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Dynamic simulation of the Wilberforce pendulum using constrained
spatial nonlinear beam finite elements
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More than 100 years ago, Lionel Robert Wilberforce did investigations On the Vibrations of a Loaded Spiral Spring [1]. The
spring was clamped at its upper side and on the other side, perpendicular to the spring axis, a steel cylinder was attached. Four
screws with adjustable nuts were symmetrically attached around the cylinder in order to change its moment of inertia (Fig. 1).
In this paper the Wilberforce pendulum is modeled by a rigid body attached to a constrained spatial nonlinear Timoshenko
beam, discretized with B-spline shape functions. As shown by a numerical experiment, the presented model is capable of
reproducing the characteristic pendulum motion.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

The pendulum’s spring is made of spring steel EN 10270-1 with density ρ0 = 7850 kg/m3, Young’s modulus E =
206 · 109 N/m2 and shear modulus G = 81.5 · 109 N/m2. Has the undeformed shape of a perfect helix with n = 20 coils,
coil radius R = 16 mm, wire diameter d = 1 mm and unloaded pitch c = 1 mm. It is discretized using 128 cubic uniformly
distributed B-spline finite elements of the Timoshenko beam model presented in [2].

Fig. 1: Configurations of the Wilberforce pendulum: (left) pure vertical oscillations, (right) pure torsional oscillation of the pendulum bob.

The motion of the beam’s centerline is given by the mapping r : I × R → E3, (ξ, t) 7→ r(ξ, t), where, for each instant of
time t ∈ R, the closed unit interval I = [0, 1] ⊂ R parametrizes the set of beam points in the three dimensional Euclidean
space E3, which comes with a right-handed orthonormal basis (e1, e2, e3). It is further augmented by the motion of positively
oriented orthonormal director triads di : I × R → E3, i = 1, 2, 3 in order to capture the beam’s cross-sectional orientations.
The directors dα(ξ, t), α = 2, 3 span the plane and rigid cross section. The placement of the reference centerline is given by

Fig. 2: Kinematics of the precurved spatial Timoshenko beam.
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Fig. 3: Deflection and first Cardan angle of the pendulum bob.

r0 : I → E3 and the corresponding orthonormal director triads are Di : I → E3. While D1 is identified with the unit tangent
to the reference centerline r0, i.e., D1 = r′0/∥r′0∥ with r′0 := ∂r0

∂ξ , the vectors D2 and D3 are identified with the geometric
principal axes of the cross sections, see Figure 2. Since a helix is a transcendental curve that can be represented exactly by

r∗0(ξ) = R cosϕ(ξ)e1 +R sinϕ(ξ)e2 + cξe3 , ϕ(ξ) = 2πnξ , (1)

there is no exact representation for it by means of rational functions, e.g., B-splines. Thus, in order to obtain a helicoidal beam
reference configuration, a fitting procedure is required. This was done by minimizing the quadratic error ek =

∑k
i=1 ∥r0(ξi)−
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r∗0(ξi)∥2 of the beam’s reference centerline [3]. For obtaining the beam’s orientations the very same procedure was applied by
replacing the difference of the beam’s reference centerline with the difference of each director di and its corresponding vector
of the helix space curve’s Serret-Frenet frame.

Next, by introducing the arc length coordinate s =
∫ ξ

0
J(ξ)dξ̄ of the reference centerline at ξ, together with J(ξ) :=

∥∂r0(ξ)/∂ξ∥, the respective differential measures ds and dξ of the arc length and the parameter domain can be related by
ds = J(ξ)dξ. Let f be an arbitrary mapping f : I × R → E3, (ξ, t) 7→ f(ξ, t), its derivative with respect to the arc length of
the reference centerline is defined as ∂f

∂s (ξ, t) :=
∂f
∂ξ (ξ, t)/J(ξ).

