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Abstract 
The finite element method has established itself as an efficient numerical 
procedure for the solution of arbitrary-shaped field problems in space. Basi-
cally, the finite element method transforms the underlying differential equa-
tion into a system of algebraic equations by application of the method of 
weighted residuals in conjunction with a finite element ansatz. However, this 
procedure is restricted to even-ordered differential equations and leads to 
symmetric system matrices as a key property of the finite element method. 
This paper aims in a generalization of the finite element method towards the 
solution of first-order differential equations. This is achieved by an approach 
which replaces the first-order derivative by fractional powers of operators 
making use of the square root of a Sturm-Liouville operator. The resulting 
procedure incorporates a finite element formulation and leads to a symmetric 
but dense system matrix. Finally, the scheme is applied to the barometric eq-
uation where the results are compared with the analytical solution and other 
numerical approaches. It turns out that the resulting numerical scheme shows 
excellent convergence properties. 
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1. Introduction 

Many problems in physics are described by differential equations which in gen-
eral can only be solved numerically. As a result one obtains an approximative 
solution whose error can be reduced to the cost of a higher numerical effort. For 
special classes of differential equations in space the finite element method is one 
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of the most powerful tools regarding its numerical properties as well as the fact 
that it can be applied to arbitrary-shaped three-dimensional domains. However, 
following its original derivation the method can only be applied to even-ordered 
differential equations in space. The scope of this contribution is to broaden the 
finite element method towards the solution of first-order differential equations 
which may result directly from the underlying problem or as the state-space re-
presentation of a higher-order differential equation. One may think of the epi-
demic models exemplary towards the actual spreading of the new corona virus. 

Due to the meaningfulness of the finite element method many commercial 
and non-commercial programs exist. In order to obtain a finite-element formu-
lation of a problem which is given in terms of a differential equation, one can 
apply the method of weighted residuals. Thereby, the so-called weak form is de-
duced from a partial integration of the weighted residuum. As a consequence, 
one order of derivative is shifted from the field variable to the weight function. 
As soon as the orders of derivative of both variables coincide, a finite element 
ansatz in conjunction with Galerkin’s method results in symmetric element ma-
trices. Thus, the assembled system matrices as well become symmetric which is a 
key property of the finite element method. Therefore, it is restricted to problems 
which are governed by even-ordered differential equations. 

In order to overcome this restriction, one of the authors took a first-order dif-
ferential equation and applied fractional partial integration of order 1/2 to the 
weighted residuum. As a consequence, the field variable and the weight function 
were operated by derivative of order 1/2. However, due to the occurrence of left 
and right fractional derivatives the resulting system matrix was non-symmetric 
and thus he failed to succeed [1]. For this reason, in the following a different ap-
proach is applied which makes use of fractional powers of operators [2] [3] [4]. 
In particular, the procedure leads to a positive self-adjoint operator and hence to 
a symmetric system matrix. The overall goal is to establish a method that can be 
applied to any spatial first-order differential equation which results in conjunc-
tion with a finite element ansatz in symmetric system matrices. Since the main 
properties of the classical finite element method still hold with this approach the 
infrastructure of existing codes can be used for its implementation. A link be-
tween fractional powers of differential operators and fractional derivatives is 
given in [5]. 

In Section 2, a linear operator equation is derived from a general linear 
first-order partial differential equation and in Section 3, the polar decomposition 
of the resulting differential operator (applying a fractional power of order 1/2) is 
used to deduce a related finite element scheme with a symmetric (but dense) 
system matrix. The resulting method is applied to the barometric equation in Sec-
tion 4. In particular, we derive the related operator formulation, determine the li-
near algebraic equation by an eigenvalue analysis of an associated Sturm-Liouville 
operator and introduce a numerical scheme to approximate the occurring inte-
grals and solve the algebraic equation. Finally, in Section 5 we draw conclusions 
and give a perspective on future work. 
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2. Transformation of a Linear First-Order Differential  
Equation into an Operator Equation 

In the following, we sketch the transformation of a linear first-order differential 
equation into an operator equation. In the case of the barometric equation, we 
give full detail later. Let 0a > , ( ): 0,I a= , n∈ , nΩ ⊂  , ( ),ka C∈ Ω  , 

