)

3.3 Constraint virtual work contributions

Next, also the virtual work contributions of the constraint forces are expressed
in parameter space, using the same procedure as above. The planar virtual work
contributions of the orthogonality constraint (Eugster and Harsch, 2020, (94)) are
expressed in parameter space

δW int
c,1 =

∫ 1

0

δσ̄2(s′TI d̄2) dξ ,

δW int
c,2 =

∫ 1

0

σ̄2{δs′TI d̄2 − δsT
Ie3(s′TI d̄1)} dξ .

(23)
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Accordingly, the virtual work contributions of the inextensibility constraint (Eugster
and Harsch, 2020, (97)) can be transformed to the integrals over the parameter space
given by

δW int
c,1 =

∫ 1

0

δσ̄1(ḡ − Ḡ) dξ , δW int
c,2 =

∫ 1

0

σ̄1
Iδr̄
′T
I r̄
′

ḡ
dξ . (24)

4 B-Spline shape functions

The excellent monograph of Piegl and Tiller (1997) gives a comprehensive intro-
duction to the topic. They introduce B-spline shape functions and B-spline curves,
together with a myriad of important properties. For this, the knot vector Ξ with its
elements ξi, i = 1, . . . ,m will be introduced as a non-decreasing sequence, i.e.,
ξi ≤ ξi+1. The total number of knots is determined by the chosen polynomial degree
p of the target B-spline curve and the total number n of curve sections aka elements.
It can be computed as m = n + 2p + 1. In the subsequent treatment we restrict
ourselves to

• open knot vectors, i.e., the multiplicity of the first and last knot is p+ 1
• knot vectors in the unit interval [0, 1]
• equally spaced, so called uniform knot vectors, i.e., ∆ξ = ξi+1 − ξi = 1

n for
i = p+1, . . . , n+p belonging to the interior of the knot vector

These restrictions lead to knot vectors of the form

Ξ = {0, . . . , 0︸ ︷︷ ︸
p+1

, ξp+2, . . . , ξm−p−1︸ ︷︷ ︸
n−1

, 1, . . . , 1︸ ︷︷ ︸
p+1

} . (25)

According to (Cox, 1972; de Boor, 1972; Piegl and Tiller, 1997) the ith of total
N = n+p B-spline shape functions is recursively defined as

N i
0(ξ) =

{
1 , ξ ∈ [ξi, ξi+1)

0 , ξ /∈ [ξi, ξi+1)
,

N i
p(ξ) =

ξ − ξi
ξi+p − ξi

N i
p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

N i+1
p−1(ξ) ,

(26)

where in the last line possibly arising quotients of the form 0
0 are defined as zero. In

Fig. 3 all nonzero cubic shape functions for a uniform open knot vector, built of four
elements, are shown.

The first derivative of a B-spline shape function can be computed from two lower
order B-spline shape functions as

d

dξ
N i
p(ξ) = N i

p,ξ(ξ) =
p

ξi+p − ξi
N i
p−1(ξ)− p

ξi+p+1 − ξi+1
N i+1
p−1(ξ) . (27)
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3

ξ

N
i p
(ξ
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Fig. 3: Non-zero cubic B-spline shape functions N1
3 to N7

3 for a given uniform
and open knot vector Ξ = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1} which builds n = 4
elements. The indicator function χĪ2 of the second element, defined in (34), picks
the corresponding cubic shape functions N2

3 to N5
3 .

Denoting the kth derivative of N i
p(ξ) by dk

dξk
N i
p(ξ), repeated differentiation of (27)

leads to the general formula

dk

dξk
N i
p(ξ) =

p

ξi+p − ξi

(
dk−1

dξk−1
N i
p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dξk−1
N i+1
p−1(ξ)

)
.

(28)

Another generalization computes the kth derivative ofN i
p(ξ) by the use of the basis

functions N i
p−k, . . . , N

i+k
p−k, namely

dk

dξk
N i
p(ξ) =

p!

(p− k)!

k∑
j=0

ak,jN
i+j
p−k(ξ) ,

ak,k =

{
1 k = 0

ak−1,0

ξi+p−k+1−ξi k 6= 0
,

ak,j =

{
ak−1,0

ξi+p−k+1−ξi j = 0
ak−1,j−ak−1,j−1

ξi+p+j−k+1−ξi+j j = 1, . . . , k − 1
.

(29)

Some knot differences in the denominator of ak,j given in (29) can be zero, the
arising quotient •0 is defined as zero in these cases.1

1 Piegl and Tiller (1997) present an efficient algorithm that is based on (29) and that computes
for a given knot value ξ the value of the B-spline shape functions together with all k = 1, . . . , p
nonzero derivatives. The pseudocode is given in (Piegl and Tiller, 1997, Chap. 2, p. 71, algorithm
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In the following some important properties of B-spline shape functions, presented
by Piegl and Tiller (1997), are listed.

P1 N i
0(ξ) is a step function, which is only non-zero in the half open interval

Īi = [ξi, ξi+1), the so called ith knot span.
P2 N i

p(ξ) = 0 for ξ outside the knot span, which is called the local support
property. Note that the knot vector containsm− 1 = n+ 2p intervals, but only
n of them are non-zero. These non-zero intervals are called element intervals
Īe = Īe+p = [ξe+p, ξe+p+1) and are addressed by the element number e = i−p.
Note that we distinguish the knot span and the element interval by using a
subscript and a superscript, respectively.

P3 For positive p the shape functionN i
p(ξ) is a linear combination of two lower order

shape functionswith polynomial degree p−1. This leads to a truncated triangular
table which is exemplary depicted in Fig. 4 for B-spline shape functions up to
a polynomial degree of p = 2. The arrows denote the influence of the current
shape function on shape functions of higher polynomial degree.

N1
2 N2

2 N3
2

N1
1 N2

1 N3
1 N4

1

N1
0 N2

0 N3
0 N4

0 N5
0

Fig. 4: Truncated triangular table for B-spline shape functions up to a polynomial
degree of p = 2.

P4 For a given knot span, Īi = [ξi, ξi+1) at most p + 1 shape functions N i
p are

non-zero, namely the functions N i−p
p , . . . , N i

p. Using again the triangular table
depicted in Fig. 4, we recognize that on the third knot span Ī3 = [ξ3, ξ4), the
only non-zero zeroth-degree shape function is N3

0 . Hence, the only linear and
quadratic shape functions not being zero on Ī3 are N2

1 , N3
1 and N1

2 , N2
2 , N3

2 ,
respectively. In Fig. 4, the dashed arrows point from or to the non-zero shape
functions for the third knot span. In Fig. 3 the cubic shape functions for a knot
vector Ξ = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1} are visualized. This defines a
B-spline curve given by n = 4 elements. For the fifth knot span (second element
interval) Ī5 = Ī2 = [0.25, 0.5) solely four of the total seven shape functions are
non-zero.

