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Abstract

A new director-based finite element formulation for geometrically exact beams is proposed by weak enforcement of the

orthonormality constraints of the directors. In addition to an improved numerical performance, this formulation enables

the development of two more beam theories by adding further constraints. Thus, the paper presents a complete intrinsic

spatial nonlinear theory of three kinematically different beams which can undergo large displacements and which can have

precurved reference configurations. Moreover, the hyperelastic constitutive laws allow for elastic finite strain material

behavior of the beams. Furthermore, the numerical discretization using concepts of isogeometric analysis is highlighted

in all clarity. Finally, all presented models are numerically validated using exclusive analytical solutions, existing finite

element formulations, and a complex dynamical real-world example.
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1. Introduction

The present work deals with a customizable and simple finite element formulation of three kinematically differ-
ent spatial beam models. It is based on the principle of virtual work and introduces an intrinsic large strain and
displacement theory for precurved beams. Depending on the invariant strain measures, arbitrary constitutive
laws can be chosen to model the beam’s material resistance. For the special case of hyperelastic materials, they
are obtained from a chosen strain energy function.

Owing to the lack of naming consistency in the literature (see [1,2]), we classify the beams by their kinemat-
ics. Further, we consider a beam in the sense of an intrinsic theory as a generalized one-dimensional continuum
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that is described by a spatial curve augmented with director triads representing the beam’s cross section. Depend-
ing on the superimposed kinematic restrictions, three mathematically different beam models are introduced. If
solely the orthonormality of the director triads is ensured, we call the obtained model a spatial Timoshenko
beam [3], which is also known as “geometrically exact beam” [4, 5], “Simo–Reissner beam” [6, 7], or “special
Cosserat rod” [8]. The beam is named Euler–Bernoulli beam provided that, in addition, the cross sections are
enforced to remain orthogonal to the centerline’s tangents. Alternative names are “Kirchhoff–Love rod” [9, 10]
and “Kirchhoff rod” [11, 12]. Further constraints can restrict the length of the centerline’s tangents to remain
unchanged throughout the motion. These restrictions lead directly to a beam whose overall length does not
change and is therefore called an inextensible Euler–Bernoulli beam.

The concept of directed or oriented media is by no means new and goes back to the early work of [13], which
regards a body as the collection of points and their associated orientations. In [14], the theory of oriented media
was systematically developed in one, two, and three dimensions. A generalization of this theory is presented
in [15]. Further, a constrained beam formulation with three independently deforming directors can be found
in [16]. When solely two directors can deform independently, while being orthogonal to the curve’s tangent, an
early formulation is found in [17]. A nonlinear spatial version of the Euler–Bernoulli beam is obtained in the
special case of both directors being constrained such that they remain orthogonal and of constant length [18].
The very same beam and six other less-restrictive nonlinear constrained models are discussed in [19]. As pointed
out by the authors, an attractive feature of constrained theories is the fact that they result in a simpler system
of differential equations compared with an unconstrained or minimal formulation of the same theory. Further,
direct interpolation of the director triad during a finite element procedure overcomes the loss of objectivity while
interpolating rotations which was first noted in [20, 21]. Based on these observations in the past decades a wide
variety of beam models were developed, which can all be distinguished by the choice of rotation parametrization.
See, for instance, [22–25]. Another noteworthy point is that no secondary storage is required, which is a common
characteristic of so-called Eulerian and updated Lagrangian beam formulations [26]. Thus, all kinematic and
kinetic properties can be computed using the current and reference configuration of the constrained beam model.

Based on the more recent considerations of [4, 5, 27], a novel method for ensuring the orthonormality con-
straints of the director triads is presented. Instead of enforcing the constraints on each node of the discretized
system, the constraints are formulated continuously at every material point. During discretization, the orthonor-
mality of the director triads is solely enforced in a weak or integral sense on the element level. Thus, in addition
to the centerline and director fields, the Lagrange multiplier fields have to be discretized. Analogously, further
constraints such as the restriction of shear and axial deformations can be enforced. However, the weak enforce-
ment of the constraint conditions allows them to be violated at certain material points during interpolation. The
obtained discrepancy can be interpreted as discretization error that diminishes with increasing number of ele-
ments or polynomial degree of the underlying shape functions. Even if the constraints are satisfied at each node,
during interpolation the very same deviation from the exact condition can be noticed [28], while the extension
to further constraints is not possible.

The paper is organized as follows. In Section 2, a mathematical primer on intrinsic nonlinear beam theory
is given. It closes with the total virtual work of all three different beam models. Subsequently, as a central com-
ponent of isogeometric analysis [29], B-spline shape functions are introduced in order to be in the comfortable
position of choosing shape functions of arbitrary polynomial degree with globally increasing differentiability.
This has two major advantages. On the one hand, the locking phenomenon, which occurs for extremely thin
Timoshenko beam models, is reduced with increasing polynomial degree. This observation is in accordance
with that made in [30]. On the other hand, highly nonlinear functions, that cannot be represented exactly by
polynomials, are approximated as accurately as necessary. Further, these shape functions are used to discretize
the individual virtual work contributions during a Galerkin procedure. Finally, Section 4 examines exclusive
numerical examples that demonstrate the performance and flexibility, but also the respective differences, of
the proposed beam formulations. Particular attention is paid to validate the presented theories during compar-
ison with analytical solutions wherever possible. If no closed-form solution is available, numerical solutions
found in literature are used for comparison. Finally, a fascinating dynamical real-world application is presented
demonstrating the capability of modeling complex physical behavior.
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Figure 1. Kinematics of the Timoshenko beam’s reference and current placement.

2. Spatial nonlinear beam theory

2.1. Notation

We regard tensors as linear transformations from a three-dimensional vector space E
3 to itself and use standard

notation such as AT, A−1, and det(A). These are, respectively, the transpose, the inverse, and the determinant
of a tensor A. The set of tensors is denoted by L(E3; E

3). The tensor 1 stands for the identity tensor, which
leaves every vector a ∈ E

3 unchanged, i.e., a = 1a. We use Skw to denote the linear subspace of skew tensors
and Orth+ = {A ∈ L(E3; E

3)|ATA = AAT = 1 ∧ det(A) = +1} to identify the group of rotation tensors.
The tensor product of two vectors is indicated by interposing the symbol ⊗. Latin and Greek indices take
values in {1, 2, 3} and {2, 3}, respectively, and, when repeated, are summed over their ranges. Furthermore, we
abbreviate the arguments in functions depending on the three components (a1, a2, a3) or merely on the last two
components (a2, a3) of a vector a ∈ E

3 by (ai) or (aα), respectively. Using that E
3 is equipped with an inner

product a · b = aibi ∀a, b ∈ E
3, there exists an orthonormal basis {e1, e2, e3}, such that ei · ej = δij, where δij

is the Kronecker delta. Moreover, the Euclidean norm of a vector a ∈ E
3 is given by ‖a‖ = √

a · a. We restrict
ourselves to positively oriented bases, where the triple product of the basis vector is +1, i.e., e1 · (e2 ×e3) = +1,
which implies the positive cross product a × b = aiei × bjej = εijkaibjek formulated here with the Levi-
Civita symbol εijk . Accordingly, every vector a ∈ E

3 can be related to its associated skew tensor, denoted by
a superimposed tilde, i.e., ã ∈ Skw, via a = aiei = ax(ã) := 1

2εijk ãkjei. Derivatives of functions f = f (ξ , t)
with respect to ξ and t are denoted by a prime f ′ = ∂f /∂ξ and a dot ḟ = ∂f /∂t, respectively. The variation of
such a function, denoted by a prefixed delta, is the derivative with respect to the parameter ε of a one-parameter
family f̂ = f̂ (ξ , t; ε) evaluated at ε = 0, i.e., δf (ξ , t) = ∂ f̂ /∂ε(ξ , t; 0). The one-parameter family satisfies
f (ξ , t) = f̂ (ξ , t; 0).

2.2. Kinematical assumptions

In this section, we introduce the required kinematical quantities required for the formulation of the spatial
nonlinear Timoshenko beam, which is the least-constrained theory in this paper. The motion of the centerline
is the mapping r : I × R → E

3, (ξ , t) 7→ r(ξ , t), where, for each instant of time t ∈ R, the closed unit interval
I = [0, 1] ⊂ R parametrizes the set of beam points. The placement of the reference centerline is given by
r0 : I → E

3. To capture cross-sectional orientations of beam-like bodies, the kinematics of the centerline is
augmented by the motion of positively oriented director triads di : I × R → E

3. The directors dα(ξ , t) span
the plane and rigid cross section of the beam for the material coordinate ξ at time t. The director triads in the
reference configuration are given by the mappings Di : I → E

3. While D1 is identified with the unit tangent to
the reference centerline r0, i.e., D1 = r′

0/‖r′
0‖, the vectors D2(ξ ) and D3(ξ ) are identified with the geometric

principal axes of the cross sections, see Figure 1.
With the reference and current rotation fields R0 : I → Orth+ and R : I × R → Orth+, respectively, the

reference and current director triads are related to a fixed right-handed inertial frame {e1, e2, e3} by

Di(ξ ) = R0(ξ )ei, di(ξ , t) = R(ξ , t)ei, (1)

R0(ξ ) = Di(ξ ) ⊗ ei, R(ξ , t) = di(ξ , t) ⊗ ei.
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By making use of the inverse relations of (1) and exploiting the equivalence of the inverse and the transpose for
rotations, we can relate all bases by

ei = RT
0(ξ )Di(ξ ) = RT(ξ , t)di(ξ , t). (2)

To capture the deformation between the reference and the current configuration, the rotation field 3 : I × R →
Orth+, (ξ , t) 7→ 3(ξ , t) = R(ξ , t)R0(ξ )T is introduced. It rotates the reference director triads to the current ones,
i.e.,

di(ξ , t) = 3(ξ , t)Di(ξ ), 3(ξ , t) = di(ξ , t) ⊗ Di(ξ ).

