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a b s t r a c t

This paper addresses the synchronization problem of mechanical systems subjected to a single geometric
unilateral constraint. The impacts of the individual systems, inducedby theunilateral constraint, generally
do not coincide even if the solutions are arbitrarily ‘close’ to each other. The mismatch in the impact time
instants demands a careful choice of the distance function to allow for an intuitively correct comparison
of the discontinuous solutions resulting from the impacts. We propose a distance function induced by the
quotient metric, which is based on an equivalence relation using the impact map. The distance function
obtained in this way is continuous in time when evaluated along jumping solutions.

The property ofmaximalmonotonicity, which is fulfilled bymost commonly used impact laws, is used
to significantly reduce the complexity of the distance function. Based on the simplified distance function,
a Lyapunov function is constructed to investigate the synchronization problem for two identical one-
dimensionalmechanical systems. Sufficient conditions for the uncoupled individual systems are provided
under which local synchronization is guaranteed. Furthermore, we present an interaction law which
ensures global synchronization, also in the presence of grazing trajectories and accumulation points (Zeno
behavior). The results are illustrated using numerical examples of a 1-DOF mechanical impact oscillator
which serves as stepping stone in the direction of more general systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Synchronization of coupled dynamical systems leads to motion
in unison which is a fundamental phenomenon appearing in, for
example, biological and engineering systems. The synchronization
of chaotic oscillators, neural systems and mechanical systems has
been studied extensively, see [1–5] and references therein. For
both diffusively coupled differential equations and impulsively
coupled maps, synchronization properties are generally studied
through the analysis of the error dynamics which describes the
difference between the states of the systems [1,3,6]. The error dy-
namics is typically characterized by a smooth differential equation
ormap and, consequently, linearization techniques and bifurcation
theory have allowed to describe the convergence properties of
the error dynamics and to study the effect of the interaction net-
work. In this manner, the effect of the network topology, coupling
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strengths and delays of the network interaction on (master–slave,
partial or global) synchronization is relatively well-understood
for smooth systems [4,7,8] as well as for phase-coupled oscil-
lators, which are naturally analyzed using Poincaré sections [9].
In contrast, synchronization of nonsmooth systems has received
significantly less attention and, to the best of the authors’ knowl-
edge, the problem of synchronization for unilaterally constrained
mechanical systems has not yet been addressed.

In this paper, synchronization is analyzed for mechanical sys-
tems with a single geometric unilateral constraint, which occur
generally if mechanical systems (such as, e.g., robots) interact with
a rigid environment. The dynamics of these systems comprises
impacts which induce velocity jumps, rendering the system dy-
namics of an impulsive, hybrid nature [10–13]. Accumulation of
infinitely many impacts in a finite time interval, which is known
as Zeno-behavior, is a natural feature of unilaterally constrained
mechanical systems. To describe the dynamics which includes
such accumulation events, system models in terms of Measure
Differential Inclusions (MDIs) are employed in [10,14–16].
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Fig. 1. ‘Peaking behavior’ of the Euclidean synchronization error.

Because impacts of unilaterally constrained mechanical sys-
tems are a consequence of collisions and therefore are state-
triggered events (i.e., occur at a certain position), they generally
do not occur at the same time instants for nearby trajectories.
Therefore, one expects a small time-mismatch of the impact time
instants even for arbitrarily close initial conditions. A small Eu-
clidean synchronization error prior to the first impact therefore
does not imply that the Euclidean error is small during the time in
between the impacts of twoneighboring trajectories. As an illustra-
tive example, Fig. 1 shows the time evolution ofV (t) = ∥q1−q2∥2

+

∥q̇1 − q̇2∥2 evaluated along the solutions of two synchronizing
1-DOF impacting systems with the generalized coordinates q1(t)
and q2(t) and discontinuous generalized velocities q̇1(t) and q̇2(t),
respectively. This ‘peaking phenomenon’ of the Euclidean synchro-
nization error has also been observed in [10,17–21] and implies
that the Euclidean synchronization error dynamics is generally
unstable in the sense of Lyapunov. Consequently, the existing
synchronization results are not applicable to mechanical systems
with unilateral position constraints. An exception is the case of
synchronization between a mechanical system and an observer, in
which the impacts of the observer state can be made to coincide
with the impacts of the mechanical system, as exploited in [22].