P5 All shape functions are positive, i.e., N i
p(ξ) ≥ 0 for all i, p, ξ. This is called the

non-negativity property.
P6 Partition of unity, for all ξ ∈ [ξi, ξi+1) in an arbitrary knot span Īi = [ξi, ξi+1),

we have
∑i
j=i−pN

j
p (ξ) = 1.

A2.3). This algorithm can be vectorized easily in order to compute all shape functions and their
derivatives for a set of knot values.
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P7 In the interior of a knot span, (ξi, ξi+1), the B-spline curve is a polynomial of
degree p and thus there exist all derivativesN i

p(ξ). At a knot ξi, the shape function
N i
p(ξ) is p−k times continuously differentiable, where k is themultiplicity of the

knot.2Hence, increasing the polynomial degree globally increases the continuity
of the B-spline curve.

For uniform, open knot vectors Ξ ∈ [0, 1], on which we confined ourselves in the
beginning of this section, a pth degree B-spline curve is defined as

c(ξ, t) =

N∑
i=1

N i
p(ξ)q

i(t) , 0 ≤ ξ < 1 , (30)

where the tuple qi are denoted as control points. In the sense of a Galerkin method in
mechanics the N control points qi are called generalized coordinates. The B-spline
shape functions N i

p(ξ) are computed according to (26). A computational algorithm
for evaluating (30) is given in (Piegl and Tiller, 1997, Chap. 3, p. 82, algorithm
A3.1).

Computing the kth derivative of c(ξ, t), namely dk

dξk
c(ξ, t), is done analogously

to (30) and reads

dk

dξk
c(ξ) =

N∑
i=1

dk

dξk
N i
p(ξ)q

i , 0 ≤ ξ < 1 . (31)

The derivatives of the shape functions have to be computed by (28) or (29). A
computational algorithm for the evaluation of (31) is given in (Piegl and Tiller,
1997, Chap. 3, p. 93, algorithm A3.2).

5 Discrete Kinematics, semidiscrete virtual work and equations
of motion

In the subsequent, treatment the continuous fields s and I r̄ will be approximated by
pth order B-spline curves. Thus the infinite-dimensional beam models are projected
to finite dimensional discretized systems. Depending on the approximated field, the
ith control point qi is given by the tuples qi(t) = (xi(t), yi(t), θi(t))T ∈ R3 or
qi(t) = (xi(t), yi(t))T ∈ R2.

2 This property is of crucial importance for the discretization of the presented Euler–Bernoulli beam.
The evaluation of the internal virtual work contributions require the existence of the integral (19).
Since this integral includes terms of second derivative, C1-continuity of the chosen interpolation
polynomial is required. For polynomial degreesp ≥ 2 this continuity requirement is unconditionally
fulfilled.
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5.1 Timoshenko beam

The generalized coordinates are collected in the tuple of generalized coordinates

q = (x1, . . . , xN , y1, . . . , yN , θ1, . . . , θN )T ∈ R3N . (32)

Thus, the generalized state tuple (13) can be approximated by the pth order B-spline
curve

s(ξ, t) ≈ c
(
ξ,q(t)

)
=

N∑
i=1

N i
p(ξ)q

i(t) . (33)

In a Galerkin method, it is convenient to evaluate the kinematic quantities in an
element-wise setting. Asmentioned in P4, for a given element e and its corresponding
element interval Īe = [ξe+p, ξe+p+1), several B-spline shape functions are non-zero.
Thus, we have to partly consider multiple shape functions. In order to extract the
correct parts of the shape functions and to not consider the same parts multiple times,
the indicator function

χĪe : R→ R , χĪe(ξ) =

{
1 , ξ ∈ Īe
0 , ξ /∈ Īe (34)

is introduced. See Fig. 3 for a graphical visualization. With the above definition at
hand, (33) can be written as

c
(
ξ,q(t)

)
=

n∑
e=1

N∑
i=1

χĪe(ξ)N
i
p(ξ)q

i(t) . (35)

As written in P4, for a given knot span Īi = Īi−p, only p + 1 B-spline shape
functions are non-zero, namelyN i−p

p , . . . , N i
p. Thus instead of summing over allN

shape functions, we can equivalently write

c
(
ξ,q(t)

)
=

n∑
e=1

e+p∑
i=e

χĪe(ξ)N
i
p(ξ)q

i(t) , (36)

where we have shifted the shape function index using the relation between knot span
and element number given by i = e + p. The inner sum can be computed by the
matrix tuple product

c
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)c
e , ce = Ne

p(ξ)q
e(t) . (37)

It is composed of the elementmatrix of theB-spline shape functionsNe
p ∈ R3×3(p+1)

and the element generalized coordinate tuple qe ∈ R3(p+1), each of which is defined
as



Finite element analysis of planar nonlinear classical beam theories 13

Ne
p =

Ne
p N

e+1
p . . . Ne+p

p 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 Ne

p N
e+1
p . . . Ne+p

p 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 Ne

p N
e+1
p . . . Ne+p

p

 ,

qe = (xe, xe+1, . . . , xe+p, ye, ye+1, . . . , ye+p, θe, θe+1, . . . , θe+p)T . (38)

Using the Boolean allocation matrix Ce ∈ R3(p+1)×3N , the relationship of the
element coordinates qe and the global nodal coordinates q is given by

qe = Ceq . (39)

Let the generalized velocities q̇, generalized accelerations q̈ and the first variation
of the generalized coordinates δq be of the same form as (32). By transferring the
relation between the element coordinates and the global ones from (39), we are able
to approximate the first and second spatial derivatives, the acceleration, as well as
the variation of the generalized state tuple by

s′(ξ, t) ≈ c′
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)N
e′
p (ξ)Ceq(t) ,

s′′(ξ, t) ≈ c′′
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)N
e′′
p (ξ)Ceq(t) ,

s̈(ξ, t) ≈ c̈
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)N
e
p(ξ)C

eq̈(t) ,

δs(ξ, t) ≈ δc
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)N
e
p(ξ)C

eδq(t) .