The rate of change of the current directors with respect to time t is described by the angular velocity ω̃(ξ , t) =
Ṙ(ξ , t)RT(ξ , t) = 3̇(ξ , t)3T(ξ , t) ∈ Skw, which appears together with the corresponding axial vector ω(ξ , t) ∈ E

3

in

ḋi = (Rei)̇ = Ṙei
(2)= ṘRTdi = ω̃di = ω × di. (3)

The angular velocity can thus be represented as

ω̃ = ω̃ijdi ⊗ dj = (di ⊗ ei)̇ (dj ⊗ ej)
T = ḋi ⊗ di = (di · ḋj)di ⊗ dj (4)

or as vector-valued function in the form

ω = ωidi = ax(ω̃) = 1
2εijkω̃kjdi = 1

2εijk(dk · ḋj)di.

The rate of change of the current directors subjected to a variation of the current configuration is captured by
the virtual rotation δφ̃(ξ , t) = δR(ξ , t)RT(ξ , t) = δ3(ξ , t)3T(ξ , t) ∈ Skw with its axial vector δφ(ξ , t) ∈ E

3.
Both representations can be recognized in

δdi = δRei
(2)= δRRTdi = δφ̃di = δφ × di,

which implies the relation

di × δdi = di × (δφ × di) = (di · di)δφ − (di · δφ)di = 3δφ − δφ = 2δφ,

where Grassmann’s identity was used for the second equality. Thus, the virtual rotation δφ and its first derivative
δφ′ with respect to the beams material coordinate can be written as

δφ = 1
2 di × δdi, δφ′ = 1

2 (d′
i × δdi + di × δd′

i). (5)

2.3. Arc length parametrization

Let ϕ : Ī = [l1, l2] → I be the map from the domain of the arc length parameter of the reference centerline to
the parameter domain I and let ϕ−1 : I → Ī be the inverse mapping. Then, the arc length coordinate s of the
reference centerline at ξ is defined as

s = ϕ−1(ξ ) =
∫ ξ

0
‖r′

0(ξ̄ )‖dξ̄ . (6)

By differentiating the parameter integral with respect to ξ using Leibniz’s rule and by exploiting the inverse
function theorem, we can define

J (ξ ) := ‖r′
0(ξ )‖ = ∂ϕ−1

∂ξ
(ξ ) = 1

∂ϕ

∂s (ϕ−1(ξ ))
. (7)

Using (6) and (7), the respective differential measures ds and dξ of the arc length and the parameter domain
can be related by ds = J (ξ )dξ . Let f be an arbitrary mapping f : I × R → E

3, (ξ , t) 7→ f (ξ , t), e.g., the beam’s
current centerline, its derivative with respect to the arc length of the reference centerline is

∂f

∂s
(ϕ(s), t) = ∂f

∂ξ
(ϕ(s), t)

∂ϕ

∂s
(s) = ∂f

∂ξ
(ϕ(s), t)

1

J (ϕ(s))
.
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Substituting s = ϕ−1(ξ ) in the arguments and recognizing the identity map ξ = ϕ(ϕ−1(ξ )), the derivative of a
function defined in the parameter space I with respect to the arc length parameter s can therefore be defined as

∂f

∂s
(ξ , t) := ∂f

∂ξ
(ξ , t)

1

J (ξ )
.

2.4. Strain energy, strain measures, and internal virtual work

Let the total strain energy stored in the beam be

E =
∫

I
U(ξ , t)J (ξ ) dξ . (8)

The chosen integral measure J dξ enables the usage of SI units in the explicit formulation of strain energy
densities. Therefore, U has units [J/m], independent of the chosen parameter ξ , which could possibly represent,
for instance, the angle of an arch. Referring to [1, 31], an objective strain energy function, i.e., a function that
is invariant under superimposed rigid-body motions or under the change of observer, must only depend on the
subsequent two quantities

0(ξ , t) = 0i(ξ , t)Di(ξ ) = 3T(ξ , t)
∂r

∂s
(ξ , t)

= 1

J (ξ )

(

r′(ξ , t) · di(ξ , t)
)

Di(ξ ), (9)

3T(ξ , t)
∂3

∂s
(ξ , t) =

(

R(ξ , t)RT
0(ξ )

)T ∂

∂s

(

R(ξ , t)RT
0(ξ )

)

= 1

J (ξ )

[

R0(ξ )RT(ξ , t)R′(ξ , t)RT
0(ξ ) − R′

0(ξ )RT
0(ξ )

]

(10)

= K̃(ξ , t) − K̃0(ξ ),

where for the penultimate equality, the skew symmetry R0R′
0
T = −

(

R0R′
0
T)T = −R′

0RT
0 has been used.

Inserting (1) into (10), we obtain the current curvatures

K̃ = K̃kjDk ⊗ Dj with K̃kj =
dk · d′

j

J
,

and the reference curvatures

K̃0 = K̃
0

kjDk ⊗ Dj with K̃
0

kj =
Dk · D′

j

J
.

It can easily be verified that both K̃ and K̃0 are skew symmetric and, hence, their associated axial vectors can
be computed as

K = KiDi = ax(K̃), Ki = 1
2εijkK̃kj = 1

2εijk

dk · d′
j

J
, (11)

K0 = K0
i Di = ax(K̃0), K0

i = 1
2εijkK̃

0

kj = 1
2εijk

Dk · D′
j

J
.

The previously introduced material strain measures 0 and K can be associated with their corresponding spatial
strain measures by

γ = 30 = 0idi, κ = 3K = Kidi,

where it should be noted that only the basis has changed but the components remain the same. An interpretation
of the strain variables is given in [8, Section 6, p. 285]. Accordingly, 01 measures dilatation, i.e., the ratio of
deformed to reference volume, 02 and 03 measure shear. Furthermore, K1 measures torsion, i.e., the amount
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of twist. K2 and K3 measure flexure, which does not coincide with the beam’s curvature. Moreover, λ(ξ , t) =
‖0(ξ , t)‖ is called the stretch.

For hyperelastic materials the objective strain energy function is of the form U(ξ , t) =
W

(

0i(ξ , t), Ki(ξ , t); ξ
)

, solely depending on the given strain measures introduced above and possibly explicitly
on the material point ξ . Using the constitutive relations

ni(ξ , t) = ∂W

∂0i

(

0i(ξ , t), Ki(ξ , t); ξ
)

, mi(ξ , t) = ∂W

∂Ki

(

0i(ξ , t), Ki(ξ , t); ξ
)

, (12)

the material form of the generalized internal forces N = niDi and M = miDi can be identified. The analogous
spatial form is obtained by n = 3N = nidi and m = 3M = midi, which can be interpreted as resultant contact
forces and moments, see [1,6,32]. Using the beam’s total internal energy (8), we define the internal virtual work
contribution by

δW int = −δE = −
∫

I
δUJ dξ = −

∫

I

{

niδ0i + miδKi

}

J dξ . (13)

Computing the variation of the objective strain measures (9) and (11), i.e.,

δ0i = 1

J
(δr′ · di + δdi · r′), δKi = 1

2J
εijk(δdk · d′

j + δd′
j · dk),

and inserting them into the internal virtual work, we obtain

δW int = −
∫

I

{

δr′ · nidi + δdi · (nir
′ + εkji

mk
2 d′

j) + δd′
j · εijk

mi
2 dk

}

dξ , (14)

which is in accordance with the derivations given in [4]. Note that even in the inelastic case, where no strain
energy function is available, the internal virtual work (14) can be used, where the components of the generalized
internal forces ni and mi are defined by different constitutive laws. Unless stated otherwise, subsequently, we
use a hyperelastic material model defined by the nonlinear1 strain energy density

U(ξ , t) = 1
2 E1(ξ ) [λ(ξ , t) − 1]2 + 1

2 Eα(ξ )
[

0α(ξ , t) − 00
α(ξ )

]2
(15)

+ 1
2 Fi(ξ )

[

Ki(ξ , t) − K0
i (ξ )

]2
,

where 00
α = Dα · r

′
0 denote the shear strains in the reference configuration.