0, ,k n=  , ( )1 ,u C I∈ ×Ω  . We consider a linear hyperbolic first-order par-
tial differential equation  

( ) ( ) ( ) ( ) ( )0
1

, , , 0
n

t k k
k

u t x a x u t x a x u t x
=

∂ + ∂ + =∑            (1) 

for t I∈ , x∈Ω , t t
∂

∂ =
∂

, k
kx
∂

∂ =
∂

 and initial data  

( ) ( )0 0 0, , , : ,u t x u x x u= ∈Ω Ω→                  (2) 

which are given on the hyperplane { }0t ×Ω , that is assumed to be non-charac- 
teristic. Further, let ( )1 ,U C I∈ ×Ω   be such that  

( ) ( )0 0, , .U t x u x x= ∈Ω  

By introducing the new “unknown” function ( )1 ,f C I∈ ×Ω   as  

,f u U= −  

we obtain homogeneous initial data  

( )0 , 0,f t x x= ∈Ω  

and a transformed differential equation  

0 0
1 1

.
n n

t k k t k k
k k

f a f a f U a U a U
= =

∂ + ∂ + = −∂ − ∂ −∑ ∑            (3) 

Hence, we arrive at an operator equation  

,Af g=                             (4) 

where  

0
1

:
n

t k k
k

A a a
=

= ∂ + ∂ +∑  

is a linear operator in ( )2X L I= ×Ω  and  

0
1

: .
n

t k k
k

g a a U
=

 = − ∂ + ∂ + 
 

∑  

The operator Equation (4) has a unique solution  
1 ,f A g−=                           (5) 

which may be approximated as described in the next section.  

3. Transformation of the Operator Equation into a Suitable  
form for the Application of Finite Elements  

In the following, we introduce the finite element method for an approximation 
of the solution (5) of (4). Therefore, we use that the polar decomposition of A 
[6], which is uniquely associated with A, i.e.  
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( )* 1 2
,A V A A=  

where ( ),V L X X∈  is a partial isometry with initial space ( )*Ran A  and end 
space ( )Ran A . Herein, ( )Ran ⋅  denotes the range of an operator. Since A is 
bijective, we have  

( ) ( )*Ran RanA A=  

and V is a unitary transformation, i.e.  
* id .XV V =  

We note that (4), since,  

( ) ( )1 2 1 2* * * * * ,A A f V V A A f V Af V g= = =  

is equivalent to the equation  

( )* *1 2
.A A f V g=                        (6) 

The operator in X, ( )1* 2
A A  is densely-defined, linear and positive self-adjoint 

and bijective. Therefore (6) has the unique solution  

( )1 2 1
* * .f A A V g

−
 =   

 

Now (6) can be solved by the usual finite element methods. For this purpose, 

let *n∈ , 1, , nϕ ϕ  be linearly independent elements of ( )( )1 2*D A A . Fur-

ther, we denote by ( ),nP L X X∈  the orthogonal projection onto { }( )1, , nϕ ϕ . 

Then  

( ) ( )

( ) ( ) ( )

1 2 1 2

1 2

* * *

* 2* 1
1 ,

k k k

k n k n

V g A A f A A f

A A P f A A P f

ϕ ϕ ϕ

ϕ ϕ

= =

= + −
 

for every { }1, ,k n∈  , where . .  denotes the scalar product in X. In the fol-
lowing, we are going to solve the corresponding “approximate” system  

( )* 1 2* ,k k nV g A A P fϕ ϕ=                   (7) 

where { }1, ,k n∈  . The vector nP f  is an element of { }( )1, , nϕ ϕ . Hence, 
there are uniquely determined 1, , nα α  such that  

1
.

n

n l l
l

P f α ϕ
=

= ∑  

As a consequence,  

( ) ( )

( )

* * *1 2 1 2

2

1

*

1

1
,

n

k k n l k l
l

n

k l l
l

V g A A P f A A

A A

ϕ ϕ α ϕ ϕ

ϕ ϕ α

=

=

= =

=

∑

∑
 

for every { }1, ,k n∈  . Hence, we arrive at the system of linear equations  
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*

1
,

n

kl l k
l

M V gα ϕ
=

=∑  

1, ,k n=  , where the real n n×  matrix  

( )1 2*

, 1, ,
: k l

k l n
M A Aϕ ϕ

=

 =  
 



 

is symmetric and positive definite. As a consequence,  

( )1 *

1
,

n

l klkk
M V gα ϕ−

=

= ∑  

for every { }1, ,l n∈  . 