(40)

Furthermore, we can substitute the approximations for the variation and acceleration
of the generalized state tuple given in (40), into the planar virtual work of the inertia
contributions in parameter space (14). Recapitulating that the characteristic function
is non-zero only if ξ ∈ Īe, either one of the characteristic functions vanishes if the
two arising sums have not the same index, thus the product of two sums reduces to
a single one and we get

δW dyn ≈ −
∫ 1

0

n∑
e=1

χĪeδq
TCeTNe

p
TΘ̄Ne

pC
eq̈Ḡ dξ . (41)

For a given element e, the characteristic function extracts the element interval Īe =
[ξe, ξe+1) from the parameter space Ī = [0, 1]. Thus, the integral over the whole
parameter space Ī reduces to an integral over the element interval Īe. Accordingly,
we obtain after minor rearrangements

δW dyn ≈ −δqT

n∑
e=1

CeT

∫ ξe+1

ξe

NeT
p Θ̄Ne

pḠ dξ Ceq̈ = −δqTMq̈ . (42)
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The global and elemental mass matrices M and Me, respectively, are obtained as

M =

n∑
e=1

CeTMeCe , Me =

∫ ξe+1

ξe

NeT
p Θ̄Ne

pḠ dξ . (43)

Further we used that δq and q̈ are independent of ξ and therefore can be pulled out
the integral.

Accordingly, the internal virtual work contributions in the parameter space, given
in (15), can be approximated by

δW int ≈ δqTf int , f int =

n∑
e=1

CeTf int,e ,

f int,e =

∫ ξe+1

ξe

{
NeT
p t̄1 −Ne′T

p t̄2

}
dξ ,

(44)

where we have introduced the global internal forces f int and their elemental contri-
butions f int,e. With some straightforward computations, the internal stiffness matrix
K = ∂f int

∂q can be computed as

K =

n∑
e=1

CeTKeCe , Ke =

∫ ξe+1

ξe

{
NeT
p

∂t̄1

∂qe
−Ne′T

p

∂t̄2

∂qe

}
dξ ,

∂t̄1

∂qe
=

(
∂0

∂qe
,
∂0

∂qe
, (I n̄× Ie3)TNe′

p + (Ie3 × ce′)T ∂I n̄

∂qe

)T

,

∂t̄2

∂qe
=

(
∂n̄1

∂qe
,
∂n̄2

∂qe
,
∂M̄

∂qe

)T

.

(45)

Using the same procedure as for the inertia and internal virtual work contributions,
we obtain the discretized form of the external virtual work contributions in parameter
space (16) given by

δW ext ≈ δqT(f ext +

2∑
i=1

f ext
i ) , f ext =

n∑
e=1

CeTf ext,e ,

f ext,e =

∫ ξe+1

ξe

NeT
p t̄Ḡ dξ , f ext

i =

n∑
e=1

CeTχĪeN
eT
p t̄i|ξ=ϕ(li) .

(46)

5.2 Euler–Bernoulli beam

For the discretization of the Euler–Bernoulli beam, only the first 2N generalized
coordinates of (32) are collected in a new generalized coordinate tuple
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q = (x1, . . . , xN , y1, . . . , yN )T ∈ R2N . (47)

Similarly to (37), the components of the position vector given in the ei-basis can be
approximated by

I r̄(ξ, t) ≈ c
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)c
e , ce = Ne

p(ξ)q
e(t) . (48)

The elementmatrix of the B-spline shape functionsNe
p ∈ R2×2(p+1) and the element

generalized coordinate tuple qe ∈ R2(p+1) are defined as

Ne
p =

(
Ne
p N

e+1
p . . . Ne+p

p 0 0 . . . 0
0 0 . . . 0 Ne

p N
e+1
p . . . Ne+p

p

)
,

qe = (xe, xe+1, . . . , xe+p, ye, ye+1, . . . , ye+p)T .

(49)

Using a new Boolean allocation matrix Ce ∈ R2(p+1)×2N , the relationship of the
element coordinates qe and global nodal coordinates q is again given by qe = Ceq.
Inserting the approximations for all required kinematic quantities into (21), we get
the approximated virtual work contributions of the inertia forces

δW dyn ≈ −δqTMq̈ + δqTh , M =

n∑
e=1

CeTMeCe , h =

n∑
e=1

CeThe ,

Me =

∫ ξe+1

ξe

(
Āρ0N

eT
p Ne

p +
Ī3
ḡ4

(Ne′T
p ce′⊥)(ce′⊥TNe′

p )

)
Ḡ dξ ,

he =

∫ ξe+1

ξe

2θ̇Ī3
ḡ4

(Ne′T
p ce′⊥)(ce′Tċe′)Ḡ dξ .

(50)

Note, that in addition to the mass matrix M, a gyroscopic force h and its elemental
counterpart he appears. Both h and he are quadratic in q̇ and q̇e, respectively.

Accordingly, the internal virtual work contributions (19) can be approximated by

δW int ≈ δqTf int , f int =

n∑
e=1

CeTf int,e ,

f int,e = −
∫ ξe+1

ξe

{
Ne′T
p

(
ce′N̄
ḡ
− M̄

ḡ2

[
2θ̄′ce′ + ce′′⊥

])
+ Ne′′T

p ce′⊥
M̄

ḡ2

}
dξ .

(51)

Using basic rules of calculus, the stiffness matrix can be derived as
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K =
∂f int

∂q
=

n∑
e=1

CeTKeCe ,

Ke =

∫ ξe+1

ξe

{
Ne′′T
p

(
k2
∂ce′⊥

∂qe
+ ce′⊥

∂k2

∂qe

)
+ Ne′T

p

[
∂k1

∂qe
−
(
k3 + ce′′⊥

) ∂k2

∂qe
− k2

(
∂k3

∂qe
+
∂ce′′⊥

∂qe

)]}
dξ .

(52)

The introduced auxiliary functions and their partial derivatives with respect to the
generalized coordinates are given by

k1 =
ce′N̄
ḡ

,
∂k1

∂qe
= −k1

ḡ

∂ḡ

∂qe
+

1

ḡ

(
N̄Ne′

p + ce′
∂N̄

∂qe

)
,

k2 =
M̄

ḡ2
,

∂k2

∂qe
= −2

k2

ḡ

∂ḡ

∂qe
+

1

ḡ2

∂M̄

∂qe
,

k3 = 2θ̄′ce′ ,
∂k3

∂qe
= 2

(
ce′

∂θ̄′

∂qe
+ θ̄′Ne′

p

)
,

∂ḡ

∂qe
=

ce′

ḡ
Ne′
p ,

∂θ̄′

∂qe
=

1

ḡ2

(
ce′⊥TNe′′

p − ce′′T
∂ce′⊥

∂qe

)
− 2

θ̄′

ḡ

∂ḡ

∂qe
.

(53)

Finally, the external virtual work contributions in parameter space given in (22)
can be discretized by

δW ext ≈ δqT(f ext +

2∑
i=1

f ext
i ) , f ext =

n∑
e=1

CeTf ext,e ,

f ext,e =

∫ ξe+1

ξe

{
NeT
p n̄ + Ne′T

p ce′⊥
M̄

ḡ2

}
Ḡ dξ ,

f ext
i =

n∑
e=1

CeTχĪe

{
NeT
p n̄i + Ne′T

p ce′⊥
M̄ i

ḡ2

}∣∣∣∣
ξ=ϕ(li)

.