2.5. External virtual work and inertia contributions

As shown in [1], the beam can be subjected to distributed external forces n : I × R → E
3 and distributed

external couples m : I ×R → E
3. In addition, we allow point-wise defined external forces n0, n1 : R → E

3 and
couples m0, m1 : R → E

3 to be applied on the boundaries ξ0 = 0 and ξ1 = 1 of the beam. Using (5) together
with the invariance of the triple product, the virtual work contributions of the external forces take the form

δW ext =
∫

I
{δr · n + δφ · m} J dξ +

∑1

k=0
{δr · nk + δφ · mk}

∣
∣
ξ=ξk

=
∫

I

{

δr · n − δdi · 1
2 (di × m)

}

J dξ (16)

+
∑1

k=0

{

δr · nk − δdi · 1
2 (di × mk)

} ∣
∣
ξ=ξk

.

Note that the used integral measure J dξ enables the specification of the external distributed forces n̄ and couples
m̄ in the convenient units [N/m] and [Nm/m], respectively, where both are parametrized by ξ ∈ I .

In order to formulate the virtual work contributions of inertia effects, we assume the beam to be a three-
dimensional continuous body whose points in the reference configuration occupy the positions

X(ξ , θα) = r0(ξ ) + θαDα(ξ ).
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Hence, every material point in the reference configuration is addressed by the coordinates (ξ , θ2, θ3) ∈ B ⊂ R
3.

We assume that the cross sections of the beam are spanned by the reference directors D2 and D3 such that θ2

and θ3 are the cross-section coordinates. In the sense of an induced theory, see [33], we assume the beam to be
a constrained three-dimensional continuum whose current configuration is restricted to

x(ξ , θα, t) = r(ξ , t) + θαdα(ξ , t). (17)

In fact the kinematical ansatz (17) restricts the motion of the cross sections such that they have to remain
plane and rigid for any motion. Next, the beam’s mass density per unit volume in its reference configuration
ρ0 : B → R and the cross-sectional surface element in the beam’s reference configuration dA can be introduced.
In order to express the beam’s density ρ0(ξ ) in the convenient unit [kg/m3] parametrized by ξ ∈ I the mass
differential is defined as dm = ρ0J dAdξ in accordance with the beam’s total mass M =

∫

B
dm. The virtual

work of the inertia forces of a three-dimensional continuum is commonly defined as

δW dyn = −
∫

B

δx · ẍ dm = −
∫

B

(δr + θαδdα) · (r̈ + θβ d̈β) ρ0J dAdξ

(18)

= −
∫ 1

0

{

δr · (Aρ0 r̈ + Bα
ρ0

d̈α) + δdα · (Bα
ρ0

r̈ + Cαβ
ρ0

d̈β)
}

J dξ ,

where the integrated quantities2

Aρ0(ξ ) =
∫

A(ξ )
ρ0(ξ ) dA, Bα

ρ0
(ξ ) =

∫

A(ξ )
ρ0(ξ )θα dA, Cαβ

ρ0
(ξ ) =

∫

A(ξ )
ρ0(ξ )θαθβ dA (19)

have been introduced.

2.6. Constraint virtual work

Next, at each material point ξ and at each instant of time t additionally m holonomic scleronomic constraint
equations, possibly depending on the kinematic quantities r and di and their first derivatives, have to be fulfilled

gk(ξ , t) = gk

(

r(ξ , t), r′(ξ , t), di(ξ , t), d′
i(ξ , t)

)

, k = 1, . . . , m, ∀ξ , ∀t. (20)

For the director beam formulation the requirement of R = di ⊗ ei being a proper rotation, i.e., the directors
must remain orthonormal throughout the motion of the beam. This leads to six independent constraint equations

gij(ξ , t) = di(ξ , t) · dj(ξ , t) − δij = 0, 1 ≤ i ≤ j ≤ 3, (21)

the corresponding index k = 4, . . . , 9 for the identification of gk is given by the mapping
P : (11, 12, 13, 22, 23, 33) 7→ (4, 5, 6, 7, 8, 9).

In addition, if the director d1 is constrained to align with the centerline’s tangent, we call the beam an
Euler–Bernoulli beam [1, 34, 35]. This can be ensured by the constraint equations

gα(ξ , t) = 0α(ξ , t) = dα(ξ , t) · r′(ξ , t) = 0, α = 2, 3, (22)

which coincides with vanishing shear strains.
If further the length of the centerline’s tangent remains unchanged throughout the motion, i.e., dilatation is

restricted, an inextensible Euler–Bernoulli beam is obtained by enforcing the constraint

g1(ξ , t) = 01(ξ , t) − 1 = d1(ξ , t) · r′(ξ , t) − 1 = 0. (23)

As dα · r′ = 0 and by assuming for physical reasonable situations d1 · r′ > 0 it can be shown that (23) coincides
with the centerline’s tangent being of unit length [1], i.e., g1 = ‖r′‖ − 1 = 0.

By introducing the Lagrange multiplier fields λk : I × R → R, k = 1, . . . , m, and demanding the constraint
equations (20) to hold in a weak sense, the virtual work contribution of the m perfect bilateral constraints is

δW c = δ

∫

I
gk(ξ , t)λk(ξ , t) dξ =

∫

I
gk(ξ , t)δλk(ξ , t) dξ +

∫

I
δgk(ξ , t)λk(ξ , t) dξ , (24)
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which can be decomposed into two parts, the first one being the weak form of the constraint conditions and
the second one corresponding to the virtual work of the constraint forces. The above introduced constraint
equations (21), (22), and (23) together with their variations can be summarized as follows:

gi = di · r′ − δi1, gij = di · dj − δij,

δgi = δdi · r′ + δr′ · di, δgij = δdi · dj + δdj · di.

Thus, by substituting these equations into (24), the virtual work contribution of the constraints is

δW c =
∫

I

{

δλi(di · r′ − δi1) + δλij(di · dj − δij)
}

dξ

(25)

+
∫

I

{

δr′ · diλi + δdi · (r′λi + djλij) + δdj · diλij

}

dξ ,

where the terms involving a double subscript are summed over the indices 1 ≤ i ≤ j ≤ 3. The corresponding
index k = 4, . . . , 9 for the identification of λk and δλk is also given by the previously introduced mapping
P. The mathematically rigorous question about the Lagrange multipliers’ correct functional spaces and their
approximations must be answered with much care and we only refer to [36, 37] for further reading on that
topic. However, with many benchmark examples, we give in Section 4 numerical evidence of a well-chosen
approximation of the Lagrange multiplier fields.

2.7. Principle of virtual work

The total virtual work is obtained by summing up all the virtual work contributions, consisting of the
internal (14), external (16), inertia (18), and constraint contributions (25), i.e.,

δW = δW int + δW ext + δW dyn + δW c,

=
∫

I

{

δdi ·
(

J
2 (m × di) + djλij + r′(λi − ni) − εkji

mk
2 d′

j

)

− δdα · J (Bα
ρ0

r̈ + Cαβ
ρ0

· d̈β) + δdj · diλij − δd′
j · εijk

mi
2 dk

+ δr · J (n − Aρ0 r̈ − Bα
ρ0

d̈α) + δr′ · di(λi − ni) (26)

+ δλi(di · r′ − δi1) + δλij(di · dj − δij)

}

dξ

+
∑1

k=0

{

δr · nk + δdi · 1
2 (mk × di)

} ∣
∣
ξ=ξk

.

Note, again terms involving a double subscript are summed over the indices 1 ≤ i ≤ j ≤ 3. Moreover, the
principle of virtual work states the body is in dynamic equilibrium if the total virtual work δW vanishes for all
virtual displacements δr, δdi, δλk at any instant of time t.

2.8. Plane linearized director beam theory

In order to compare the new director beam formulation with the well-known planar Timoshenko beam formu-
lation and to get a better understanding how it can be interpreted, we constrain the virtual work contributions
for the static analysis to the plane and linearized case.

In the following, we assume small displacements of an initially straight beam. Then the kinematics, i.e.,
centerline and directors, in terms of the reference arc-length s can be written as

r(s, t) = r0(s) + u(s, t), r0(s) = se1, di(s, t) = ei + vi(s, t).

Using in this section the prime to denote the derivative with respect to the arc-length parameter s, we obtain

r′(s, t) = e1 + u′(s, t), d′
i(s, t) = v′

i(s, t).
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A planar motion is obtained by setting u = uxe1 + uye2, v1 = v1xe1 + v1ye2, v2 = v2xe1 + v2ye2 and v3 = 0.
Considering the linearized theory, the assumptions ‖u′‖ � 1 and ‖vi‖ � 1 have to hold. With the kinematic
assumptions introduced previously, the axial and shear strains (9) reduce to

01 = 1 + v1 · e1 + u′ · e1, 02 = v2 · e1 + u′ · e2, 03 = 0,

where the terms u′ · vi were assumed to be negligibly small. Accordingly, by assuming v2 · v′
1 and v′

2 · v1 to be
negligibly small, the torsional and flexural strain measures (11) are reduced to

K1 = K2 = 0, K3 = 1
2 (v′

1 · e2 − v′
2 · e1).