4. Application to the Barometric Equation  
4.1. Operator Equation  

Let 0a > , ( ): 0,I a= , ( ),q C I∈  , ( )1 ,p C I∈   be such that  

( ) ( ) ( ) ,p x cp x q x′ + =                       (8) 

for every x I∈  and  

( ) 00
lim .
x

p x p
→

=                          (9) 

Further, let ( )1 ,P C I∈   be such that  

( ) 00
lim .
x

P x p
→

=  

We define a new “unknown” function ( )1 ,f C I∈   by  

( ) ( ) ( )( )e .cxf x p x P x= −  

Then  

( )
0

lim 0
x

f x
→

=  

and  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

e

e e

e e

e e

e ,

cx

cx cx

cx cx

cx cx

cx

f x p x P x cf x

p x P x c p x P x

p x cp x P x cP x

q x P x cP x

q x P x cP x

′ ′ ′= − +  
′ ′= − + −      
′ ′= + − +      

′= − +  
′= − −  

 

for every 0x > . Hence, we arrive at the transformation of the system of Equa-
tions, (8) and (9), into an operator equation of the form (4), where  

( ) ( ) ( ) ( )I: , : e ,cxA D g x q x P x cP x′= = − −    

and ID  denotes the derivative operator with domain  

( ) ( ) ( ){ }1
I 0

, | lim 0
x

D D h C I h x
→

= ∈ =               (10) 

in ( )2X L I=  , where (4) has the unique solution (5). In particular, if 0q = ,  
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( ) 0: 1 ,
1

cxP x p
ca

 = − + 
 

for every x I∈ , then  

( )( )

( )

0
0

0
0

2
0

1
1 1

1
1 1

1

p c cxP cP x p c
ca ca

p c ca cxp c
ca ca

p c
a x

ca

 ′ + = − + − + + 
+ −

= − +
+ +

= −
+

 

and hence  

( ) ( )
2

0 e ,
1

cxp c
g x a x

ca
= − −

+
 

for every x I∈ , implying that  

( ) ( ) ( ){ }* 1 , | lim 0 .
x a

g D A h C I h x
→

∈ ⊃ ∈ =  

4.2. Derivation of the Finite Element Formulation  

Since  

I ,A D=  

where ( ): 0,I a= , is bijective, we need to calculate the corresponding operators  

( )1* 2
A A  and ( ) 2* 11*V A A A−= . 

First, we note that  
**

I I I,ad I .A A D D D D= =  

Hence if 0f D∈ , where  

( ) ( ) ( ){ } ( )2 *
0 0

: , : lim 0, lim 0 ,
x x a

D f C I f x f x D A A
→ →

′= ∈ = = ⊂  

then  
*

I,ad .A Af D f f′ ′′= = −  

Hence, *A A  is a densely-defined, linear and self-adjoint extension of the 
densely-defined, linear, symmetric and essentially self-adjoint operator 0A , de-
fined by  

0 0: ,A D X→  

and  

0 : ,A f f ′′= −  

for every 0f D∈ . Since *A A  is, in particular, closed, it follows that  
*

0A A A⊃  

and hence that  
*

0 .A A A=  
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In the following, we are going to calculate ( )1* 2
A A  and *V , using an ap-

proach via the theory of Sturm-Liouville operators [6] [7] [8] [9]. For this pur-
pose, we need the eigenvalues and eigenfunctions of *A A . If 0λ > , the solu-
tions ( )2 ,u C I∈   of  