(54)

5.3 Constraint forces

In addition to the discretization of the position and rotation fields, the contributions
of the constraint forces (23) and (24) have to be discretized. This is done by approxi-
mating the Lagrange multiplier fields σ̄1 and σ̄2 using B-spline curves in accordance
with (37), i.e., the same element distribution for the Lagrange multiplier fields and
the kinematic quantities is chosen. Two new sets of generalized coordinates can be
introduced

qσ1 = (σ̄1
1 , . . . , σ̄

N
1 )T ∈ RN , qσ2

= (σ̄1
2 , . . . , σ̄

N
2 )T ∈ RN . (55)
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Thus for k = 1, 2, both Lagrange multipliers can be approximated by the B-spline
curve of polynomial degree pσk given as

σ̄k(ξ, t) ≈ ck
(
ξ,qσk(t)

)
=

n∑
e=1

χĪe(ξ)c
e
k ,

cek = Ne
pσk

(ξ)qeσk(t) , qeσk = Ce
σk

qσk .

(56)

The element tuple of the B-spline shape functions Ne
pσk
∈ R1×pσk+1 and the

element generalized coordinate tuple qeσk ∈ Rpσk+1 are defined as

Ne
pσk

= (Ne
pσk

, Ne+1
pσk

, . . . , N
e+pσk
pσk

) , qeσk = (σ̄ek, σ̄
e+1
k , . . . , σ̄

e+pσk
k )T . (57)

The question arises, which polynomial degree pσk for the approximation of the
Lagrangemultipliers is compatible with the polynomial degree p of the approximated
kinematic quantities.Without further investigations, we chose the polynomial degree
pσk = p − 1 in the subsequent treatment. Numerical experiments have shown, that
such a polynomial degree leads to good convergence and accuracy of the constraint
beam models. By substituting the approximation of the Lagrange multiplier fields
given in (56) into the constraint virtual work contributions (23), the approximated
version reads

δW int
c,1 = δqT

σ2
gσ2

, gσ2
=

n∑
e=1

CeT
σ2

geσ2
, geσ2

=

∫ ξe+1

ξe

NeT
pσ2

(ce′TI d̄2) dξ ,

δW int
c,2 = δqTf int

c = δqTWσ2
qσ2

, Wσ2
=

n∑
e=1

CeTWe
σ2

Ce
σ2
,

We
σ2

=

∫ ξe+1

ξe

{
Ne′T
p I d̄2 −NeT

p Ie3(ce′TI d̄1)
}
Ne
pσ2

dξ .

(58)

From the above we can identify the generalized force directions by the par-
tial derivative of the discretized constraint function, i.e., WT

σ2
= ∂gσ2

/∂q and
WeT

σ2
= ∂geσ2

/∂qe.
For the inextensibility condition introduced in (24), the same steps as above can

be performed which yields

δW int
c,1 = δqT

σ1
gσ1 , gσ1 =

n∑
e=1

CeT
σ1

geσ1
, geσ1

=

∫ ξe+1

ξe

NeT
pσ1

(ḡ − Ḡ) dξ ,

δW int
c,2 = δqTf int

c = δqTWσ1qσ1 , Wσ1 =

n∑
e=1

CeTWe
σ1

Ce
σ1
,

We
σ1

=

∫ ξe+1

ξe

Ne′T
p

ce′

ḡ
Ne
pσ1

dξ .

(59)
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Again, the generalized force directions can be identified with the partial derivative
of the discretized constraint functions with respect to the generalized coordinates,
i.e. WT

σ1
= ∂gσ1

/∂q and WeT
σ1

= ∂geσ1
/∂qe.

5.4 Equations of motion and bilateral constraints

The principle of virtual work, stated in (Eugster and Harsch, 2020, (56)), can be
formulated in a discrete way by inserting the discrete virtual work contributions pre-
sented in the previous section. The total virtual work has to vanish for all admissible
variations δq of the generalized coordinates and for any instant of time t, i.e.

δW = δW dyn + δW int + δW ext = 0 , ∀δq, ∀t . (60)

Substituting the generalized forces introduced in Section 5.1 and demanding it to
hold for arbitrary variations δq for all time t, we get

−δqT
(
M(q)q̈− f int(q)− f ext(q, q̇, t)

)
= 0 , ∀δq,∀t

⇒M(q)q̈− f int(q)− f ext(q, q̇, t) = 0 ,
(61)

which are the semidiscrete equations of motion of the planar Timoshenko beam,
which hold for all time instants t.

Similarly, the semidiscrete equations of motion of the planar Euler–Bernoulli
beam are obtained by substituting the discrete counterparts of the virtual work
contributions given in Section 5.2 into the principle of virtual work, which leads to

M(q)q̈− h(q, q̇)− f int(q)− f ext(q, q̇, t) = 0 . (62)

Furthermore, the virtual work contributions of the constraint forces can be added
to both discrete virtual work principles given above. The constrained Euler–Bernoulli
beam is obtained by incorporating the angle constraint (58) in the total virtual work
of the Timoshenko beam. Further the inextensibility condition (59) can be added,
which yields the constrained inextensible Euler–Bernoulli beam formulation. The
discretized minimal formulated Euler–Bernoulli beam can be made inextensible by
the very same constraint condition. Next, depending on the desired constrained beam
formulation, the generalized vector of constraints gσ1

, respectively gσ2
are named

gσ when only one constraint condition is applied. Or both constraints gσ1 and gσ2

are stacked in the tuple gσ . In an analogous fashion, the corresponding generalized
coordinates tuple qσ is built. Similarly, one of the generalized force directions Wσ1

and Wσ2
is named Wσ when only a single set of constraints is required, or we can

assembleWσ1
andWσ2

in a matrixWσ , when both sets of constraints are imposed.
Thus, independent of the chosen set of constraints, the equations of motion for the
constrained beam models are given by
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M(q)q̈− f int(q)− f ext(q, q̇, t)−Wσ(q)qσ = 0

gσ(q) = 0 .
(63)

It is convenient to introduce another set of perfect bilateral constraints g(q, t) ∈
Rf which enforce the prescribed kinematic boundary conditions. Their associated
generalized force directions are WT = ∂g/∂q with W ∈ R3N×f or W ∈ R2N×f

for the Timoshenko and Euler–Bernoulli beam model, respectively. The correspond-
ing tuple of Lagrange multipliers is λ ∈ Rf . The discrete equations of motion
are extended with the constraint force contributions W(q, t)λ, together with the
additional constraint conditions g(q, t) and read

M(q)q̈− f int(q)− f ext(q, q̇, t)−Wσ(q)qσ −W(q, t)λ = 0

gσ(q) = 0

g(q, t) = 0 .