By computing the variation of the non-vanishing linearized strain measures

δ01 = δu′ · e1 + δv1 · e1, δ02 = δu′ · e2 + δv2 · e1, δK3 = 1
2 (δv′

1 · e2 − δv′
2 · e1)

and using linear elastic constitutive laws

n1 = EA(01 − 1), n2 = GA02, n3 = m1 = m2 = 0, m3 = EIK3,

with Young’s modulus E, shear modulus G, cross-section area A, and the second moment of area I , the internal
virtual work of the nonlinear spatial Timoshenko beam (13) reduces to

δW int = −
∫ L

0

{

(δu′ · e1 + δv1 · e1)EA(u′ · e1 + v1 · e1)

+ (δu′ · e2 + δv2 · e1)GA(u′ · e2 + v2 · e1)

+ 1
4 (δv′

1 · e2 − δv′
2 · e1)EI(v′

1 · e2 − v′
2 · e1)

}

ds.

(27)

It should be emphasized that the classical plane linearized Timoshenko beam theory can be deduced from
the theory above by parameterizing the two directors using a single absolute angle θ with respect to the e1-axis,
i.e.,

d1 = cos θe1 + sin θe2 ⇒ v1 = d1 − e1 = (cos θ − 1)e1 + sin θe2,

d2 = cos θe2 − sin θe1 ⇒ v2 = d2 − e2 = (cos θ − 1)e2 − sin θe1.
(28)

Inserting (28) into the plane linearized internal virtual work (27) and after performing simple algebraic
manipulations, together with the small angle assumptions cos θ ≈ 1, sin θ ≈ θ , the well-known expression

δW int = −
∫ L

0

{

δu′
xEAu′

x + (δu′
y − δθ)GA(u′

y − θ) + δθ ′EIθ ′
}

ds (29)

is obtained.
In a similar manner as previously, the constraint equations ensuring the orthonormality conditions (21) can

be linearized
g11 = 2v1 · e1, g22 = 2v2 · e2, g12 = v1 · e2 + v2 · e2, (30)

where vi · vj was assumed to be negligibly small and g13 = g23 = g33 = 0. The linearized orthonormality
constraints (30) can be interpreted as the equations enforcing the directors to move as an infinitesimal rotation,
i.e., v1 ⊥ e1, v2 ⊥ e2 and v1 · e2 = −v2 · e2. The plane linearized version of the inextensibility (23) and the
shear rigidity (22) can be summarized as

g1 = 01 − 1 = u′ · e1 + v1 · e1, g2 = 02 = v2 · e1 + u′ · e2, g3 = 03 = 0.

For simplicity, but without loss of generality, we assume a quadratic beam cross section with edges t. This
implies the cross-section area A = t2 and the second moment of area I = t4/12. By dividing the plane linearized
virtual work (27) by the constant EI two noteworthy terms

EA

EI
(u′ · e1 + v1 · e1) = 12

t2
(u′ · e1 + v1 · e1),

GA

EI
(u′ · e2 + v2 · e1) = G

E

12

t2
(u′ · e2 + v2 · e1)
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appear. In the limit t → 0, the first term imposes the condition u′ ·e1+v1 ·e1 → 0. When the first orthonormality
constraint condition g11 = 2v1 · e1 is fulfilled, this reduces to the inextensibility condition u′ · e1 = u′

x = 0. The
second term imposes the condition u′ · e2 + v2 · e1 → 0. This corresponds to the equality u′

y = −v2x. For the
classical Timoshenko beam formulation (29) this corresponds to the constraint u′

y = θ . As noted by [38], this
condition cannot be satisfied in general by numerical methods using equal order shape function approximations
for u and vi, which causes the locking effect in classical plane linearized Timoshenko beam formulations (not
only in the limit t → 0 but for small values of t as well). Led by these observations, we expect the spatial
nonlinear director beam formulation to suffer from the similar locking phenomenon for increasing slenderness
when equal order shape functions are used to discretize u and vi and in the nonlinear case r and di. Thus, in
Section 4, appropriate polynomial degrees are chosen for discretizing the different fields.

3. Galerkin discretization

For the spatial discretization, all previously arising vector quantities will be expressed in the orthonormal basis
{e1, e2, e3}. For that, we collect the components of vectors a = a1e1 + a2e2 + a3e3 ∈ E

3 in the tuple Ia =
(a1, a2, a3)T ∈ R

3. If not stated otherwise, R
f -tuples are considered in the sense of matrix multiplication as

R
f ×1-matrices, i.e., as “column vectors.” Its transposed will be given by a R

1×f -matrix, i.e., a “row vector.”
Further, partial derivatives of vector valued functions f : R

f → R, q 7→ f (q), are introduced as “row vectors”
∂f /∂q = (∂f /∂q1 · · · ∂f /∂qf ) ∈ R

1×f .

3.1. B-spline curves

The excellent monograph [39] gives a comprehensive introduction to the topic. They introduce B-spline shape
functions and B-spline curves, together with a myriad of important properties. For the sake of simplicity, we
restrict ourselves to knot vectors of the form

4� = {0, . . . , 0
︸ ︷︷ ︸

p�+1

, 1ξ , , . . . , e1ξ , . . . , (n − 1)1ξ
︸ ︷︷ ︸

n−1

, 1, . . . , 1
︸ ︷︷ ︸

p�+1

},

where the box � denotes a single kinematic quantity, e.g., the beam’s centerline r or one of the three directors
di. Determined by the chosen polynomial degree p� of the target B-spline curve and the total number n of
curve sections (also known as elements), such an open and uniform knot vector consists of a total number of
q� = n + 2p� + 1 knots.

According to [39–41], the ith of total N� = n + p� B-spline shape functions is recursively defined as

N i
0(ξ ) =

{

1, ξ ∈ [ξi, ξi+1),

0, ξ /∈ [ξi, ξi+1),

N i
p�

(ξ ) = ξ − ξi

ξi+p�
− ξi

N i
p�−1(ξ ) +

ξi+p�+1 − ξ

ξi+p�+1 − ξi+1
N i+1

p�−1(ξ ),

where in the last line possibly arising quotients of the form 0
0 are defined as zero. In Figure 2 all non-zero cubic

shape functions for a uniform open knot vector, built of four elements, are shown.
The Cartesian components of the beam’s kinematic quantities can be approximated by a p�th degree B-spline

curve of the form

I�
(

ξ , t
)

=
∑n

e=1
χIe(ξ )Ne

p�
(ξ )qe

�
(t),

where χIe : I → {0, 1} is the standard indicator function being one for ξ ∈ Ie and zero elsewhere. Further,
Ne

p�
∈ R

3×3(p�+1) denotes the element matrix of the B-spline shape functions and qe
�

∈ R
3(p�+1) the element

generalized coordinate tuple, each of which is defined as

Ne
p�

=






N e
p�

. . . N
e+p�
p�

0 . . . 0 0 . . . 0

0 . . . 0 N e
p�

. . . N
e+p�
p�

0 . . . 0

0 . . . 0 0 . . . 0 N e
p�

. . . N
e+p�
p�




 ,

qe
�

=
(

qe
�1 . . . q

e+p�

�1 qe
�2 . . . q

e+p�

�2 qe
�3 . . . q

e+p�

�3

)T
.
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Figure 2. Non-zero cubic B-spline shape functions N1
3 to N7

3 for a given uniform and open knot vector 4 =
{0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1} which builds n = 4 elements. The indicator function χI2 of the second element selects the

corresponding cubic shape functions N2
3 to N5

3 .

The element generalized coordinates of all kinematic quantities can be gathered in the tuple

qe =
(

qe
r
T qe

d1

T qe
d2

T qe
d3

T
)T ∈ R

nqe ,

where nqe = 3(pr + 1) + 9(pdi + 1) denotes the number of generalized coordinates per element. Further, by
introducing the Boolean connectivity matrices C� ∈ R

3(p�+1)×nqe (cf. [42, Section 2.5]), we obtain the relation
qe

�
= C�qe. Introducing the total number of generalized coordinates nq = 3Nr + 9Ndi , another Boolean

connectivity matrix Ce ∈ R
nqe×nq provides the connection to the global generalized coordinates tuple q ∈ R

nq

by qe = Ceq. Finally, we can relate the element generalized coordinates of a single kinematic quantity with the
global generalized coordinates via

qe
�

= Ce
�

q, with Ce
�

= C�Ce. (31)

The m Lagrange multiplier fields λk , arising in the virtual work contribution of the constraints (25), are
discretized using the scalar pλth-order B-spline curve

λk(ξ , t) =
∑n

e=1
χIe(ξ )Ne

pλ
(ξ )λe

k(t). (32)

The element tuple of the B-spline shape functions Ne
pλ

∈ R
1×pλ+1 and the element generalized coordinate tuple

λe
k ∈ R

pλ+1 are defined as

Ne
pλ

=
(

N e
pλ

, N e+1
pλ

, . . . , N e+pλ
pλ

)

, λe
k =

(

λe
k , λe+1

k , . . . , λe+pλ

k

)T
.