( ) ( ) 0,u x u xλ′′− − =  

for every x I∈  are given by  

( ) ( ) ( )sin cos ,u x x xα λ β λ= +  

for every x I∈ , where ,α β ∈ . The boundary condition  

( )
0

lim 0,
x

u x
→

=  

gives  

( ) ( )sin ,u x xα λ=  

for every x I∈ , where α ∈ , and the boundary condition  

( )lim 0
x a

u x
→

′ =  

gives a non-trivial u iff  

( )cos 0,aλ =  

i.e. iff 
22

2

1: ,
2k k

a
λ λ  = = + 

 

π  

for some k ∈ . For such k ∈ , it follows that  

( ) ( )
( )

( )

2
0 0

0

0

1sin d 1 cos 2 d
2

1 cos 2 d
2 2

sin 21
2 2 22

a a

a

a

x x x x

a x x

xa a

λ λ

λ

λ

λ

 = − 

= −

 
 = − =
 
 

∫ ∫

∫  

and hence that, if ( ),ke C I∞∈   is defined by  

( ) 2 1: sin ,
2k

xe x k
a a

  = +  
 

π


 

for every x I∈ , where k ∈ , then  

0 1 2, , ,e e e   

is a Hilbert basis of X. For  

( ) ( ) ( ){ }2

0
, : lim 0 lim 0 ,

x x a
f g C I g x g a

→ →
′∈ ∈ = ∧ =  

it follows that  

* * *

0 0 0
k k k k k k k

k k k
A Af A A e f e e f A Ae e f eλ

∞ ∞ ∞

= = =

= = =∑ ∑ ∑  
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and hence that  

* 1, ,k k k k k k
k

e f e A Af e f e f e fλ
λ

′′ ′′− = = = −  

for every k ∈ . Hence, it follows that  

( ) ( ) ( )* * *1 2 1 2

0 0

0

0

2

0

1

1

1

k k k k
k k

k k k k k k
k k k

k k
k k

A A f A A e f e e f A A e

e f e e f e

e f e

λ λ
λ

λ

∞ ∞

= =

∞ ∞

= =

∞

=

= =

′′= = −

′′= −

∑ ∑

∑ ∑

∑

 

and for almost all x I∈ ,  

( ) ( ) ( )

( )

( ) ( ) ( )( )

*

0

0

1 2

0
0

1

1

1 d ,

k k
k k

k k
k k

a
k k

k k

A A f x e f e x

e x e f

e x e y f y y

λ

λ

λ

∞

=

∞

=

∞

=

′′= −

′′= −

 
′′= − 



 
 

 

∑

∑

∑∫

 

where we used that  

( )
0

1n

k k
k k n

e x e
λ=

∈

 
  
 
∑



 

is convergent in X, as a consequence of the estimations  

( ) ( )
( )

2
2

2

2 2 2 2

1 1 2 1 8 1 ,
2 11

2

k k
kk

a ae x e x
a kk

λλ
= ≤ ⋅ =

+ + 


π



π
 

*k ∈ , and as consequence of the existence of  

( )2
0

1 .
2 1k k

∞

= +
∑  

We compute for ,x y I∈  satisfying x y≠   

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

0

0

0

0

1

2 1 1 1sin sin
1 2 2
2

1 1 1 1cos cos
1 2 2
2

2 1 cos 2 1 cos 2 1
2 1 2 2

k k
k k

k

k

k

e x e y

x yk k
a ak

x y x y
k k

a ak

x y x y
k k

k a a

λ

∞

=

∞

=

∞

=

∞

=

      = + +      
      +

 − +      = + − +       
        +

 − +   
= + − +

π π
π

π π
π

    
π π

π +      

∑

∑

∑

∑
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( ) ( ) ( )

( )

( )

0

2 1 cos 2 1 cos 2 1
2 1 2 2

1 ln cot ln cot
4 4

cot
41 ln ,

cot
4

k

x y x y
k k

k a a

x y x y
a a

x y
a

x y
a

∞

=

  −  + 
= + − +    

+     
     −  +  = −       

  

π π
π

π π
π       

  − 
  

  =  + 
  
   

