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ABSTRACT
In this article we consider the Lyapunov stability of mechan-

ical systems containing fractional springpot elements. We obtain
the potential energy of a springpot by an infinite dimensional
mechanical analogue model. Furthermore, we consider a sim-
ple dynamical system containing a springpot as a functional dif-
ferential equation and use the potential energy of the springpot
in a Lyapunov functional to prove uniform stability and discuss
asymptotic stability of the equilibrium with the help of an invari-
ance theorem.

INTRODUCTION
Fractional calculus is a mathematical discipline dealing with

derivatives and integrals of arbitrary (non-integer) order. Among
many other applications, the associated theory has been used
in rheology to describe viscoelastically damped systems [1, 2].
Time-fractional elements, so called “springpots”, are used to-
gether with classical springs and dashpots to describe the vis-
coelastic behavior on both short and long time-scales. To de-
velop a Lyapunov stability theory for mechanical systems mod-
elled by springpot-elements it is necessary to determine their
conserved and dissipated energy. Therefore, we have to un-
derstand the physical meaning of fractional elements and their
initialization depending on the applied definition of fractional
derivative. In this paper, we propose representations for spring-
pots consisting of an infinite number of springs and dashpots in

∗Address all correspondence to this author.

the fashion of [3, 4] as well as [5] and associate them to Caputo
and Riemann-Liouville derivatives. Additionally, we consider
the stored energy of the infinite spring-dashpot representation
and derive the potential energy of a springpot. All observations
are based on the frequency distributed model (or diffusive / infi-
nite state representation) of fractional integrators introduced by
Montseny [6], Matignon [7] and intensely elaborated by Trige-
assou et al. [8–11]. The obtained energy terms will then be used
to find Lyapunov functionals for mechanical systems containing
springpots. We consider the system equations as time-delay (or
functional) differential equations and use an associated stabil-
ity theorem to prove uniform stability of a simple mass-spring-
springpot-system. This approach can be generalized to more
complex and nonlinear systems.

FRACTIONAL CALCULUS AND INFINITE STATE REP-
RESENTATION

We will consider the two classical definitions of fractional
derivative by Riemann-Liouville and Caputo. Both concepts de-
pend on the fractional Riemann-Liouville integral, which is de-
fined for an integrable function x = x(t) and scalar values t0 ≤ t,
α > 0 as

Iα
t0+x(t) =

1
Γ(α)

∫ t

t0
x(τ)(t− τ)α−1dτ, (1)

1 Copyright c© 2018 by ASME



where Γ(α) is the Gamma function. For α = 0 we set I0
t0+x := x

and it can be seen directly that the choice α = 1 leads to the
classical integral. In this paper, we will describe this integral
operator by the infinite state representation [9]

{
ż(ω, t) =−ωz(ω, t)+ x(t),
Iα
t0+x(t) =

∫
∞

0 µα(ω)z(ω, t)dω.
(2)

The infinite state z(ω, t) fulfills the above differential equation
∀ω ≥ 0 and the fractional integral is obtained by integrating all
contributions z(ω, t) weighted by the function

µα(ω) :=
sin(απ)

π
ω
−α . (3)

We will have a close look at the correspondence between
Eqns. (1) and (2) to emphasize the significance of the initial time
instant t0. Thus, consider Eqn. (1) as a convolution of functions
x and

yα(t) :=
tα−1

Γ(α)
. (4)

The Laplace transform of yα and substitution u := st yield

L {yα(t)}(s) =
∫

∞

0

tα−1

Γ(α)
e−stdt

=
1

Γ(α)

∫
∞

0
uα−1e−udu︸ ︷︷ ︸
=Γ(α)

· s−α = s−α .
(5)

Therefore, we obtain an integral representation of Eqn. (4)

yα(t) =
1

Γ(α)
L {y1−α}

∣∣∣∣
s=t

=
1

Γ(α)Γ(1−α)