In accordance with the definitions introduced for the kinematic quantities r and di, the generalized coordinates
for the various constraint equations can be collected in the element tuple

λe =
(

λe
1
T . . . λe

m
T
)T ∈ R

nλe ,

where nλe = m(pλ + 1) denotes the number of generalized coordinates of the Lagrange multipliers per element.
Introducing the total number of generalized coordinates of the Lagrange multipliers nλ = m(n + pλ) together
with two new Boolean connectivity matrices Cλk ∈ R

(pλ+1)×nλe and Ce
λ ∈ R

nλe×nλ , respectively, the element
generalized coordinates λe

λk
can be related to the global tuple λ ∈ R

nλ via

λe
k = Ce

λk
λ, with Ce

λk
= Cλk Ce

λ.

Alternatively, the Lagrange multipliers can be discretized using Dirac deltas associated with the nodal points
ξa, a = 1, . . . , Nλ. In the case where the kinematic fields are discretized with Lagrange shape functions or
B-splines of polynomial degree pr = pdi = 1, this yields the formulation found in [4].
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3.2. Discrete kinematics, semidiscrete virtual work, and equations of motion

Let the generalized accelerations q̈ and the first variation of the generalized coordinates δq be arranged as q.
By transferring the relation between the element coordinates and the global ones from (31), we are able to
approximate the first spatial derivative, the acceleration and the variation of the Cartesian components of some
kinematic quantity by

I�
′ =

∑n

e=1
χIeNe′

p�
Ce

�
q, I�̈ =

∑n

e=1
χIeNe

p�
Ce

�
q̈, Iδ� =

∑n

e=1
χIeNe

p�
Ce

�
δq.

Defining δλ in accordance with λ the first variation of the Lagrange multipliers can be approximated in the
same way as (32), i.e.,

δλk =
∑n

e=1
χIeNe

pλ
Ce

λk
δλ. (33)

In order to simplify notation and to prevent possible clash of notation with Einstein summation convention
we subsequently use the definitions Nr := Npr

, Nd := Npdi
and Nλ := Npλ

. Inserting the discrete kinematic
quantities into the internal virtual work (14), their corresponding discrete counterpart is given by

δW int,h = δqTfint(q), fint(q) =
∑n

e=1
CeTfint,e(Ceq),

with the internal forces of the element e given by

fint,e(qe) = −
∫

Ie

{

nh
i CT

rN
e′
r

T
Ne

dCdiq
e + CT

dj
Ne′

d

T
εijk

mh
i

2 Ne
dCdk qe

+ CT
di

Ne
d
T
(

nh
i Ne′

r Crq
e + εkji

mh
k

2 Ne′
d Cdjq

e
) }

dξ .

For the computation of the discretized generalized forces nh
i and mh

i the according strain measures

0h
i = 1

J
qeTCT

rN
e′
r

T
Ne

dCdiq
e, Kh

i = εijk

2J
qeTCT

dk
Ne

d
TNe′

d Cdjq
e (34)

are required. As shown by [4] the discretized strain measures (34) still fulfill the objectivity requirement which
is demonstrated numerically in Section 4.3.

For convenience also the stiffness matrix, i.e., the partial derivative of the internal forces with respect to the
generalized coordinates, is given

K(q) = ∂fint

∂q
(q) =

∑n

e=1
CeTKe(Ceq)Ce, Ke(qe) = ∂fint,e

∂qe
(qe),

Ke(qe) = −
∫

Ie

{

CT
rN

e′
r

T
Ne

dCdiq
e ∂nh

i

∂qe
+ CT

rN
e′
r

Tnh
i Ne

dCdi

+ CT
dj

Ne′
d

T εijk

2 Ne
dCdk qe ∂mh

i

∂qe
+ CT

dj
Ne′

d

T
εijk

mh
i

2 Ne
dCdk

+ CT
di

Ne
d
T

[

Ne′
r Crq

e ∂nh
i

∂qe
+ nh

i Ne′
r Cr

+ εkji

2 Ne′
d Cdjq

e ∂mh
k

∂qe
+ εkji

mh
k

2 Ne′
d Cdj

]}

dξ ,

where the derivative of the discretized generalized internal forces are computed as

∂nh
i

∂qe
= ∂ni

∂0j

∂0h
j

∂qe
+ ∂ni

∂Kj

∂Kh
j

∂qe
,

∂mh
i

∂qe
= ∂mi

∂0j

∂0h
j

∂qe
+ ∂mi

∂Kj

∂Kh
j

∂qe
.
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In the case of hyperelastic materials the derivatives of the contact forces and couples can be calculated from the
strain energy function W as follows

∂ni

∂0j
= ∂2W

∂0i∂0j
,

∂ni

∂Kj
= ∂2W

∂0i∂Kj
,

∂mi

∂0j
= ∂2W

∂Ki∂0j
,

∂mi

∂Kj
= ∂2W

∂Ki∂Kj
.

For the sake of completeness the derivatives of the discretized strain measures with respect to the generalized
coordinates are also given

∂0h
i

∂qe
= 1

J

(

qeTCT
rN

e′
r

T
Ne

dCdi + qeTCT
di

Ne
d
TNe′

r Cr

)

,

∂Kh
i

∂qe
= εijk

2J

(

qeTCT
dk

Ne
d
TNe′

d Cdj + qeTCT
dj

Ne′
d

T
Ne

dCdk

)

.

The discrete version of the inertia virtual work (18) is given by

δW dyn,h = −δqTMq̈, M =
∑n

e=1
CeTMeCe,

with the element mass matrix being defined as

Me =
∫

Ie

{

Aρ0CT
rN

e
r
TNe

rCr + Bα
ρ0

CT
rN

e
r
TNe

dCdα

(35)
+Bα

ρ0
CT

dα
Ne

d
TNe

rCr + Cαβ
ρ0

CT
dα

Ne
d
TNe

dCdβ

}

Jdξ .

Note the element mass matrix is constant but singular with respect to the degrees of freedom of the first director,
i.e., qe

d1
, which is of crucial importance for the design of an appropriate time integration scheme, see Section 4.5.

Without any pitfalls, the external virtual work (16) can be discretized in the same way as previously which
yields a discrete external virtual work of the form

δW ext,h = δqTfext(t, q).

The spatial discretization can be completed by inserting the discretization of the Lagrange multipliers (32)
and their variations (33) into the virtual work of the constraints (25). Therefore, the discrete virtual work of
the constraints can be expressed in terms of the discrete constraint equations g, the constraint forces fc, and the
generalized force directions W, i.e.,

δW c,h = δλTg(q) + δqTfc(q), fc(q) = W(q)λ,

g(q) =
∑n

e=1
Ce

λ
Tge(Ceq), ge(qe) = ge

1(qe) + ge
2(qe),

W(q) =
∑n

e=1
CeTWe(Ceq)Ce

λ, We(qe) = We
1(qe) + We

2(qe).

The discrete element constraint equations ge are split into a first one corresponding to the director orthonormal-
ity and a second one incorporating the non-shearability as well as the inextensiblity. These constraint equations
are

ge
1 =

∫

Ie
CT

λij
Ne

λ
T [

qeTCT
di

Ne
d
TNe

dCdjq
e − δij

]

dξ ,

ge
2 =

∫

Ie
CT

λi
Ne

λ
T [

qeTCT
di

Ne
d
TNe′

r Crq
e − δ1i

]

dξ .

In the same way, the two element generalized force directions of the constraint forces are

We
1 =

∫

Ie

[

CT
di

Ne
d
TNe

dCdjq
e + CT

dj
Ne

d
TNe

dCdiq
e
]

Ne
λCλij dξ ,

We
2 =

∫

Ie

[

CT
rN

e′
r

T
Ne

dCdiq
e + CT

di
Ne

d
TNe′

r Crq
e
]

Ne
λCλi dξ .
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Inserting all the discrete virtual work contributions into the principle of virtual work and demanding the
virtual work to vanish for all virtual displacements δq and δλ the semi-discrete equations of motion, which are
still continuous in time, are obtained

Mq̈ − fint(q) − fext(t, q) − W(q)λ = 0,

g(q) = 0.
(36)

These equations of motion together with appropriate boundary and initial conditions can be discretized by a
suitable time stepping scheme. By omitting the virtual work contributions of inertia effects and allowing the
external forces to depend only on the generalized coordinates q, the discrete static equilibrium equations, i.e.,

R(q, λ) =
(

fint(q) + fext(q) + W(q)λ
g(q)

)

(37)

can be solved using a Newton–Raphson method for the case when no limit points are expected. Otherwise, the
most simple way to overcome such points and for tracing the post-buckling paths a Riks-type algorithm [43] or
the spherical arc-length method [44] can be used. A formulation of such an algorithm for constrained mechanical
systems can be found in [45]. Applications to planar beam structures are found in [45–47].