π

π π

∑

 

where we used the product-to-sum identity  

( ) ( ) ( ) ( )2sin sin cos cos , ,α β α β α β α β= − − + ∈         (11) 

and the series representation  

( )( )
0

1 1ln cot cos 2 1
2 2 2 1k

x k x
k

∞

=

   = +   +  
∑              (12) 

found in ([10], p. 1073, Formula (19)). As a consequence,  

( ) ( ) ( ) ( )*
10

1 2

2

, d ,
a

A A f x G x y f y y  ′′= −   ∫  

for every x I∈ , where  

( )
( )

( )

1
2

cot tan
4 41 1, : ln ln ,

cot tan
4 4

x y x y
a a

G x y
x y x y

a a

    −  + 
      

      = =   +   − 
      
      

π

  

π

π π



π π
 

for almost all ( ) 2,x y I∈ . The function ( )1
2

,G x y  is depicted in Figure 1. 

Further, from the latter, we conclude that  
 

 
Figure 1. Graph of 1

2

G  for 1a = . 
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( )( ) ( ) ( )*
10
2

, d ,
a

V g x G x y g y y′= −∫  

for every ( )*g D A∈  and x I∈ . 

Now, let { }\ 0,1n∈ , : al
n

= . We choose piecewise linear, continuous shape 

functions 1, , nϕ ϕ  of the form  

( )

( ) ( )

( ) ( )

1
for 1 ,

1
for , 1

j

x j l
x j l jl

lx
j l x

x jl j l
l

ϕ

− −
∈ −   = 

+ − ∈ +  

 

and zero otherwise, for every { }1, , 1j n∈ − ,  

( ) ( ) ( )
1

for 1 , ,n

x n l
x x n l nl

l
ϕ

− −
= ∈ −    

and zero otherwise. These “hat functions” 1, , nϕ ϕ  fulfill  

( ) .j jkklϕ δ=                          (13) 

In the following, we want to compute ( ) 2* 1

jA A ϕ , 1, ,j n=  . Therefore, we 

prove that ( )( )* 1 2

j D A Aϕ ∈ , such that we can represent ( ) 2* 1

jA A ϕ  in the 

Hilbert basis { } 0,1,k k
e

= 

. We compute for k ∈ , { }1, , 1j n∈ −   

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )( ) ( )

( )

( )
( )( ) ( ) ( )

0

1

1

1

1

2 sin d

12 sin d

12 sin d

sin cos1 2 1

sin cos1 2 1

a
k j k j

jl
kj l

j l
kjl

jl

k k

k k
j l

j l

k k

k k
jl

e x x x
a

x j l
x x

a l
j l x

x x
a l

x x
x j l

l a

x x
j l x

l a

ϕ λ ϕ

λ

λ

λ λ

λ λ

λ λ

λ λ

−

+

−

+

=

− −
=

+ −
+

 
 = − − −
 
 

 
 + − − + −
 
 

∫

∫

∫  

( ) ( )( ) ( )

( )( ) ( ) ( )

( ) ( )( )( )
( )( ) ( )( )

sin sin 1 cos1 2

sin 1 sin cos1 2

1 2 1 sin sin 1

1 2 1 sin 1 sin

k k k

k k k

k k k

k k k

k k
k

k k
k

jl j l jl
l

l a

j l jl jl
l

l a

jl j l
l a

j l jl
l a

λ λ λ

λ λ λ

λ λ λ

λ λ λ

λ λ
λ

λ λ
λ

 −
 = − −
 
 
 +
 − − −
 
 

= − −

− + −
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and, analogously as 1 1
2 2k nl k a k

a
λ    = + = +   

  
π



π   

( ) ( )( ) ( )

( ) ( )( )( )

sin sin 1 cos1 2

1 2 1 sin sin 1 .

k k k
k n

k k k

k k
k

nl n l nl
e l

l a

nl n l
l a

λ λ λ
ϕ

λ λ λ

λ λ
λ

 −
 = − −
 
 

= − −

 

As a consequence,  

( )2
, 1, ,k k j

k
e j nλ ϕ

∈
= 


 

is summable, and therefore  

( ) , 1, ,k k j k k
e e j nλ ϕ

∈
= 


 

is summable. The latter implies that  

( )( )1 2* , 1, ,j D A A j nϕ ∈ =   

and that  

( )*

0

1 2
, 1, , .j k k j k

k
A A e e j nϕ λ ϕ

∞

=

= =∑   

Further, for y I∈   

( )