∫
∞

0
ω
−α e−ωtdω

=
∫

∞

0
µα(ω)e−ωtdω

(6)

where we used Eqn. (3) and the property

Γ(α)Γ(1−α) =
π

sin(απ)
. (7)

of the Gamma function. This representation will now be used
to derive the infinite state z(ω, t) corresponding to Eqn. (2). To

correctly initialize the fractional integral, we consult a past time
interval [t0,0], where t0 < 0 or even t0 = −∞. This leads to a
fractional integral with a negative lower bound. This approach,
called “history-function based initialization” was elaborated in
[12] and has been shown to be equivalent to the infinite state
model [13]. In the following derivation, we can see this equiv-
alence explicitly. Substituting Eqns. (4) and (6) in Eqn. (1), we
obtain

Iα
t0+x(t) =

∫ t

t0
yα(t− τ)x(τ)dτ

=
∫ t

t0

∫
∞

0
µα(ω)e−ω(t−τ)dω x(τ)dτ

=
∫

∞

0
µα(ω)

∫ t

t0
e−ω(t−τ)x(τ)dτ︸ ︷︷ ︸

=:z(ω,t)

dω.

(8)

The function z(ω, t), as defined in Eqn. (8), is a particular solu-
tion of the differential equation in Eqn. (2). Therefore, we have
to initialize Eqn. (2) by

z(ω, t0) = 0 (9)

to obtain equivalence of Eqns. (1) and (2). The interpretation
of this condition and the choice of the initial integration time t0
will be discussed in the next section. First we want to define the
fractional Riemann-Liouville derivative of an integrable function
x = x(t) for 0 < α < 1, which will be the case in our application,
as

RLDα
t0+x(t) =

d
dt

I1−α
t0+ x(t) (10)

and analogously the fractional Caputo derivative for an abso-
lutely continuous function x = x(t) as

CDα
t0+x(t) = I1−α

t0+ ẋ(t). (11)

MECHANICAL REPRESENTATION OF SPRINGPOTS
In this section we consider a springpot as an abstract me-

chanical element (Fig. 1) with coefficient c> 0, initial time t0 < 0
and differentiation order α ∈ (0,1). The force f acting on a
springpot with elongation q is given by the constitutive relation

f (t) = cDα
t0+q(t), (12)

where D will be the Riemann-Liouville or Caputo derivative. The
time interval [t0,0] represents the entire significant history of the
springpot, i.e. for earlier times t ≤ t0 we assume q(t) = 0 and
f (t) = 0.
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FIGURE 1. Force acting on a springpot.

Kelvin Representation
For the Riemann-Liouville derivative RLDα

t0+, we consider
the equation

f (t) = c RLDα
t0+q(t) = c

d
dt

I1−α
t0+ q(t). (13)

Applying Iα
t0+ on both sides leads to

Iα
t0+ f (t) = cIα

t0+
RLDα

t0+q(t)

= c
(

q(t)− (t− t0)α−1

Γ(α)
lim

τ→t0+
I1−α
t0+ q(τ)

) (14)

as long as f (t) is integrable for t ≥ t0 [14, Thm. 2.23]. Analo-
gously, for the Caputo derivative CDα

t0+ the equation

f (t) = cCDα
t0+q(t) = cI1−α

t0+ q̇(t) (15)

may be reformulated applying Iα
t0+ on both sides as

Iα
t0+ f (t) = cIα

t0+I1−α
t0+ q̇(t) = cI1

t0+q̇(t) = c
∫ t

t0
q̇(τ)dτ

= c(q(t)−q(t0)).
(16)

Due to our assumptions f (t) = q(t) = 0 ∀t ≤ t0, the last terms
on the right side of both Eqns. (14) and (16) vanish. Hence,
considering Eqn. (2), we can represent a springpot for both kinds
of fractional derivatives by

{
ż(ω, t) =−ωz(ω, t)+ f (t), z(ω, t0) = 0,
q(t) = 1

c
∫

∞

0 µα(ω)z(ω, t)dω.
(17)

We will now propose a mechanical interpretation of Eqn. (17)
similar as in [5]. Thus, consider an uncountably infinite-order

FIGURE 2. Schematic Kelvin representation of a springpot.