4. Numerical examples

In this section, representative numerical problems are investigated. They are carefully selected in order to verify
the correct derivation and implementation of the three presented beam models. The section starts with a vali-
dation of the numerical implemented beam models using analytical solutions and semi-analytic solutions found
by elliptic integrals. Subsequently, an existing large deformation finite element simulation is reproduced. The
section concludes with a dynamic real-world example demonstrating the practical benefit of the presented beam
models. Throughout this section, the Timoshenko beam model is abbreviated by a T , the Euler–Bernoulli beam
by an E and the inextensible Euler–Bernoulli beam by an I .

Unless stated otherwise in the subsequent examples the beam centerline is discretized using B-spline shape
functions of polynomial degree pr = p. As indicated by the linearized theory in Section 2.8, it might be of
advantage to discretize the directors using a B-spline corresponding to a polynomial of degree pdi = pr − 1.
Without mathematical proof, we use pλ = pdi for the discretization of the Lagrange multipliers. Numerical
investigations have pointed out that other possible values for discretizing the Lagrange multipliers, e.g. pλ = pr,
lead to a singular iteration matrix of the used Newton–Raphson scheme.

4.1. Elliptic integrals solutions of Euler’s elastica

Let us consider an initially straight beam of length L = 2π with axial stiffness E1 = 5, shear stiffnesses
E2 = E3 = 1, torsional stiffness F1 = 0.5 and bending stiffnesses F2 = F3 = 2. The beam, which points in
e1-direction, is clamped at its left and subjected to a constant point force and couple at the other end. For the
inextensible Euler–Bernoulli beam, this kind of problem is solved analytically by [48, Section 2.4] using the
first and second elliptic integrals, defined as

F(θ , p) =
∫ θ

0
(1 − p2 sin2 θ̃ )−

1
2 dθ̃ , E(θ , p) =

∫ θ

0
(1 − p2 sin2 θ̃ )

1
2 dθ̃ ,

see, for instance, [49] for a general introduction to elliptic integrals. Let the external point force F and couple
M at the beam’s end s = L solely depend on a force parameter α2 and read

F = −Pe2, M = −Me3, P =
(α

L

)2
F2, M = −2.5P.

The external moment M , rotating clockwise with respect to the e1–e2-plane, can be replaced by a force P
with rigid lever e = M/P. Further, by introducing a dimensionless parameter k = √

P/F2 the inextensibility
condition relates the material point s with the angle φ(s) via

ks = F(φ(s), p) − F(φC, p), cos φC = ek/2p, (38)
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Figure 3. (a) Deformed configurations and analytical solution given by [48]. (b) Dimensionless displacements versus dimensionless

force for the case of no external couple; the inextensible solution coincides with the characteristic curves reported in [50].

with the unknown constant p. Further it can be shown that the angle at s = L can be determined from sin φ(L) =
sin φB = 1/(p

√
2). Thus, for given values of the external force P, couple M , and beam length L, we can

solve (38) for p by a root-finding method, e.g., a bisection method. With the value of p at hand we can again
solve (38), but this time for the angle φ at an arbitrary material point s. The beam’s centerline r(s) = x(s)e1 +
y(s)e2 can then be computed by the values of the horizontal and vertical deflections given by

x(s) = 2p
[

cos(φB) − cos(φ)
]

/k,

y(s) = −
[

2E(φB, p) − 2E(φ, p) + F(φ, p) − F(φB, p)
]

/k.

For the discretization of the used finite element models, n = 12 cubic B-spline elements were used. The
numerical solution was obtained by application of a load controlled Newton–Raphson method with 10 load
steps and a convergence tolerance of 10−12 with respect to the maximum absolute error of the static residual (37)
up to a maximal load factor of α2 = 10.

In Figure 3(a), the configurations for the different beam models are compared with the previous presented
solution found by using elliptic integrals. For the inextensible Euler–Bernoulli beam model all configurations
are in excellent accordance with the elliptic integral solution. The extensible Euler–Bernoulli beam model and
the Timoshenko beam model yield larger overall deformations due to the allowed axial and shear deformations,
respectively.

For the case of vanishing external couple the analytic solution found in [50] and [48, Section 2.2] is obtained.
In Figure 3(b), the normalized horizontal and vertical displacements given by δ = −y(L)/L and 1 = x(L)/L
are depicted for given load parameters α2. It can be observed that again the inextensible Euler–Bernoulli beam
model can reproduce the results obtained by using elliptic integrals. Accordingly, the Timoshenko and Euler–
Bernoulli beam models lead to slightly different results, owing to their less-restricted kinematics.

This example demonstrates the power of the proposed constrained beam formulation. On the one hand,
the complete kinematics of the Timoshenko beam can be represented and, on the other hand, additional beam
models can be derived from it by simply adding further constraints. For the most constrained beam model, the
inextensible Euler–Bernoulli beam, the solution found by elliptic integrals is exactly reproduced which can be
seen as a numerical proof of the presented derivation and implementation.

4.2. 3D bending and twist

In this example an initially straight beam should be deformed to a perfect helix with n = 2 coils of radius
R0 = 10 and height h = 50 around the e3-axis, see Figure 4(a).
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Figure 4. (a) Schematic sketch of the initial (gray) and deformed (black) configuration of the helix problem. 3D rendered configu-

rations for ζ = 100, n = 16 elements and equal order shape functions: (b) pr = pdi = pλ = p = 1 straight initial configuration

and configuration with strong locking; (c) pr = pdi = pλ = p = 2 configuration with intermediate locking; (d) pr = pdi = pλ = 3

configuration without locking.

Introducing the abbreviation c = h/(R02πn) such a deformed beam centerline can be described by

r∗(s) = R0 sin α(s)e1 − R0 cos α(s)e2 + cR0α(s)e3, α(s) = 2πns/L. (39)

Depending on the slenderness ζ , the beam has a circular cross section of diameter d = L/ζ , radius r = d/2,
area A = πr2, and the moments of area I2 = I3 = π

4 r4 and I1 = π
2 r4. Using the Young’s and shear moduli E = 1

and G = 0.5, respectively, and by assuming material properties given by E1 = EA, E2 = E3 = GA, F1 = GI1,
and Fα = EIα, this yields E1 = A, E2 = E3 = A/2, and F1 = F2 = F3 = π

4 r4. In order to find the force
boundary conditions for this specific example, we apply a so called inverse procedure.3 The tangent vector of
the curve is

r∗′(s) = R0α
′ cos α(s)e1 + R0α

′ sin(s)e2 + cR0α
′e3.

If the beam should not be elongated during the deformation, its tangent vectors Euclidean norm has to be
unity, i.e., ‖r∗′(s)‖ = 1, from which the total beam length L =

√
1 + c2R02πn can be deduced. Further, the
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Frenet–Serret frame of the deformed curve is given by the directors

d1(s) = r∗′(s) = 1√
1 + c2

(cos α(s)e1 + sin α(s)e2 + ce3),

d2(s) = r∗′′(s)/‖r∗′′(s)‖ = − sin α(s)e1 + cos α(s)e2,

d3(s) = d1(s) × d2(s) = 1√
1 + c2

(−c cos α(s)e1 − c sin α(s)e2 + e3).

(40)

Using (1 + c2)−
1
2 = R02πn/L = R0α

′ together with the derivatives of (40), the beam’s strain measures defined
in (9) and (11) can be computed straightforwardly and lead to

01 = 1, 02 = 03 = 0, K1 = cR0α
′2, K2 = 0, K3 = R0α

′2.

From the strain energy density function (15), we can evaluate the constitutive relations (12) yielding the constant
components of the contact forces and contact couples

ni = 0, m1 = F1K1, m2 = 0, m3 = F3K3. (41)

If we solely allow external forces and couples at the two end points of the beam but no distributed ones, by
inserting (41) into the differential equation of the nonlinear Timoshenko beam, see [1], we obtain the require-
ment that F1 = F3. This condition is satisfied for the given problem setup. Thus, the desired deformation is
obtained by application of the constant moment in the body fixed frame of the beam’s end point given by

m = m1d1(L) + m3d3(L).

For a numerical simulation, the beam has to be clamped at r(0) = −R0e2 with an orientation given by the
director frame d1(0) = R0α

′(e1 + ce3), d2(0) = e2 and d3(0) = R0α
′(−ce1 + e3). For the case of h = 0, the

standard benchmark, i.e., bending to a perfect double circle in the e1–e2-plane, is obtained, cf. [32].
Subsequently, the numerically computed centerlines are compared with the analytical solution by means of

the error

ek = 1

k

√
√
√
√

k
∑

i=1

1(si) · 1(si), 1(si) = r(si/L) − r∗(si), si = i
k L.