( ) ( )( )( ) ( )

( )( ) ( )( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

1 2 1 sin sin 1 sin

1 2 1 sin 1 sin sin

14 1 sin 2 1 sin 2 1
2 1 2 2

sin 2 1
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2 1 2 2

k k j k

k k k
k

k k k
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e e y

jl j l y
l a

j l jl y
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j ljlk k
l k a a

yk
a

j l jlk k
l k a a

λ ϕ

λ λ λ
λ

λ λ λ
λ

= − −

− + −

 −  = + − +    +     
 × + 
 

 +   − + − +    

ππ
π

π

π π
+    π

( )sin 2 1 ,
2

yk
a



 × + 
 

π

 

for every k ∈  and { }1, ,j n∈  . From (11), (12), we know that for ,x y I∈  
satisfying x y≠   

( ) ( )
( )0

cot
41 1sin 2 1 sin 2 1 ln .

2 1 2 2 4
cot

4
k

x y
ax yk k

k a a x y
a

∞

=

  − 
  

      + + =     + +

π

π
       

 

π

 

π



∑  

Hence,  
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( ) ( ) ( )

[ ]

( )

( )

( )

( )

2*

0

1

1
cotcot 441 ln ln

1cot cot4 4

1
cot

41 ln
1

cot

j k k j k
k

A A y e e y

j l yjl y
aa

l jl y j l y
a a

j l y
a

l j l y

ϕ λ ϕ
∞

=

  =  

   − −  −               = −      + − +                   

 + −
  
 −

ππ

π

+ +

π π

π π 

π

 

∑

[ ]

[ ] ( )

( )

cot
4

ln
cot

44

1
tan tan

4 41 ln
1

tan tan
4 4

t

ln

jl y
a

jl y
aa

j l yjl y
a a

l j l yjl y
a a

π

π

ππ

     −           −       +                  
   − − +
           =   

 − +  −            

π



−

π π



( )

( ) [ ]

1
an tan

4 4
,

1
tan tan

4 4

j l y jl y
a a

j l y jl y
a a

  + +   −             
 

 + −  +             

π π

π π

 

for almost all y I∈ , { }1, ,j n∈  . Analogously, we obtain  

( ) ( )

[ ] ( )

( )
1* 2

1
tan tan

4 41 ln ,
1

tan tan
4 4

n

n l ynl y
a a

A A y
l n l ynl y

a a

ϕ

  − − +
           =      − +  −           

ππ

π ππ
 

for almost all y I∈ . A graphical representation of the shape functions jϕ  and 
the expressions ( ) 2* 1

jA A ϕ  for 1, ,5j =   is given in Figures 2-6. 
We note that for every { }1, ,j n∈  , the corresponding jϕ  vanishes outside 

the interval  

( ) ( )( )1 , 1 .j l j l− +  

Also 1, , nϕ ϕ  are linearly independent, since if 1, , nα α ∈   are such that  

1
0,

n

k k
k
α ϕ

=

=∑  

then  

( )
1

0 ,
n

k k j
k

jlα ϕ α
=

= =∑  

for every { }1, ,j n∈  . Hence, following the approach in Section 0, we arrive at 
the system of linear equations  

( ) ( )*
0

1
d ,

n a
km m k

m
M x V g x xα ϕ

=

=∑ ∫                  (14) 
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Figure 2. Graphs of 1ϕ  and ( ) 2*
1

1
A A ϕ  for 1a = , 5n = , 1 5l = . 

 

 

Figure 3. Graphs of 2ϕ  and ( ) 2*
2

1
A A ϕ  for 1a = , 5n = , 1 5l = . 

 

 

Figure 4. Graphs of 3ϕ  and ( ) 2*
3

1
A A ϕ  for 1a = , 5n = , 1 5l = . 

 

 

Figure 5. Graphs of 4ϕ  and ( ) 2*
4

1
A A ϕ  for 1a = , 5n = , 1 5l = . 
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Figure 6. Graphs of 5ϕ  and ( ) 2*
5