series connection of Kelvin elements (Fig. 2) such that the elon-
gation of the entire system is given by

q(t) =
∫

∞

0
x(ω, t)dω, (18)

where x(ω, t) is a density such that the elongation of the Kelvin
elements of the system at time t is related to x(ω, t)dω . For a
force f acting on the system, the relation

f (t) = k(ω)x(ω, t)+d(ω)ẋ(ω, t) (19)

holds ∀ω ≥ 0 with distributed spring and dashpot parameters
k(ω)
dω

and d(ω)
dω

, respectively. Comparison of Eqns. (18) and (19)
to Eqn. (17) leads to the identification

x(ω, t) =
1
c

µα(ω)z(ω, t), k(ω) =
cω

µα(ω)
,

d(ω) =
c

µα(ω)
, ω =

k(ω)

d(ω)
.

(20)

From this representation, we obtain an interpretation of the infi-
nite state z as

ωz(ω, t) = k(ω)x(ω, t) =: fs(ω, t), (21)
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FIGURE 3. Schematic Maxwell representation of a springpot.

where fs(ω, t) is the force acting on the springs of the Kelvin
elements. Moreover, we retrieve the energy of the springpot as
the energy stored in the springs of the Kelvin elements

E(t) =
1
2

∫
∞

0
k(ω)x2(ω, t)dω (22)

or, with the identification in Eqn. (20), as

E(t) =
1
2c

∫
∞

0
ωµα(ω)z2(ω, t)dω. (23)

Maxwell Representation
We can directly apply the distributed representation of the

fractional integral, i.e. Eqn. (2), on Eqns. (13) and (15) to obtain

{
ẏRL(ω, t) =−ωyRL(ω, t)+q(t), yRL(ω, t0) = 0,
f (t) = c

∫
∞

0 µ1−α(ω)ẏRL(ω, t)dω
(24)

for a Riemann-Liouville springpot and

{
ẏC(ω, t) =−ωyC(ω, t)+ q̇(t), yC(ω, t0) = 0,
f (t) = c

∫
∞

0 µ1−α(ω)yC(ω, t)dω
(25)

for a Caputo springpot, respectively. Again we examine an
analogue system consisting of uncountably infinite springs and
dashpots, this time a parallel arrangement of Maxwell elements
(Fig. 3) as in [5], where the forces g(ω, t)dω of the Maxwell
elements are integrated to the resulting force

f (t) =
∫

∞

0
g(ω, t)dω (26)

of the system. The springs of the Maxwell elements are charac-
terized by their elongation qs(ω, t) and spring constant k(ω)dω

and the dashpots by elongation qd(ω, t) and constant d(ω)dω

such that the elongation of the system q(t) appears as

q(t) = qs(ω, t)+qd(ω, t) ∀ω ≥ 0 (27)

with

g(ω, t)dω = k(ω)dω qs(ω, t) = d(ω)dω q̇d(ω, t). (28)

Derivation of Eqn. (27) and inserting Eqn. (28) leads to

q̇(t) =
ġ(ω, t)
k(ω)

+
g(ω, t)
d(ω)

. (29)

Comparison of Eqns. (26) and (29) to Eqns. (24) and (25) results
in the identification

g(ω, t) = cµ1−α(ω)ẏRL(ω, t) = cµ1−α(ω)yC(ω, t),

k(ω) = cµ1−α(ω), d(ω) =
cµ1−α(ω)

ω
, ω =

k(ω)

d(ω)
.

(30)

Furthermore, we obtain an interpretation of the infinite states yRL
and yC of the Riemann-Liouville and Caputo springpot as

ωyRL(ω, t) = q(t)− ẏRL(ω, t) = q(t)− g(ω, t)
cµ1−α(ω)

= q(t)−qs(ω, t) = qd(ω, t),

yC(ω, t) = ẏRL(ω, t) =
g(ω, t)

cµ1−α(ω)
=

g(ω, t)
k(ω)

= qs(ω, t).

(31)

Again, we consider the energy of the mechanical equivalent sys-
tem which in this situation is the potential energy stored in the
springs of the Maxwell elements, i.e.