Again a force controlled Newton–Raphson method was performed using a convergence tolerance of 10−10 with
respect to the maximum absolute error of the static residual (37). In a first step, using the slenderness ratio
ζ = 10, all presented beam formulations were evaluated for different polynomial degrees p ∈ {1, 2, 3, 5} and
different numbers of elements n ∈ {16, 32, 64, 128} in order to study the convergence of the proposed formu-
lations depending on the chosen polynomial degree. For comparative purpose, we computed this example with
the director beam formulation presented in [4]. As indicated by the authors, a one-point quadrature rule has to
be used in order to circumvent the strong locking phenomenon (even for moderate slenderness ratios). But even
for a large number of elements and a low slenderness ratio ζ = 10 this problem could not be solved with the
nodal enforcement of the constraints proposed by [4]. In Figure 5, the convergence behavior of the presented
beam models is given. Owing to the pure bending deformation, independent of the chosen discretization, all
three beam models led to the almost same errors. Discretizing all fields by the very same polynomial degree p,
the slope of convergence increases in contrast to discretizing the directors and Lagrange multipliers by polyno-
mials of one degree lower than that of the centerline. This can easy be explained by the subsequent argument.
The curvature terms (11) solely depend on the directors and their derivatives. Thus, shape functions of equal
polynomial degree approximate the curvatures more accurately.

In a second example, the possible presence of locking, as presumed by the linear theory, is investigated.
Using the same polynomial degree for all fields, i.e., pr = pdi = pλ = p, for slenderness ratio ζ = 100, and
n = 16 elements, the helix example was computed. While for p = 1 and p = 2 extreme locking occurs, p = 3
could solve the problem, see Figure 4. However, a successful convergence of the Newton–Raphson scheme
is very sensitive concerning the choice of the number of iteration steps. For slenderness ratio ζ = 1000 the
problem could not be solved at all.
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Figure 5. Error e100 versus the number of used elements n with respect to the analytical solution of a perfect helix given in (39)

for the Timoshenko —◦ , Euler–Bernoulli —× , and inextensible Euler–Bernoulli —4 , beam using a constant slenderness ratio ζ = 10 and

various polynomial degrees p ∈ {1, 2, 3, 5} with (a) pr = p, pdi = pλ = p − 1 and (b) pr = pdi = pλ = p.

In a last example, all three beam models are computed with a polynomial degree pr = p = 3, pdi = pλ =
p−1 = 2, different numbers of elements n ∈ {16, 32, 64, 128}, and three slenderness ratios ζ ∈ {10, 100, 1000}.
As can be observed in Figure 6, the error increases for higher slenderness ratios compared with that obtained for
a moderate slenderness ratio. For increasing number of elements, the error converges to the one of the moderate
slenderness. Thus, by using different order shape functions for the centerline r and the directors di, as indicated
by the linear theory, the locking phenomenon is almost completely avoided at the cost of a poorer approximation
of the curvature terms. Even an extreme slenderness ratio ζ = 1000 could be reliably solved.

4.3. Numerical verification of objectivity

The next example, inspired by [51], is intended to serve several purposes. On the one hand, another analytical
solution, i.e., pure bending to a perfect circle, a special case of the previously presented helix example, is inves-
tigated. On the other hand, the objectivity of the presented beam models can be verified through subsequently
application of superimposed rigid-body rotations. These two cases are divided into four phases.

In the first phase two beams with the very same geometrical and material properties as used in the first
example are initially placed in the e1–e2-plane forming an L-shape, see Figure 7(a). The first beam, initially
clamped at the origin, points in positive e1 direction. At its end, rotated by −90◦ around the e3-axis, the second
beam is attached pointing in negative e2-direction, see Figure 7(a). For t ∈ I1 = [0, 0.25] an external couple
M(t) = M(t)e3 is applied to the free end of the second beam. The external couple M(t) = 2πF3

L S2,I1(t) depends
on the second smooth step function S2,I1 on the interval I1 defined as

S2,[a,b](t) =









0 t < a,

6
(

t−a
b−a

)5 − 15
(

t−a
b−a

)4 + 10
(

t−a
b−a

)3
a ≤ t < b,

1 b ≤ t.

This applied couple results in a deformed configuration of two perfect circles (see Figure 7(a)) and can be
verified with similar arguments as in the previous example. By introducing the auxiliary functions

1(t) = sin
(

α(t)
) F3

M(t)
, δ(t) =

[

1 − cos
(

α(t)
)] F3

M(t)
, α(t) = M(t)L

F3
,
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Figure 6. Error e100 versus the number of used elements n with respect to the analytical solution of a perfect helix given in (39) for

the Timoshenko —◦ , Euler–Bernoulli —× , and inextensible Euler–Bernoulli —4 , beam using a constant polynomial degree pr = p = 3,

pdi = pλ = p − 1 and different slenderness ratios ζ ∈ {10, 100, 1000}.

the trajectory of both beams’ end points can be computed as

PA(t) = 1(t)e1 + δ(t)e2,

PB(t) = PA(t) + [cos(α(t))1(t) − sin(α(t))δ(t)]e1

+ [sin(α(t))1(t) + cos(α(t))δ(t)]e2.

(42)

As this loading case leads to a homogeneous bending deformation, we can identify the curvature in the beam to
be κ3(t) = M(t)/F3, all other strain measures are vanishing. By substituting the remaining stain measure into
the total beams energy density (15) and integrating over the total beam length, we obtain the internal energy of
a single beam given by

E∗(t) = πF3S2
2,I1

(t). (43)

The systems total deformation energy is twice the value computed from (43). If the discretized strain mea-
sures (34) are objective, the systems total energy should remain constant in the phases 2–4 with the value (43).
Then, in the subsequent three phases I2 = [0.25, 0.5], I3 = [0.5, 0.75], and I4 = [0.75, 1.0], the clamping
condition at the origin is replaced by successively applied rigid body rotations with the angles ϕi(t) = 2πS2,Ii ,
i = 1, 2, 3, around the respective axis of the inertial frame e1, e2, and e3.

In Figure 7(a) it can be seen that the presented beam models are in perfect accordance with the analytically
expected deformations and cannot be distinguished from each other owing to the pure bending deformation. In
addition, the expected strain energy is obtained during the deformation, see Figure 7(b). After the first phase
no loss or gain in strain energy is recognized. Thus, numerically all three presented beam models are in fact
objective.

4.4. Beam patches with slope discontinuity

In this example a three-dimensional structure with two kinks (see Figure 8(a)) is subjected to a constant external
force given by F = −Fe1 − Fe3 and magnitude F = 10. The structure consists of three initially straight beams
of length L = 1, quadratic cross section with edge length a = 0.1, area A = 0.01, and the moments of area
I1 = a4/6 and I2 = I3 = a4/12. The first beam is clamped at the origin and points in positive e1-direction. The
second one pointing in the positive e2-direction starts at the end of beam one. The third one starting from the
end of beam two points in positive e3-direction. The respective beams are connected to each other at right angles
using six bilateral constraints, three for the connection of their centerlines and three for merging their cross-
sectional orientations. In contrast to the previous examples, the hyperelastic material defined by the quadratic
strain energy density mentioned in the note in Section 2.4 was used in order to obtain results that can be
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Figure 7. (a) Deformed configurations starting from an undeformed L-shape and ending with two perfect circles; beam end points

trajectories given in (42). (b) Rotation angles and deformation energy for the Timoshenko (ET ), Euler–Bernoulli (EE), and inextensible

Euler–Bernoulli beam (EI ) compared with analytically expected deformation energy.

compared with finite element solutions found in the literature [28, 52]. Using the Young’s and shear moduli
E = 106 and G = E/2, respectively, and by assuming material properties given by E1 = EA, E2 = E3 = GA,
F1 = GI1, and Fα = EIα, this yields E1 = EA, E2 = E3 = Ea2/2, and F1 = F2 = F3 = Ea4/12. We discretized
each beam of the structure with 12 cubic uniformly distributed elements. The problem was solved using 40
iterations of a force controlled Newton–Raphson method with a convergence tolerance of 10−10 with respect to
the maximum absolute error of the static residual (37).

In Figure 8(a) the reference and the final large deformed configuration of the three-dimensional structure can
be seen. In Figure 8(b) the displacements of the point of applied load obtained by the presented beam models
are compared with those reported in [28, 52].

For the given material properties all three beam models yield the identical results, which stems from the fact
that the shear and axial stiffnesses are very high compared with the torsional and bending stiffnesses. Thus, the
less-constrained beam models enforce the inextensiblity and non-shearability in the sense of a penalty method.
Further, it can be noted that the deflection curves of the proposed beam models are in excellent agreement with
the results reported in the literature.