1
A A ϕ  for 1a = , 5n = , 1 5l = . 

 
1, ,k n=  , where  

( ) ( ) ( ) ( ) ( )*
10 0 0
2

d , d d ,
a a a

k kx V g x x x G x y g y y xϕ ϕ ′= −∫ ∫ ∫        (15) 

with  

( )

( )

1
2

tan
41, ln ,

tan
4

x y
a

G x y
x y

a

 + 
  

  =   − 
  
 

π



π



π
 

for almost all ( ) 2,x y I∈ ,  

( ) ( )
2

0 e ,
1

cxp c
g x a x

ca
= − −

+
 

for every x I∈  and  

( )( ) ( )( )*
0 , 1, ,

1 2
: d

a
k m

k m n
M x A A x xϕ ϕ

=
= ∫



             (16) 

is a symmetric and positive definite n n× -matrix. As a consequence,  

( ) ( ) ( )1 *
0

1
d ,

n a
j kjkk

M x V g x xα ϕ−

=

= ∑ ∫                (17) 

for every { }1, ,j n∈  . 

4.3. Numerical Implementation  

To solve the system of linear Equations (14), we have to approximate the inte-
grals (15) and (16). Thereby, the weak singularities of the functions ( ) 2* 1

jA A ϕ   
and 1

2

G  have to be taken into account. Accordingly, we split the integrals at the 

critical points and introduce a Gauss-Jacobi quadrature. In general, a Gauss-Jacobi  
quadrature is an approximation of an integral over the interval [ ]1,1−  of a con-
tinuous function F weighted by an algebraic function with (possibly) weak sin-
gularities at the boundaries of the integration interval. It has the form  

( )( ) ( ) ( )( ) ( )1 , ,

1
0

1 1 d
N

n n
n

F s s s s F s wβ γ β γ β γ

−
=

− + ≈ ∑∫            (18) 

with , 1β γ > − , nodes ( ),
ns β γ  and weights ( ),

nw β γ  such that polynomials of de-
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gree 2 1N −  are integrated exactly. The details on determining the nodes and 
weights may be found e.g. in ([11] Ch. 2.7). In the following, we derive the qua-
drature formulas for (15) and (16). As ( )1

2

,G x y  has a weak singularity at 
x y= , we filter the integrand in (15) by a term x y α−− , where ( )1,0α ∈ −  
and obtain the representation  

( ) ( ) ( ) ( )10 0 0 0
2

, d d , d d ,
a a a a

k kx G x y g y y x G x y x y y xαϕ ′− = −∫ ∫ ∫ ∫   

where  

( ) ( ) ( ) ( )1
2

, : , .k kG x y x G x y g y x y αϕ −′= − −            (19) 

In Figure 7, the smoothing effect of x y α−−  in kG  is shown for two ex-
amples. 

Hence, a linear transformation of the integrals leads to  

( )

( )( ) ( )( )( )
( ) ( )
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( )( ) ( ) ( )( ) ( )1 1 1 11 1
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+

= + − + − +∫ ∫ ∫ ∫ 

 

 

 

Figure 7. Graphs of ( ),kG x y x y α−  and ( ),kG x y  for 1a = , 5n = , 1 5l = , 

1k = , y l=  (left) and 3k = , y a=  (right). 
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where  

( ) ( ) ( )( )
2

,1 , 2 1 , 1 1 ,
4 2 4k k
a a aG s t G t t s

α+
   = + + +   
   

   

( ) ( ) ( ) ( )
2

,2 , 2 1 , 1 3 .
4 2 4 4k k
a a a aG s t G t t s t

α+
   = + − + +   
   

   

Finally, we obtain the quadrature formula  

( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

0 0

,0 0,1 ,0 0,1
,1

0 0

0, 1 ,0 0, 1 ,0
,2

0 0

, d d

,

, .

a a
k

N N

k i j i j
i j

N N

k i j i j
i j

G x y x y y x

G s t w w

G s t w w

α

α α α α

α α α α

+ +

= =

+ +

= =

−

≈

+

∫ ∫

∑∑

∑∑







             (20) 