Recently, focusing on the stability of jumping trajectories, the
‘peaking phenomenon’ has been addressed for hybrid systems
in the framework of [11] by considering stability in terms of a
novel distance function which takes the jump characteristics into
account [17,23]. This approach has been extended in [24] towards
incremental stability. These approaches, however, are not appli-
cable if the time between state jumps can be arbitrarily small, as
occurs generally in unilaterally constrained mechanical systems
(especially in Zeno events) since the hybrid system framework em-
ployed is not suitable to investigate solutions after the occurrence
of Zeno behavior.

In this paper, we establish the generic synchronization problem
for mechanical systems subjected to a geometric unilateral con-
straint. Furthermore, the synchronization problem of mechanical
systems with one degree of freedom, possibly featuring accumu-
lation of impacts, is investigated in more detail. Synchronization
between the systems is induced either by an intrinsic incremental
stability property or by an interaction law.

We distinguish three main contributions of this paper. First,
we propose a distance function, inspired by [25], applicable to
mechanical systems with multiple degrees of freedom and a sin-
gle geometric unilateral constraint. This distance function defines
when solutions are considered close to synchronization or when
they are synchronized. The synchronization problem formulation,
which we establish based on the presented distance function, is
applicable to generic mechanical systems with a unilateral con-
straint. Synchronization defined in this manner corresponds to
the intuitive notion of synchrony. The synchronization problem
does not suffer from the ‘peaking phenomenon’ and can deal with
accumulation of impacts. Second, Lyapunov arguments are used to
investigate this synchronization problem for the one-dimensional
case and provide conditions on the individual systems and their
interaction law which guarantee that synchronization occurs. The
non-expansive nature of most commonly used instantaneous im-
pact laws, including the generalized Poisson’s andNewton’s impact

law with global coefficient of restitution, is exploited in the Lya-
punov function design to guarantee non-increasing behavior of the
Lyapunov function over the impacts. Third, we design a interaction
law to enforce synchronization using finite forces generated by
the interaction network. Finally, the results are illustrated with
numerical examples.

A forerunner of this work has been published as extended ab-
stract in [26]. In the current paper, the proofs of themain and auxil-
iary statements are given, which are both original and constructive
and form an essential part of the scientific work. The current paper
extends [26] additionally by the analysis of uncoupled individual
systems for which sufficient conditions for local synchronization
are provided. Furthermore, many of the ideas presented in [26]
are deepened in the current work. In particular, the choice of the
distance function and the Lyapunov function design, which are
at the core of defining and solving the synchronization problem,
are discussed in more detail. Additional numerical simulations are
presented which illustrate the performance and robustness of the
interaction law.

The outline of this paper is as follows. In Section 2, the model
of the mechanical system under study is presented in terms of
a measure differential inclusion, and the non-expansivity of the
impact law is discussed. Subsequently, in Section 3, a distance
function is presented which is suitable to compare discontinuous
solutions and which we use to define the synchronization prob-
lem for multi-dimensional mechanical systems subjected to single
unilateral constraint. Section 4 presents sufficient conditions for
coupled and uncoupled synchronization using Lyapunov stability
analysis and some illustrative numerical examples are presented
in Section 5. Conclusions are formulated in Section 6.

2. Dynamics of mechanical systems with a single unilateral
constraint

We consider an n-DOF (degrees of freedom)mechanical system
subjected to a single frictionless geometric unilateral constraint.
The state of the system is described by the generalized coordi-
nates q(t) ∈ Rn and velocities u(t) ∈ Rn. The non-impulsive
dynamics is described by the kinematic equation and the equation
of motion given by

q̇ = u,

Mu̇ − h(q, u, τ, t) = wλ,
(1)

where h(q, u, τ, t) is a function of the state (q; u), the coupling
forces τ and the time t explicitly. Throughout the document, we
will use the notation (x; y) =

(
xT yT

)T, where x, y ∈ Rn. The
mass matrix M = MT

≻ 0 is symmetric and assumed to be con-
stant and positive definite. The motion of the system is restricted
by a single scleronomic geometric unilateral constraint g(q) ≥ 0,
where g : Rn

→ R is an affine function of q. The constraint
velocity γ (q, u) =

dg(q(t))
dt = wTu is the time derivative of the

constraint distance g , where w =
(

∂g
∂q

)T is the generalized force
direction.