E(t) =
1
2

∫
∞

0
k(ω)q2

s (ω, t)dω, (32)

which can be reformulated with Eqns. (30) and (31) as

E(t)=
c
2

∫
∞

0
µ1−α(ω)y2

C(ω, t)dω =
c
2

∫
∞

0
µ1−α(ω)ẏ2

RL(ω, t)dω.

(33)
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Relationship between different representations
From the two mechanical representations of the springpot

we obtain equivalent energy equations (23) and (33). While
Eqn. (23) is expressed in terms of the force quantity z, we obtain
(33) in terms of the elongation quantities ẏRL and yC. Further-
more we derive the following correspondence of these quantities
from the energy equations

z(ω, t) = cω
α−1ẏRL(ω, t) = cω

α−1yC(ω, t) f. a. a. ω. (34)

Moreover, we note that the difference in modelling the Maxwell
representation for the Riemann-Liouville and Caputo derivative
lies only in the choice of coordinates (see Eqn. (31)). Therefore,
both definitions can be used to model the same physical relation.

STABILITY CONSIDERATIONS
Introduction

Our long-term aim is to develop a Lyapunov stability theory
for dynamical systems containing fractional springpot elements.
Therefore, we want to use the energy terms derived above as Lya-
punov functional candidates. In contrast to many other investiga-
tions in this field [8, 15, 16], we do not consider explicit systems
of fractional differential equations. Instead, we want to describe
springpots in dynamical systems by their infinite state represen-
tation and apply stability criteria similar to the well-known re-
sults of Lyapunov stability theory for ordinary differential equa-
tions. Hence, we investigate the stability theory for functional
differential equations [17–20]. We regard the example of a single
degree-of-freedom mass-spring-springpot-system with a Caputo-
type springpot (Fig. 4), which can be described by the equation
of motion

mq̈(t) =−kq(t)− cCDα
t0+q(t), t ≥ 0 (35)

with mass m, elongation q(t), spring coefficient k, springpot co-
efficient c and differentiation order α ∈ (0,1) and given initial
functions ϕ1,ϕ2 ∈CB((−∞,0];R) such that

q(t) = ϕ1(t), t ≤ 0,
q̇(t) = ϕ2(t), t ≤ 0

(36)

where ϕi(t) = 0 for t ≤ t0, i = 1,2. Using Eqn. (25), we reformu-
late Eqn. (35) as a system of first order differential equations

{
q̇(t) = v(t),
v̇(t) =− k

m q(t)− c
m
∫ t

t0

∫
∞

0 µ1−α(ω)e−ω(t−τ)dω v(τ)dτ,
(37)

where v(t) is the velocity of the mass. Using the definition

FIGURE 4. Single degree-of-freedom mass-spring-springpot system.

vt(s) = v(t + s), s ∈ (−∞,0], (38)

we can reformulate Eqn. (37) as

{
q̇(t) = v(t),
v̇(t) =− k

m q(t)− c
m
∫ 0

t0−t
∫

∞

0 µ1−α(ω)eωsdω vt(s)ds,
(39)

which is a functional differential equation (FDE) with un-
bounded delay. In the following, we want to introduce the the-
ory of FDEs to prove uniform stability of the trivial solution of
Eqn. (39) with given initial functions as in Eqn. (36). Addi-
tionally, as solutions of Eqn. (39) all seem to approach the triv-
ial solution, we discuss the autonomous case, i.e. we consider
Eqn. (39) with bounded delay to apply an invariance theorem and
describe problems using the energy functional of the unbounded
case to prove asymptotic stability.

Stability of FDEs
Consider an FDE of the form

ẋ(t) = f (t,xt), t ≥ t1 ≥ 0 (40)

with

x ∈C((−∞,T );Rn), T > t1,

xt(s) = x(t + s), s ∈ (−∞,0],
f : [0,∞)×CB((−∞,0];Rn)⊃ S→ Rn.