In a similar fashion, the integral in (16) can be approximated, where the integrand 
has a singularity at x kl= . As kϕ  vanishes outside the interval ( ) ( ){ }1 , 1k l k l− + , 
we obtain  

( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

1 2

1 2 1 2

*
0

1* *
1

1

1

d

d d

d d ,

a
km k m

kl k l
k m k mk l kl

kl k l
km kmk l kl

M x A A x x

x A A x x x A A x x

x kl x x x x kl xα α

ϕ ϕ

ϕ ϕ ϕ ϕ
+

−

+

−

=

= +

= Φ − + Φ −

∫

∫ ∫

∫ ∫

 

for { }1, , 1k n∈ − , where  

( ) ( )( ) ( )
1 2* .km k mx x A A x x kl αϕ ϕ −Φ = −                (21) 

In Figure 8, the effect of x kl α−  in kmΦ  is shown for two examples.  
Again, using a linear transformation results in the quadrature formula  

( ) ( )

( )

( ) ( )

( ) ( )

1
1 1

21

1
1

1

1
,0 ,0

0

1
0, 0,

0

1 d
2 2

1 1 d
2 2 2

1
2 2 2

1
2 2 2

km km
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N

km i i
i

N

km i i
i

l lM s k l s s

l l s k l s s

l l s k l w

l l s k l w

α
α

α
α

α
α α

α
α α

+

−

+

−

+

=

+

=

   = Φ + − −   
   

    + Φ + + +    
    

    ≈ Φ + −    
    

    + Φ + +    
    

∫

∫

∑

∑

           (22) 

for { }1, , 1k n∈ − . Analogously, we obtain  

( ) ( )
1

,0 ,0

0

1 .
2 2 2

N

nm nm i i
i

l lM s n l w
α

α α
+

=

    ≈ Φ + −    
    

∑             (23) 

Using the above quadrature formulas, the solution of (14) is approximated for 
parameters  

4 1
010000 m, 1.013 bar, 1.865 10 ma p c −= = = ×  

20, 50, 0.5.n N α= = = −  
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In Figure 9 and Figure 10, the results in comparison to those from classical 
integration methods to solve (8) are shown, in particular, a forward difference, 
backward difference and a classical finite element method as derived in [1].  

Furthermore, the convergence behavior of the schemes mentioned above is 
studied in Figure 11. Thereby, for the method introduced in this article, a steep 
decrease of the mean relative error similar as for the classical finite element me-
thod may be observed. However, the mean relative error appears to be related to 
the number N of nodes in the Gaussian quadrature. Hence, in convergence, 

5N n=  Gauss points are chosen for the fractional finite element method.  

5. Conclusion  

The present paper investigates a finite element method to solve first-order diffe-
rential equations. Thereby, a fractional power of a differential operator is used to 
obtain a symmetric system matrix in order to solve the problem with common 
finite element software. The method is applied to a simple first-order ordinary  
 

 

Figure 8. Graphs of ( )km x x kl αΦ −  and ( )km xΦ  for 1a = , 5n = , 1 5l = , 

1k m= =  (left) and 3k = , 5m =  (right). 
 

 

Figure 9. Numerical solutions of (8) using several integration schemes. 
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Figure 10. Relative error of numerical solutions of (8) using several 
integration schemes. 

 

 

Figure 11. Mean relative error of numerical solutions of (8) using several 
integration schemes depending on the step size/number of elements. 

 
differential equation and the related numerical scheme shows good results com-
pared to classical integration schemes. A generalization to more complex prob-
lems is described in Section 2. However, not for all densely-defined, linear and 
closed operators A, it is possible to explicitly calculate the polar decomposition. 
For this reason, in future, it will be tried to derive an abstract decomposition for 
such operators, of the form ( )1 2 * 1 2A V A A= ; in this connection we note that 

( )1 2 1* 2A A , is densely-defined, linear and self-adjoint, which avoids the intro-
duction of the intermediate (higher order) operator *A A . This should lead to a 
simplification of the process in future and pave the way to apply the method to 
more general, higher dimensional problems. 
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