(64)

They have to be solved for the unknowns {q,qσ,λ}. In case of the Euler–Bernoulli
beam model the gyroscopic force vector h has to subtracted from the left-hand side
of the first equality in (63) and (64).

Both (63) and (64) are sets of differential algebraic equations (DAE) of index 3. A
general introduction to DAE solvers is given in Hairer andWanner (2002), including
the standardmethods like Shake,Rattle and backward differentiation formula (BDF).
In structural dynamics the generalized-αmethod is awell-established solver, not only
because of its simple implementation, but also because of its ability to eliminate the
contribution of non-physical high-frequency modes. Variants of the generalized α-
method for constraint mechanical systems are introduced in (Lunk and Simeon,
2006; Arnold and Brüls, 2007; Jay and Negrut, 2009). In order to include unilateral
constraints (Leine and van deWouw, 2007), a more recent variant of the generalized-
α method is proposed by Brüls et al (2014, 2018).

The static equilibrium problem is obtained by omitting the inertia terms and
allowing the external forces and the bilateral constraints to depend only on the
generalized coordinates q. This leads to the static residual equation

R(q,qσ,λ) =
(
f int(q)+ f ext(q)+Wσ(q)qσ +W(q)λ, gσ(q), g(q)

)T
. (65)

Application of a truncated Taylor-series expansion of (65) around a given point
{q0,qσ0

,λ0} yields a Newton-Raphson type iteration scheme, which solves for the
unknowns {q,qσ,λ}.

Finally, the arising element integrals over the domain Īe = [ξe, ξe+1] in the
individual parts of the equations of motion have to be computed. This is done
by using a numerical integration scheme. The basic idea of numerical quadrature
is the approximation of the integral

∫ b
a
f(ξ) dξ in a given interval I = [a, b] by

evaluating the function f at some discrete values ξi ∈ I and multiplication with the
so-called integration weights wi. Since numerical quadrature rules are well known
in literature, the reader is referred to basic textbooks about numerical analysis,
e.g., (Stoer et al, 2002, Chap. 3) and (Quarteroni et al, 2000, Chap. 9-10). The
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numerical examples, presented in the subsequent section are computed using the
Gauss-Legendre quadrature rule, whereby the number of quadrature points within
one element are chosen such that they equal the polynomial degree p of the B-spline
curves.

6 Numerical Examples

The subsequent section deals with the performed numerical examples. At first, we
present some static benchmark problems that show the differences of the finite
element implementations of all beam models and their numerical accuracy with
respect to analytical solutions. Afterwards more advanced problems are investigated,
including buckling problems, which are compared to numerical and semi-analytical
solutions found in literature. Finally, the natural frequencies of the presented Euler–
Bernoulli beam formulation will be compared to the analytically derived ones.

All presented beammodels are implemented in an in-house object oriented multi-
body dynamics code written in python. The data found in literature is digitalized
using the amazing Webplotdigitizer tool developed by Rohatgi (2019).

6.1 Pure bending of a cantilever beam

In the first example a straight beam of length L = 2π, axial stiffness E1 = 5, shear
stiffness E2 = 1, and bending stiffness F3 = 2 is subjected to a concentrated end
couple M̄2 = 2πF3/L. The exact solution for this problem is given by a closed circle
of radius r = 1. This static boundary condition (pure bending) leads to a homogenous
flexural deformation. There should be neither extensional nor shear effects, thus we
expect all beammodels leading to the very same solution. By regarding the computed
configurations depicted in Fig. 5, this expectation has come true.

Next, the convergence behavior of all five presented beam formulations were in-
vestigated, namely the Timoshenko beam (T1), the Euler–Bernoulli beam obtained
by adding the corresponding constraint (T2), the inextensible Euler–Bernoulli beam
given by additionally adding the inextensibility condition (T3), the minimal for-
mulation of the Euler–Bernoulli beam (E1) and the inextensible Euler–Bernoulli
beam obtained by adding the corresponding constraint condition (E2). All beam
formulations presented in the previous sections were computed with different num-
ber of elements n ∈ {8, 16, 32, 64, 128} (h-refinement) and polynomial degrees
p ∈ {2, 3, 5} (p-refinement). The Lagrange multiplier fields for the constrained
beam models were discretized with B-splines of polynomial degree pσk = p − 1.
Further information regarding the different refinement strategies, including combi-
nations of h-and p-refinement, the so-called k-refinement, can be found in (Cottrell
et al, 2009; Greco and Cuomo, 2013). For each refinement level, 50 iterations of
a force controlled Newton-Raphson method were performed using a convergence
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Fig. 5: Same configurations for all presented beam models with load increments
λ ∈ {0, 0.25, 0.5, 0.75, 1}.

tolerance of 10−12 with respect to the maximum absolute error of the static resid-
ual (65). Let e be the Euclidean error of the point of applied couple with respect
to the analytical solution, given by the origin. In Fig. 6, the normalized error e/L
is depicted. By increasing the polynomial degree or the number of used finite el-
ements, the error decreases. Two more remarkable observations can be made. The
minimal formulations of the Timoshenko and Euler–Bernoulli beam led to the same
errors as their constrained counterparts. This is due to the absence of axial and
shear deformations in this problem. Thus, the constraints have no influence on the
convergence behavior. For the finest discretization (n = 128 and p = 5), all beam
models converge to an error of O(10−12), which coincides with the given tolerance
of the underlying Newton-Raphson scheme.

Henceforth, we restrict the presentation to the three kinematically different beam
models. For computational efficiency themodels with the smallest number of degrees
of freedom are chosen. These are the Timoshenko beam model (T1), the minimal
formulation of the Euler–Bernoulli beam (E1) and its inextensible version (E2).

6.2 Cantilever beam subjected to constant end load

Let us consider an initially straight beam of length L = 2π, axial stiffness E1 = 5,
shear stiffnessE2 = 1, and bending stiffness F3 = 2 which is subjected to a constant
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Fig. 6: Normalized Euclidean error of the point of applied couple with respect to the
analytical solution, given by the origin, for all different beam models using different
levels of refinement.

end load in negative vertical direction. For the inextensible Euler–Bernoulli beam,
this kind of problem is solved analytically using the first and second elliptic integrals,
defined as

F (θ, k) =

∫ θ

0

(1− k2 sin2 θ̃)−
1
2 dθ̃ , E(θ, k) =

∫ θ

0

(1− k2 sin2 θ̃)
1
2 dθ̃ . (66)

Byrd and Friedman (1954) give a general introduction to elliptic integrals. Let

IF = −P Ie2 , P =
(α
L

)2

F3 , (67)

be an external point force at the beam’s end s = L depending on a force parameter
α2. Bisshopp and Drucker (1945) derived the solution for the horizontal and vertical
deflection of the cantilever beam in terms of the elliptic integrals given in (66), i.e.,

x(L) =
L
√

2

α

√
sinφ0 , sinφ0 = 2k2 − 1 ,

y(L) = L

(
1− 2

α

[
E(π/2, k)− E(θ1, k)

])
, sin θ1 =

√
2

2k
.