(41)

For Eqn. (40) we want to state Lyapunov functionals V (t,ϕ)
defined on the space [0,∞)×CB((−∞,0];Rn) together with the
norm

‖ϕ‖∞ = sup
s∈(−∞,0]

‖ϕ(s)‖n, (42)
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where ‖.‖n is the Euclidean norm. The subset S in Eqn. (41) on
which f is defined will be considered as

S = [0,∞)×QH ,

QH : = {ϕ ∈CB((−∞,0];Rn) | ‖ϕ‖∞ < H}, H > 0
(43)

and we assume f locally Lipschitzian in QH which ensures local
existence and uniqueness of a solution x(t1,ϕ) of Eqn. (40) for a
given initial function ϕ and intitial time t1 [18,19]. Moreover, let
f (t,0) = 0 ∀t ≥ t1, such that the trivial solution x(t1,ϕ)(t) = 0
is an equilibrium of the system. In the following theorem, we
formulate sufficient conditions for uniform stability of the trivial
solution of Eqn. (40) by a Lyapunov theorem adapted to the space
CB((−∞,0];Rn) as in [18–20]. Therefore, we need the following
definitions.

Definition 1:
A solution of Eqn. (40) with initial function
ϕ ∈ CB((−∞,0];Rn) and initial time t1 ≥ 0 is a function
x(t1,ϕ) defined and continuous on an interval (−∞,T ), T > t1,
such that xt(t1,ϕ)∈ S for t ∈ [t1,T ), xt1(t1,ϕ) = ϕ and x(t1,ϕ)(t)
satisfies Eqn. (40) for t ∈ [t1,T ).

Definition 2 (Stability):
The trivial solution x(t1,ϕ)(t) = 0 of system (40) together with
(41), (43), initial function ϕ and initial time t1 is called

(a) stable, if for all ε ∈ (0,H] there exists a δ = δ (t1,ε) > 0
such that ‖x(t1,ϕ)(t)‖n ≤ ε for t ≥ t1 if ϕ ∈ Qδ .

(b) uniformly stable, if for all ε ∈ (0,H] there exists
a δ = δ (ε) > 0 independent from t1, such that
‖x(t1,ϕ)(t)‖n ≤ ε for t ≥ t1 if ϕ ∈ Qδ .

(c) asymptotically stable, if it is stable and for all t1 there exists
a δ = δ (t1)> 0 such that lim

t→0
‖x(t1,ϕ)(t)‖n = 0 if ϕ ∈ Qδ .

Theorem 1 (Stability [18]):
Let f : [0,∞)×QH →Rn such that f (t,0) = 0 ∀t ≥ t1 and denote
ui : [0,∞)→ R, i = 1,2 some scalar, continuous, non-decreasing
functions such that ui(0) = 0 and ui(r) > 0 for r > 0. Let there
exist a continuous functional V : [0,∞)×QH → R such that

u1(‖ϕ(0)‖n)≤V (t,ϕ)≤ u2(‖ϕ‖∞), (44)
V̇ (t,xt)≤ 0, (45)

then the trivial solution of Eqn. (40) is uniformly stable.

Proof. Let ε > 0 be given with ε < H and find δ > 0 with
u2(δ ) < u1(ε). For ϕ ∈ QH with ‖ϕ‖∞ < δ , and since

V̇ (t,xt(t1,ϕ))≤ 0, we have

u1(‖xt(t1,ϕ)(0)‖n)≤V (t,xt(t1,ϕ))

≤V (t1,ϕ)≤ u2(‖ϕ‖∞)≤ u2(δ )< u1(ε).

Therefore we obtain

‖x(t1,ϕ)(t)‖n < ε,

which proves that the trivial solution of (40) is uniformly stable.