Further, by defining an appropriate strain energy density W (Γi,Ki; ξ), see [2], and application of Einstein summation
convention on repeated indices, the beam’s material resistance is modeled by the internal virtual work

δW int = −
∫

I

{
δr′ · nidi + δdi · (nir

′ + εkji
mk

2 d′
j) + δd′

j · εijk mi

2 dk

}
dξ , (2)

where the contact forces ni(ξ, t) = ∂W
∂Γi

(
Γi(ξ, t),Ki(ξ, t); ξ

)
and contact couples mi(ξ, t) = ∂W

∂Ki

(
Γi(ξ, t),Ki(ξ, t); ξ

)
de-

pend on the objective strain measures Γi(ξ, t) = r′(ξ, t) ·di(ξ, t)/J(ξ), Ki(ξ, t) =
1
2εijkdk(ξ, t) ·d′

j(ξ, t)/J(ξ) and possibly
on the material point ξ itself.

Gravitational effects are incorporated by the external virtual work δW ext =
∫
I
δr ·nJ dξ, where the vector of gravitational

forces n = −ρ0Age2, the beam’s cross sectional area A = π(d/2)2 and the gravitational acceleration g were introduced.
In order to formulate the virtual work contributions of inertia effects, the beam is assumed to be a constrained three-

dimensional continuous body [4,5] whose points in the current configuration are restricted to x(ξ, θα, t) = r(ξ, t)+θαdα(ξ, t).
Here (ξ, θ2, θ3) ∈ B ⊂ R3 are chosen such that they address the whole beam volume in its reference configuration. Thus,
inserting this restricted kinematics into the commonly used virtual work of the inertia forces of a three-dimensional continuous
body yields

δW dyn = −
∫

B
δx · ẍ dm = −

∫ 1

0

{
δr · (Aρ0 r̈+Bα

ρ0
d̈α) + δdα · (Bα

ρ0
r̈+ Cαβ

ρ0
d̈β)

}
J dξ , (3)

where the constant integrated quantities Aρ0
=

∫
A
ρ0 dA, Bα

ρ0
=

∫
A
ρ0θα dA and Cαβ

ρ0
=

∫
A
ρ0θαθβ dA have been intro-

duced.
For the used director beam formulation one must enforce the requirement of di ⊗ ei : I × R → Orth+ to be a proper

rotation, i.e., the directors must remain orthonormal throughout the motion. This leads to six independent constraint equations
gij(ξ, t) = di(ξ, t) · dj(ξ, t) − δij = 0, with 1 ≤ i ≤ j ≤ 3. These constraints are incorporated into the principle of virtual
work by the contribution

δW c =

∫

I

{
δλij(di · dj − δij) + (δdi · dj + δdj · di)λij

}
dξ . (4)

Finally, the pendulum bob is modeled as a spatial rigid body of mass m = 0.469 kg and moment of inertia in the body
fixed frame given by a diagonal matrix with entries Θ00 = Θ11 = 0.0001468 kgm2 and Θ22 = 0.0001247 kgm2. It is
parametrized using the Cardan angles z-x′-y′′, starting from ex = e1, ey = e2 and ez = e3.

When the cylinder is displaced vertically subjected to gravitational forces, it starts oscillating up and down (Fig. 1). Due
to the coupling of bending and torsion of the deformed spring an additional torsional oscillation of the cylinder is induced
(Fig. 1). When the cylinder’s moment of inertia is properly adjusted, the vertical and torsional oscillation possess an almost
perfect phase shift of π/2, i.e., the maximal amplitude of the vertical oscillation coincides with a zero torsional amplitude and
vice versa. Using the generalized-α scheme [6] for constrained mechanical systems of index 3, an integration time T = 20 s,
a time step ∆t = 5 · 10−4 s and the spectral radius at infinity ρ∞ = 0.5, the eccentricity of the adjustable nuts was optimized
leading to the given values for the moment of inertia in order to achieve an almost perfect phase shift shown in Fig. 3.
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