(68)
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The deflections solely depend on the parameter k. Bisshopp and Drucker (1945)
showed that the inextensibility condition leads to

α = F (π/2, k)− F (θ1, k) . (69)

By using a root-finding method, e.g., a bisection method, for a given load value
α2, the corresponding k value can be obtained. This completely determines the
displacement of the beam tip of the inextensible Euler–Bernoulli beam.

For the discretization of the used finite element models, n = 20 quadratic B-
spline elements (p = 2, pσ1

= 1) were used. The numerical solution was obtained
by application of a load controlled Newton-Raphson method with 10 load steps and
a convergence tolerance of 10−8 with respect to the maximum absolute error of the
static residual (65).

In Fig. 7, the configurations for the different beam models are compared with
the solution found by using elliptic integrals. For the inextensible Euler–Bernoulli
beam model all configurations are in excellent accordance with the elliptic integral
solution. The Euler–Bernoulli beam model leads to the same curvature but due to
its extensibility the end points do not coincide with the elliptic integral solution.
For the Timoshenko beam additionally shear deformation is allowed. Thus also the
curvatures do not coincide with those of the inextensible Euler–Bernoulli beam
solutions.

In Fig. 8, the normalized horizontal and vertical displacements given by δ =
−y(L)/L and ∆ = x(L)/L are depicted for given load parameters α2. It can
be observed that the inextensible Euler–Bernoulli beam model can reproduce the
results obtained by using elliptic integrals. The Timoshenko and Euler–Bernoulli
beam models lead to slightly different results, due to presence of extensional and
shear deformations.

6.3 Cantilever beam subject to follower end load

In this example the large deflection of a cantilever beam of length L = 1, axial
stiffness E1 = EA (E = 2100, A = 20 · 10−4), shear stiffness E2 = GA (G =
E/(2 + 2ν), ν = 0.3), flexural stiffness F3 = EI (I = 1, 667 · 10−8) under non-
conservative transverse force is investigated. This problemwas examined by (Argyris
and Symeonidis, 1981; Simo and Vu-Quoc, 1986). The beam is clamped on the left-
hand side and on the right-hand side a transverse follower force F with ||F|| =
λ3 · 10−3 is applied. The force is applied perpendicular to the beam tip. The angle
between the free end and the applied force thus always remains π/2.

For the discretization of the used finite element models, n = 20 quadratic B-
spline elements (p = 2, pσ1

= 1) were used. The numerical solution was obtained
by application of a load controlled Newton-Raphson method with 100 load steps and
a convergence tolerance of 10−8 with respect to the maximum absolute error of the
static residual (65).
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Fig. 7: Configurations for different load parameters α2 ∈ {0, 1
9 ,

3
9 ,

5
9 , 1}. The Tim-

oshenko beam is depicted by dashed lines, the Euler–Bernoulli beam by dashdotted
lines and the inextensible Euler–Bernoulli beam model by solid lines. The elliptic
integral solutions given in Bisshopp and Drucker (1945) are indicated by red crosses.
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Fig. 8: Force displacement curves for the cantilever beam. The analytical solutions
using elliptic integrals are depicted by red bullets and squares for the δ and∆ values,
respectively. The finite element solutions of the Timoshenko beam are depicted by
solid lines, the Euler–Bernoulli beam by dashed lines and the inextensible Euler–
Bernoulli beam model by dashdotted lines.
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For small load increments, the configurations of the different beam formulations,
depicted in Fig 9, can’t be distinguished. For increasing load increments, the configu-
rations obtained by the Timoshenko beammodel differ from the ones obtained by the
two Euler–Bernoulli beams. The effect of the inextensibility can not be recognized.

In Fig. 10 the load deflection curve is compared with the results obtained by Ar-
gyris and Symeonidis (1981). There is a good overall accordance. For the loads
between λ = 0.1 and λ = 0.2 the horizontal displacement curves are separated for
all beam models. In contrast to Argyris and Symeonidis (1981), larger load incre-
ments were computed, in order to see slightly differences of the Timoshenko and
Euler–Bernoulli beam models. Again the inextensible Euler–Bernoulli beam can not
be distinguished from the extensible one.
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Fig. 9: Deformed configurations of the different beam models under a non-
conservative follower force with load parameters λ ∈

{
1
7 ,

2
7 ,

3
7 ,

4
7 ,

6
7 , 1
}
. The Timo-

shenko beam model is depicted by solid lines, the Euler–Bernoulli beam by dashed
lines and the inextensible Euler–Bernoulli beam model by dashdotted lines.

6.4 Clamped-hinged circular arch subject to point load

In this example, we investigated the buckling and post-buckling behavior of a circular
arch of radius R = 100 clamped on the right end and hinged on the left, see Fig. 11.
This problem is also discussed in (Dadeppo and Schmidt, 1975; Simo and Vu-Quoc,
1986), both of which are using an inextensible Euler–Bernoulli beam model, either
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Fig. 10: Load deflection curves for the horizontal displacement ux = x(L)−L and
vertical displacement uy = −y(L) of the point of applied load. The Timoshenko
beam model is depicted by solid lines, the Euler–Bernoulli beam with dashed lines
and the inextensible Euler–Bernoulli beam model by dashdotted lines. The results
found in Argyris and Symeonidis (1981) are depicted by red crosses.

by direct formulation or by utilizing a penalty approach, for their investigations.
The inner angle of the arc is 2α = 205◦. The arch is represented by two beams of
axial stiffness E1 = 50, shear stiffness E2 = 10 and flexural stiffness F3 = 1000.
The beams are connected by the use of bilateral constraints that guarantee the same
position and angle at the connection point. Both beams are of undeformed length
L1 = L2 = 100 180◦

α . A constant external force IF = −λIe2 is applied at the crown
of the circle.