Figure 8. (a) Initial and final deformed configuration. (b) Beam tip deflection of the point of applied load and comparison with

reference solution [28, 52].
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4.5. Wilberforce pendulum

For demonstrating the proposed beam model’s strengths in dynamics and showing a predeformed initial config-
uration, the fascinating pendulum named after its inventor Lionel Robert Wilberforce was chosen. More than
100 years ago, Wilberforce presented investigations On the Vibrations of a Loaded Spiral Spring [53] which is
clamped at its upper side. On the other side, perpendicular to the spring axis, a steel cylinder is attached. Four
screws with adjustable nuts are symmetrically attached around the cylinder in order to change its moment of
inertia, see Figure 9. When the cylinder is displaced vertically subjected to gravitational forces, it starts oscillat-
ing up and down. Owing to the coupling of bending and torsion of the deformed spring an additional torsional
oscillation of the cylinder is induced. For properly adjusted moment of inertia of the cylinder, the vertical and
torsional oscillation have a phase shift of π/2, i.e., the maximal amplitude of the vertical oscillation coincides
with a zero torsional amplitude and vice versa. There can be found several simplified analytical discussions of
the Wilberforce pendulum in the literature [54–56].

Subsequently, the detailed mechanical model and its discretization is presented. The pendulum bob is mod-
eled as a spatial rigid body of mass m = 0.469 kg and moment of inertia in the body fixed frame given by a
diagonal matrix with entries 200 = 211 = 0.0001468 kg m2 and 222 = 0.0001247 kg m2. It is parametrized
using the Cardan angles z–x–y. The spring, made of spring steel EN 10270-1 with density ρ = 7850 kg/m3,
Young’s modulus E = 206 × 109 N/m2, and shear modulus G = 81.5 × 109 N/m2, has the undeformed shape
of a perfect helix with n = 20 coils, coil radius R = 16 mm, wire diameter d = 1 mm, and unloaded pitch
c = 1 mm, i.e., the spring is in its block length. It is discretized by the presented Timoshenko beam model using
128 cubic uniformly distributed elements. As no locking is expected for this kind of slenderness, we use the
same shape functions for all fields, i.e., pr = pdi = pλk = 3 in order to obtain a better approximation of the
curvature terms.

Though a helix can be represented exactly by combining trigonometric functions and polynomials, i.e.,

r∗(ξ ) = R cos φ(ξ )e1 + R sin φ(ξ )e2 + cξe3, φ(ξ ) = 2πnξ ,

there is no exact representation for it by means of polynomials or rational polynomials. Thus, in order to obtain
a helicoidal beam reference configuration, a fitting procedure has to be applied. This is done by minimizing the
quadratic error of the beam centerline

ek =
k

∑

i=1

‖r(ξi) − r∗(ξi)‖2.

An in-depth discussion of such a minimization procedure, where in addition a given number of points is exactly
interpolated, e.g., the start and end points, is given in [39, Section 9.4.2]. For fitting the beams orientations, the
very same procedure can be used by replacing the difference of the beam centerline with the difference of each
director di and its corresponding vector of the helix space curve’s Frenet–Serret frame.

For the time integration of the semi-discrete equations of motion (36), a generalized-α scheme for con-
strained mechanical systems of index 3 is used, similar to that proposed by [57]. As mentioned in Section 3.2
the element mass matrix (35) is singular with respect to the generalized coordinates of the first director. Thus,
the set of generalized coordinates has to be subdivided into purely algebraic ones qalg, i.e., those which have a
singular mass matrix, and dynamical ones qdyn without that restriction. Owing to the special form of the used
generalized-α method the internal iteration matrix does not get singular, even with a singular mass matrix, which
is not guaranteed by an iterative time integration scheme. Thus, the only difference from the scheme proposed
in [57] is that special care is necessary while computing consistent initial accelerations. We have to ensure that
only those parts of the mass matrix corresponding to the dynamic generalized coordinates are inverted. All other
initial accelerations have to be set zero. Further, we only use the right preconditioner matrix [57, Equation (10)].
An in-depth discussion about an optimal preconditioning of index 3 DAE solver is given in [58].

In Figure 9(a) and (b) snapshots of a pure vertical and torsional oscillation period can be seen and [59] shows
a rendered video of the total integration time. For an integration time T = 20 s, a time step 1t = 5 × 10−4 s,
and the spectral radius at infinity ρ∞ = 0.5, the eccentricity of the adjustable nuts was optimized leading to the
given values for the moment of inertia in order to achieve an almost perfect phase shift, see Figure 10. Further it
can be noted that the locking phenomenon previously discussed in Section 4.2 and the associated convergence
problems are not present in such a real-world application, although the helicoidal spring is modeled by a slender
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Figure 9. Configurations of the Wilberforce pendulum: (a) pure vertical oscillation and (b) pure torsional oscillation. The rendered

animations are built using an open-source visualization tool [60].

Figure 10. Vertical deflection and first Cardan angle of the pendulum bob. An almost perfect phase shift of vertical and torsional

oscillation can be observed.

beam. All three presented beam models were able to solve this problem yielding the same results owing to the
high axial and shear stiffnesses.

5. Conclusion

As a natural extension of existing finite element formulations of constraint beam models [4, 5, 28], the presented
approach enforces the orthonormality constraints of the cross-sectional frame in a weak sense. This not only
improves the convergence rate with respect to a finer discretization, but also enables the modeling of three
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kinematically different beam models within a single theory. Depending on the number of additionally chosen
constraints, a spatial precurved nonlinear Timoshenko, Euler–Bernoulli, or inextensible Euler–Bernoulli beam
model is obtained. Owing to the used intrinsic beam theory, arbitrary constitutive relations can be modeled by
choosing an appropriate strain energy function, solely depending on the presented objective strain measures.

Exploiting a direct interpolation of the cross-sectional director frame, the present formulation avoids the dif-
ficulties of interpolating rotations arising in the minimal formulation of a spatial Timoshenko beam model [20,
21]. Further, it should be noted that it retains the property of objectivity during discretization. However, it has its
own disadvantages. Instead of ordinary differential equations, a set of index 3 differential algebraic equations
is obtained after spatial discretization. This requires the usage of advanced time integration schemes, e.g., the
generalized-α solver for index 3 DAEs presented in [57].

For the most-constrained beam formulation, analytical solutions by means of elliptic integrals can be repro-
duced. This numerically proves its correct derivation and implementation. Further, homogeneous pure bending
deformations can be reproduced by all presented beam models which validates the correctness of torsion and
flexure. In addition, existing finite element simulations as well as difficult dynamical behavior of real-world
applications can be reproduced.

In order to almost completely avoid the locking phenomena appearing for increasingly thinner beams, the
two kinematic fields (centerline r and directors di) are discretized with B-spline shape functions of different,
but tailored polynomial degrees. If this is not the case or when linear shape functions should be used for both
kinematic fields, convergence problems arise as structures become increasingly thinner and locking occurs. This
behavior of spatial Timoshenko beams is well known in the literature and makes them on a par with existing
minimal formulations. There are different possibilities found in the literature to overcome these difficulties. On
the one hand minimal formulated spatial Euler–Bernoulli beam models [9–12] or different constrained Euler–
Bernoulli beam theories that explicitly ensure the vanishing shear deformations [61, 62] can be used. On the
other hand, so-called intrinsically locking-free Timoshenko beam formulations [38, 63] have to be extended
from the planar case to the spatial one. Another promising solution are so-called mixed formulations that intro-
duce the internal forces and couples as independent variables in combination with isogeometric collocation
methods [25].

Future research should include the application of spatial beam finite element models to real-time control
applications in soft robotics [64–66]. Further, the constrained numerical beam models have to be validated
using existing experimental data [67]. Finally, investigations of the planar case as the analysis of bifurcations
and tracing the post-buckling path of beam structures [68], the modal analysis of Timoshenko beams [69] as
well as a special class of metamaterials, so-called panthographic materials, see among others [70–74], should
be investigated by using spatial constrained beam theories.
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Notes

1. The pretty common quadratic strain energy density U = 1
2 Ei(0i − δi1)2 + 1

2 Fi(Ki − K0
i )2, which corresponds to a material with

an elasticity tensor of diagonal form with constant coefficients (see [32]), lacks in the point that during a simple shear experiment
the beam is elongated without any material resistance.

2. For ρ0 being constant in each cross section the integrated quantities (19) can be related to the cross-sectional area A(ξ ) =
∫

A(ξ ) dA, the static moment of area Sα(ξ ) =
∑3

β=2

∫

A(ξ )(1 − δαβ )θβ dA and the area moment of inertia Iαβ (ξ ) =
∑3

γ ,η=2

∫

A(ξ )(1 − δαγ )θγ (1 − δβη)θη dA by the identities Aρ0 = ρ0A, Bα
ρ0

= ρ0Sα and Cαβ
ρ0 = ρ0Iαβ .



24 Mathematics and Mechanics of Solids 00(0)

3. Cf. [75, Section 5.2] for the case of a three-dimensional continuum: “What we do is adopt an inverse procedure whereby we
assume an explicit form for the deformation (possibly suggested by the geometry in question) and calculate, through the con-
stitutive law and governing equations, the resulting stress distribution and, in particular, the boundary tractions required for
equilibrium to be maintained. However, this method does not always work because it is possible to choose a deformation which
cannot be maintained by the application of surface tractions alone in respect of a general form of isotropic strain-energy function.”
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