Mass-Spring-Springpot System
We will apply the above theory on the two-dimensional sys-

tem (39). Therefore, we introduce the energy functional

V (t,qt ,vt) =
1
2

mv2
t (0)+

1
2

kq2
t (0)

+
1
2

c
∫

∞

0
µ1−α(ω)

(∫ 0

t0−t
eωsvt(s)ds

)2

dω,

(46)

where the last addend is deduced from Eqn. (33). Again, we will
use the variable yC, which in this case has the form

yC(ω, t) =
∫ 0

t0−t
eωsvt(s)ds. (47)

The derivative along solutions of Eqn. (39) of this candidate Lya-
punov functional is the rate of dissipation

V̇ (t,qt ,vt) = kqt(0)vt(0)+mvt(0)v̇t(0)

+ c
∫

∞

0
µ1−α(ω)yC(ω, t)(vt(0)−ωyC(ω, t))dω

= vt(0)
(

mq̈t(0)+ kqt(0)+ c
∫

∞

0
µ1−α(ω)yC(ω, t)dω

)
− c

∫
∞

0
ωµ1−α(ω)y2

C(ω, t)dω

=−c
∫

∞

0
ωµ1−α(ω)y2

C(ω, t)dω ≤ 0

(48)

which satisfies Eqn. (45). Therefore, we state the following as-
sertion.

Proposition 1:
The trivial solution of Eqn. (39) is uniformly stable.
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Proof. Eqn. (45) is satisfied, but we still have to prove (44). As
all addends in Eqn. (46) are non-negative, we can estimate

V (t,qt ,vt)≥
1
2

min{k,m}
(
q2(t)+ v2(t)

)
=

1
2

min{k,m}‖(q(t) v(t))T‖2
2

= u1(‖(q(t) v(t))T‖2)

(49)

with u1(r) := 1
2 min{k,m}r2. To show the second inequality in

(44), we consider the inner squared integral in the last addend of
(46) first and evaluate

 0∫
t0−t

eωsvt(s)ds

2

=

∣∣∣∣∣∣
0∫

t0−t

eωsvt(s)ds

∣∣∣∣∣∣
2

≤

 0∫
t0−t

eωs|vt(s)|ds

2

.

(50)
Subsequently, we split the interval of integration of the outer in-
tegral in two parts and use (50). For (1,∞) we obtain

∫
∞

1
µ1−α(ω)

(∫ 0

t0−t
eωsvt(s)ds

)2

dω

≤
∫

∞

1
µ1−α(ω)

(∫ 0

−∞

eωsds
)2

dω‖vt‖2
∞

=
sin((1−α)π)

π

∫
∞

1
ω

α−3dω‖vt‖2
∞

=
sin((1−α)π)

π(2−α)
‖vt‖2

∞.

(51)

For the integration over (0,1), we achieve by partial integration

∫ 1

0
µ1−α(ω)

(∫ 0

t0−t
eωsq̇t(s)ds

)2

dω

=
∫ 1

0
µ1−α(ω)

(
[eωsqt(s)]

0
t0−t −ω

∫ 0

t0−t
eωsqt(s)ds

)2

dω

≤
∫ 1

0
µ1−α(ω)

(
2(q(t))2 +2ω

2
(∫ 0

t0−t
eωsqt(s)ds

)2
)

dω

≤
∫ 1

0
µ1−α(ω)

(
2‖qt‖2

∞ +2ω
2
(∫ 0

−∞

eωsds
)2

‖qt‖2
∞

)
dω

= 4
sin((1−α)π)

πα
‖qt‖2

∞.

(52)

Thus, we conclude that there exists a constant C > 0, such that
V (t,qt ,vt)≤C‖(qt vt)

T‖2
∞.

-1 0 1 2 3 4 5
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FIGURE 5. Numerical solution of (35) using Grünwald-Letnikov ap-
proximation for m = 1kg, k = 400 N

m , α = 0.5, c = 10 Nsα

m , t0 =−1s and
initial functions q(t) = (t− t0)2 m

s2 , v(t) = 2(t− t0) m
s2 for t ∈ [t0,0].