B-spline shape functions are not able to represent perfect archs. In order to obtain
a pre-curved reference configuration an optimization technique was developed. Let
{pi}, i = 1, . . . k be a given set of points pi ∈ R2, which describe the target curve
of the reference configuration. Next a set of evaluation points ξi is collected in a
knot vector Ξ ∈ Rf . There are several possibilities found in literature (Piegl and
Tiller, 1997, Chap. 9.2, p. 364). The most simple method is choosing equally spaced
knots in the interval [0, 1]. Next a pth order B-spline curve divided into n elements,
which depends on the chosen polynomial degree p and the N = n + p generalized
coordinates {qj}, j = 1, . . . , N , can be introduced. The generalized coordinates
qj ∈ R2 are collected in a tuple q ∈ RN . Solving the optimization problem

K =

k∑
i=1

1

2
‖c(ξi,q)− pi‖2 → min , (70)
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leads to an optimal fit of theB-spline curve c, defined in (48), to the pointspi in a least
squares sense. The necessary condition for solving the minimization problem (70)
reads ∂K/∂q = 0. Inserting the definition of the B-spline curve given in (48) and
after carrying out minor rearrangements, we obtain the linear system of equations

Aq = b , A =

k∑
i=1

n∑
e=1

χĪe(ξi)C
eTNeT

p (ξi)N
e
p(ξi)C

e ,

b =

k∑
i=1

n∑
e=1

χĪe(ξi)C
eTNeT

p (ξi)pi .

(71)

This can be solved for the unknown generalized coordinates q of the reference
configuration. As a requirement for A to be well-conditioned, every knot span must
contain at least one ξi, see (Piegl and Tiller, 1997, Chap. 9.4.1, p. 412) and (de Boor,
1978, Chap. 14.4, p. 223).

In order to obtain the B-spline curve representing the angle, i.e., IeT
3 c(ξ,q), with

c from (37), in a second step an analogous minimization problem has to be solved.
The angle of the target curve can be computed by θ̄i = arctan(ȳ′(ξi,q)/x̄′(ξi,q)).
The values for x̄′ and ȳ′ are obtained as the first and second component of the
B-spline curve’s derivative c′ given in (70). The new minimization problem reads

K∗ =

k∑
i=1

1

2
‖IeT

3 c(ξi,q)− θ̄i‖2 → min . (72)

In the discretization, presented in the previous section, we restricted ourselves
to open knot vectors, thus we had to ensure that the first and last point p1 and pk,
respectively exactlymatchwith the generalized coordinatesq1 andqN . Analogously,
the angles have to coincide with angles of the target curve. This was obtained by
additionally imposing constraints onto (70) and (72). These constraints are met by
extending the system with a Lagrange multiplier method, see (Piegl and Tiller, 1997,
Chap. 9.4.2).

In order to obtain post-buckling solutions, i.e., configurations after exceeding
a critical force value, a numerical path following algorithm was used instead of
the classical Newton-Raphson method. The most simple methods are the so-called
linear arc length methods. The first solution method was published by Riks (1979),
followed by others, e.g., Crisfield (1981). A general introduction to the topic of path-
following and arc length methods can be found in Crisfield (1991). In order to use
these solvers, together with bilateral constraints, some modifications are required.
The basic ideas are sketched below. First, in contrast to a load incremented solution
technique, the load parameter λ becomes an additional degree of freedom. Thus,
one additional equation has to be found, in order to close the static equilibrium
problem. This is done by introducing a new scalar function f(q, λ), limiting the
incremental displacements. As proposed by Crisfield (1991) the simple function
f(q, λ) = (q − q0)T(q − q0) − ∆s2, with q0 being the last converged set of
generalized coordinates lying on the equilibriumpath and∆s somegiven incremental
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length leads to good convergence. Next the extended residual equation

R(q,qσ,λ, λ) =


f int(q) + λf ext(q) + Wσ(q)qσ + W(q)λ

gσ(q)
g(q)
f(q, λ)

 (73)

has to be linearized around the last converged set of generalized coordinates, i.e.,
around {q0,qσ0,λ0, λ0}. This directly yields the modified Newton-Raphson itera-
tion scheme. The choice of a predictor solution, in the beginning of each increment,
has to be made with special care, see Crisfield (1991) for an extensive discussion.

In the present example each of the two beam finite element models was build
by using n = 20 quadratic B-spline elements (p = 2, pσ1

= 1). The numerical
solution was obtained by using the linear arc length solver presented above with an
incremental length ∆s = 0.08, together with a convergence tolerance of 10−6 with
respect to the maximum absolute error of the extended residual (73).

In Fig. 11, five pre- and post-buckling configurations of the different beammodels
are depicted, where the post-buckling configurations are forming a loop. In contrast
to Dadeppo and Schmidt (1975), the post-buckling configurations are also computed.
It can be seen that for increasing load parameters the three beam models lead to
slightly different configurations. The Timoshenko beam, as the softest beam, yields
the largest deflection for λ = 1. The Euler–Bernoulli beam and its inextensible
version are stiffer and thus the deformation for the total external force are smaller
compared to the Timoshenko beam.

The load deflection curves for the horizontal and vertical deflection of the circles
apex are depicted in Fig. 12. For the inextensible Euler–Bernoulli beam, the results
found in (Dadeppo and Schmidt, 1975) and (Simo and Vu-Quoc, 1986) are in good
accordance. The buckling load for the different beam models are λb = 0.8297
(Timoshenko), λb = 0.8805 (Euler-Bernoulli), λb = 0.9102 (inextensible Euler-
Bernoulli). For the inextensible Euler–Bernoulli beam the buckling load is in good
agreement with the values reported by (Simo and Vu-Quoc, 1986, λb = 0.90528)
and (Dadeppo and Schmidt, 1975, λb = 0.897). In (Simo and Vu-Quoc, 1986)
a second limit point is identified with the load value λb = −0.0771, which only
slightly differs from the value λb = −0.0807 obtained by the presented inextensible
Euler–Bernoulli beam model.

6.5 Buckling of a hinged right-angle frame under follower point
load

In this example the buckling of a both sided hinged right-angle frame of height and
length 120 under non-conservative transverse force is investigated, see Fig. 13. Three
beams are used for this problem. One vertical beam of length L1 = 120 and two
horizontal ones, the first of length L2 = 1

5L1, the second one of length L3 = 4
5L1.
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Fig. 11: Deformed configurations of the different beam models for load parameters
λ ∈ {0, 0.4, 0.82,−0.045, 1}. The Timoshenko beam model is depicted by solid
lines, the Euler–Bernoulli beam by dashed lines and the inextensible Euler–Bernoulli
beam model by dashdotted lines.
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Fig. 12: Load deflection curves for the horizontal displacement ux = x(L1) and
vertical displacement uy = −(y(L1) − 100) of the point of applied load. The
Timoshenko beam model is depicted by solid lines, the Euler–Bernoulli beam by
dashed lines and the inextensible Euler–Bernoulli beam model by dashdotted lines.
The results of Dadeppo and Schmidt (1975) are depicted by blue circles, the ones
computed by Simo and Vu-Quoc (1986) by red crosses.
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The three beams are connected using bilateral constraints for the corresponding
positions and angles. At the point where the two horizontal beams meet, a non-
conservative load P = λ40 · 103 is applied under the angle π/2. The three beams
are build with Young’s modulus E = 7.2 · 106, shear modulus G = E/(2 + 2ν),
Poisson’s ratio ν = 0.3, cross section area A = 6, moment of inertia I3 = 2, axial
stiffness E1 = EA, shear stiffness E2 = GA and flexural stiffness F3 = EI3.