Bounded Delay and Asymptotic Stability
Considering numerical solutions of Eqn. (35) together with

given initial functions lead to the conjecture, that the trivial so-
lution of Eqn. (35) is asymptotically stable (Fig. 5). Similar to
classical Lyapunov theory, a sufficient condition for asymptotic
stability of an FDE with unbounded delay may be formulated as
in Thm. 1 with the additional assumptions

∃L > 0 : ‖ f (t,ϕ)‖n < L, t ≥ t1, ϕ ∈ QH (53)

and

V̇ ≤−u3 (‖x(t1,ϕ)(t)‖n) (54)

for a scalar, continuous non-decreasing function u3 : [0,∞)→ R
such that u3(0) = 0 and u3(r) > 0 for r > 0 [18]. Condition
(53) can be proved similar to the second inequality in the proof
of Prop. 1 but Eqn. (54) is not fulfilled by the energy functional
(46). The same situation occurs in the case of a single degree-
of-freedom mass-spring-system with linear damping. The asso-
ciated energy function is not sufficient to prove asymptotic sta-
bility of the trivial solution. However, in the time-autonomous
case the problem can be solved using LaSalle’s invariance prin-
ciple [21, 22]. To apply this approach to Eqn. (35) we need to
consider an autonomous version of Eqn. (39). Therefore we use
the short-memory principle for fractional derivatives [23, Chap.
7.3], i.e. we neglect the history of the springpots near the time
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t = t0 and only consider a time interval [t−h, t] ∀t > 0 with mem-
ory length h > 0, which leads to the differential equation

mq̈(t) =−kq(t)− cCDα
t−h+q(t), t ≥ 0 (55)

or the autonomous FDE{
q̇(t) = v(t),
v̇(t) =− k

m q(t)− c
m
∫ 0
−h
∫

∞

0 µ1−α(ω)eωsdω vt(s)ds,
(56)

i.e. we consider an FDE of the form

ẋ(t) = f (xt), t ≥ 0 (57)

where f is defined on a subset of C([−h,0];Rn) and the solution
x(ϕ) ∈C([−h,T );Rn), T > 0 of Eqn. (57) only depends on the
initial function

ϕ ∈ Q̃H := {ϕ ∈C([−h,0];Rn) | ‖ϕ‖∞ < H}, H > 0.

For this case, we can formulate an invariance theorem in the fol-
lowing way.

Definition 3:
(i) An element ψ ∈ C([−h,0];Rn) belongs to the ω-limit set

Ω(ϕ) of ϕ if x(ϕ) is defined on [−h,∞) and there exists
a non-negative sequence {tn}, tn → ∞ as n→ ∞ such that
‖xtn(ϕ) − ψ‖∞→ 0 as n→ ∞.

(ii) A set Q⊂C([−h,0];Rn) is called invariant if xt(ϕ) ∈ Q for
any ϕ ∈ Q and t ∈ [0,∞).

Theorem 2 (Asymptotic Stability [17, 18]):
Let f : Q̃H → Rn such that f (0) = 0 and for all H1 < H,
ϕ ∈ Q̃H1 there is a constant L > 0 such that ‖ f (ϕ)‖n < L.
Denote ui : [0,∞)→ R, i = 1,2 some scalar, continuous, non-
decreasing functions such that ui(0) = 0 and ui(r) > 0 for r > 0
and u1(r)→ ∞ as r→ ∞. Let there exist a continuous functional
V : Q̃H → R such that

u1(‖ϕ(0)‖n)≤V (ϕ)≤ u2(‖ϕ‖∞), (58)
V̇ (xt)≤ 0 (59)

and let {0} be the largest invariant set in {ϕ|V̇ (ϕ) = 0}, then the
trivial solution of Eqn. (57) is asymptotically stable.

For the proof of this theorem we need a lemma on proper-
ties of the ω-limit set of the initial function ϕ as in the finite
dimensional case.

Lemma 1:
Let x(ϕ) a solution of Eqn. (57) with initial function ϕ and as-
sume {xt(ϕ)|t ≥ 0} belongs to a compact set in Q̃H , then Ω(ϕ)
is non-empty, compact, invariant and

dist(xt(ϕ),Ω(ϕ))→ 0 as t→ ∞.

The proof of this lemma is similar to the corresponding one
in the finite dimensional case [22, C3]. The interesting part
is the assertion that {xt |t ≥ 0} belongs to a compact subset of
C([−h,0];Rn).

Lemma 2:
Let x(ϕ) a solution of Eqn. (57) with initial function ϕ and
f under conditions of the above theorem. If x(ϕ) is defined
on [−h,∞) and ‖xt(ϕ)‖∞ ≤ H1 < H ∀t ≥ 0, then the fam-
ily of functions {xt(ϕ)|t ≥ 0} belongs to a compact subset of
C([−h,0];Rn).

Proof. By the assumptions and the Arzelà-Ascoli theorem, it still
has to be shown that {xt(ϕ)|t ≥ 0} is equicontinuous on [−h,0].
This is a consequence of the boundedness of f for bounded in-
puts, see [21, Chap. 3, Lemma 4.8].

Proof of Thm. 2. Stability is proved as in Thm. 1. For asymp-
totic stability, consider the open level sets Ωc = {ϕ|V (ϕ)< c}.
For ϕ ∈ Ωc, we have u1(‖ϕ(0)‖n) < c and as u1(r) → ∞ for
r→ ∞, we can choose c > 0 such that ‖ϕ(0)‖n ≤ H1. As V̇ ≤ 0
on Ωc, xt(ϕ) ∈Ωc for t ≥ 0 and hence ‖x(ϕ)(t)‖n ≤H1 for t ≥ 0
which implies ‖xt(ϕ)‖∞ ≤ H1. By Lemma 2, {xt(ϕ)|t ≥ 0} be-
longs to a compact subset of C([−h,0];Rn) so that V (xt(ϕ)), be-
ing non-increasing, is bounded from below and therefore has a
limit limt→∞ V (xt(ϕ)) = a. By Lemma 1, {xt(ϕ)|t ≥ 0} has a
non-empty, compact, invariant ω-limit set Ω(ϕ) which belongs
to the aforementioned compact set. This implies, as V is contin-
uous for ψ ∈ Ω(ϕ), that V (ψ) = limt→∞ V (xtn(ϕ)) = a. Hence,
V ≡ a on Ω(ϕ) and as Ω(ϕ) is invariant, we obtain V̇ = 0 in
Ω(ϕ) and Ω(ϕ) ⊂ {0}. Again, by Lemma 1, every solution ap-
proaches its ω-limit set for t→ ∞. Hence, xt approaches {0} for
t→ ∞.

To apply Thm. 2 to Eqn. (56), we tried to use a Lyapunov
functional similar to the energy functional (46), i.e.

Ṽ (qt ,vt) =
1
2

mv2
t (0)+

1
2

kq2
t (0)

+
1
2

c
∫

∞

0
µ1−α(ω)

(∫ 0

−h
eωsvt(s)ds

)2

dω.

(60)

For this functional, the inequalities in (58) are satisfied, which
may be proved as in Prop. 1. However, the derivative of Eqn. (60)
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along solutions of (56) has the form

˙̃V (qt ,vt) =− c
∫

∞

0
ωµ1−α(ω)

(∫ 0

−h
eωsvt(s)ds

)2

dω

− cvt(−h)
∫

∞

0
e−ωh

µ1−α(ω)
∫ 0

−h
eωsvt(s)dsdω.

(61)

Unfortunately, the second term in Eqn. (61) leads to the question,
if Ṽ still satisfies the inequality (59), which we could not answer
yet. It is obvious that the influence of the second term decreases
with growing memory length h but we still need further estima-
tion to prove asymptotic stability of the trivial solution.

CONCLUDING REMARKS
In this paper, the uniform stability of the trivial solution of

the investigated system with a fractional springpot element was
proved with the help of a Lyapunov theorem similar to the finite
dimensional case. Our proof and results are constructive in the
sense that we can even modify Eqn. (35) substituting the linear
spring by a cubic one and change the second term in Eqn. (46) to
a fourth order monomial and obtain uniform stability in the same
way. Hence, the approach applies to nonlinear systems as well.
Moreover, we utilized the short memory principle, which allows
the formulation of an invariance principle for FDEs and seems to
be a promising approach to prove asymptotic stability.
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