The vertical beam was discretized using n = 20 quadratic B-spline elements
(p = 2, pσ1

= 1), the small and large horizontal parts were discretized with 4
and 16 quadratic B-spline elements, respectively. The numerical solutions were
obtained using the previously presented linear arc length solver with∆s = 600 and
a convergence tolerance of 10−6 with respect to the maximum absolute error of the
extended residual (73).

Fig. 13 shows five representative configurations of the different beam models.
Only for the force increments λ = 0.885 and λ = −0.345minor differences between
the Timoshenko beam model and the two Euler–Bernoulli beams can be noted. This
is due to the large axial and shear stiffness parameters introduced by Argyris and
Symeonidis (1981), which where taken for comparative purposes.

In Fig. 14, the load deflection curves for the horizontal and vertical deflections
are depicted. The computed results are in good accordance with the ones reported
by (Argyris and Symeonidis, 1981) and (Simo and Vu-Quoc, 1986), both of which
present Timoshenko beam models. In the magnified areas small differences between
the Timoshenko beam and the two Euler–Bernoulli beams can be recognized. The
configurations for both Euler–Bernoulli beam models cannot be distinguished.

6.6 Natural frequencies of a two sided pinned Euler–Bernoulli
beam

In this example the natural frequencies of a two sided pinned beam of lengthL = 2π,
axial stiffness E1 = 0.1, flexural stiffness F3 = 1 and mass density ρ0 = 1 are
compared with the ones computed using the Euler–Bernoulli beam finite element
model. For the numerical computation different polynomial degrees p ∈ {2, 3, 5}
and element numbers n ∈ {32, 128, 512} were compared and their influence on the
accuracy was investigated.

The analytic solutions for the eigenvalues are well known in literature, e.g., Graff
(1975). They can be derived from the governing equation

a2y′′′′(s, t) + ÿ(s, t) = 0 , a2 = EI/ρA . (74)

By substituting the separation ansatz y(s, t) = Y (s)T (t) into (74) and separating
the spatial and time dependent variables we get

a2Y
′′′′

Y
=
T̈

T
= ω2 . (75)
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Fig. 13: Deformed configurations of the different beam models for load parameters
λ ∈ {0, 0.62, 0.885,−0.345, 1}. The Timoshenko beam model is depicted by solid
lines, the Euler–Bernoulli beam by dashed lines and the inextensible Euler–Bernoulli
beam model by dashdotted lines.
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Fig. 14: Load deflection curves of the point of applied force for the horizontal
displacementux = x(L2)−120 and the vertical displacementuy = −(y(L2)−120).
The Timoshenko beammodel is depicted by solid lines, the Euler–Bernoulli beam by
dashed lines and the inextensible Euler–Bernoulli beam model by dashdotted lines.
The results of Argyris and Symeonidis (1981) are depicted by blue circles, the ones
reported by Simo and Vu-Quoc (1986) using red crosses.
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The solution of the left hand side, a fourth order ordinary differential equation, is
given by

Y (s) = C1 sin(βs)+C2 cos(βs)+C3 sinh(βs)+C4 cosh(βs) , β4 =
ω2

a2
. (76)

The second order ordinary differential equation of the right hand side is fulfilled by

T (t) = A cos(ωt) +B sin(ωt) . (77)

For a two sided pinned beam, the boundary conditions in terms of Y (s), are given
by Y (0) = Y ′′(0) = Y (L) = Y ′′(L) = 0. Inserting these boundary conditions
into (76), the constants C2 = C3 = C4 = 0 can be identified. Thus, the frequency
equation

sin(βL) = 0 , βL = nπ , n = 1, 2, . . . (78)

is obtained. The radial and cyclical frequencies for the two sided pinned beam are
given by

ωn = a
(nπ
L

)2

, fn =
aπn2

2L2
, n = 1, 2, . . . . (79)

The corresponding normal modes read

Yn(s) = sin(βns) , βn =
nπ

L
, n = 1, 2, . . . . (80)

The numerical eigenfrequencies were computed using the linearized equilibrium
equation

Mq̈−Kq = 0 , (81)

with stiffness matrix in (52). For the mass matrix (50), the term involving I3 was
omitted. This is in accordance with the linearized partial differential equation (74),
where rotatory effects of the cross sections are not included. Substituting the solution
ansatz q = φeλt, q̈ = λ2φeλt, the corresponding eigenvalue problem is obtained
by multiplying e−λt from the right and using λ = iω(

−K− ω2M
)
φ = 0 . (82)

This can be solved numerically for the normal values ωn and their corresponding
normal modes φn.

In Fig. 15 the absolute errors of the first 21 numerically computed natural fre-
quencies with respect to the analytical ones are depicted using a semi-logarithmic
axis. It can be observed that both refinement strategies lead to better agreements
of the finite element approximation with the analytical normal frequencies. For the
reported normal frequencies, the influence of the polynomial degree elevation of the
chosen B-spline shape functions is larger than increasing the number of elements.
For the finest refinement level (p = 5, n = 512) all shown normal frequencies are
computed up to machine precision.
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Fig. 15: Error in the first 21 natural frequencies of the finite element implementation
of the Euler–Bernoulli beam model.

7 Conclusion

Starting from a variational framework, this article presents a finite element analysis
of planar nonlinear classical beam theories. For discretizing the total virtual work, B-
splines are chosen for both ansatz and test functions. This led to three kinematically
different beam finite element models, either by finding a minimal set of kinematical
descriptors, or by imposing additional constraint equations. All different beam mod-
els were studied in a variety of numerical experiments. Reproduction of analytical
solutions and numerical results reported in classical beam finite element literature
show the power and versatility of the presented numerical implementations.

Thus, the investigated discretization approach is well-suited for application to
large systems of beams, e.g., pantographic structures (Andreaus et al, 2018; dell’Isola
et al, 2018, 2019). Due to the lack of ready-to-use beam finite element mod-
els (dell’Isola et al, 2016), or because of their simple but performant implemen-
tation (Turco et al, 2016; Giorgio, 2020), discrete Hencky-type beam models are
often used in literature.
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Further research should include a finite element discretization approach for spa-
tial beam models. This leads to a variety of applications, including out of plane
deformation of the above-mentioned pantographic structures and their buckling and
post-buckling behavior (Giorgio et al, 2017).
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