The force law for the constraint force λ is described by the
inequality complementarity condition [27] (also referred to as
Signorini’s law):

− λ ∈ NR+

0
(g) :=

{
0 if g > 0,
(−∞, 0] if g = 0,

where the normal cone NR+

0
is a set-valued operator. The ad-

missible set of states is A := {(q; u) ∈ R2n
| g(q) ≥ 0}. The

boundary of A is partitioned as ∂A = ∂A+
∪ ∂A− with ∂A+

:=

{(q; u) ∈ R2n
| g(q) = 0, γ (q, u) ≥ 0} and ∂A−

= {(q; u) ∈

R2n
| g(q) = 0, γ (q, u) < 0}. An impact is imminent if the state

is in ∂A− because an impact is required for the state to remain in
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the admissible set A. The impulsive dynamics is described by the
impact equation

M(u+
− u−) = wΛ, (2)

where u−(t) = limτ↑0 u(t + τ ) and u+(t) = limτ↓0 u(t + τ ) are
the pre- and post-impact velocities, respectively. The impact law
for the constraint impulse Λ is written in the form

− Λ ∈ Hg (γ̄ ), (3)

where γ̄ =
1
2 (γ

+
+ γ −) is the local kinematic quantity dual to Λ

and γ −(t) = limτ↑0 γ (q(t+τ ), u(t+τ )) and γ +(t) = limτ↓0γ (q(t+
τ ), u(t + τ )) denote pre- and post-impact constraint velocities,
respectively. The representation (2)–(3) allows to describe well-
known impact laws including generalized Newton’s and Poisson’s
impact law [28,29].

In unilaterally constrainedmechanical systems, infinitelymany
impacts can naturally occur in a finite time interval, known as Zeno
behavior or the accumulation of impact time instants. Hence, a
complete description of the dynamics cannot be given in the hybrid
dynamical systems framework [11]. This motivates the measure
differential inclusion formulation (1)–(3), which can be written in
the compact form (see [10,14–16])

dq = udt,

Mdu − h(q, u, τ, t)dt = wdP,

dP ∈

{
λdt + Λdη | − λ ∈ NR+

0
(g), −Λ ∈ Hg (γ̄ )

}
.

The generalized coordinates q : R → Rn are absolutely continuous
in time and their measure dq has the density u with respect to
the Lebesgue measure dt . The generalized velocities u : R → Rn

are discontinuous due to the impulsive dynamics, but they are
assumed to be functions of special locally bounded variation [30].
The pre- and post-impact velocities u−(t) and u+(t), respectively,
are therefore defined for every point in time. The measure du
has a density u̇ with respect to the Lebesgue measure dt and a
density (u+

−u−) with respect to the atomicmeasure dη, i.e., du =

u̇dt + (u+
− u−)dη. The atomic measure dη =

∑
idδti is the sum

of Dirac point measures dδti at the discontinuity points ti [27].
To formulate the synchronization problem in the next section,

we will employ an explicit impact map from pre- to post-impact
states. Namely, the impact equation (2) together with the impact
law (3) results in an explicit impact map Z̄ : (q; u−) ↦→ (q; u+) =

Z̄(q; u−), where we note that the generalized coordinates q are not
altered by the impact map.

We adopt the following assumption on the impact map Z̄ .

Assumption 1. Consider the impact map Z̄ : R2n
→ R2n.

• If the domain of Z̄ is restricted to ∂A, then the map Z̄ is
non-expansive in the metric A = diag(K ,M), where M ∈

Rn×n is the mass matrix and K ∈ Rn×n is an arbitrary
symmetric positive definite matrix. This property can be
written as ∥Z̄(q1; u−

1 )− Z̄(q2; u−

2 )∥A ≤ ∥(q1; u−

1 )−(q2; u−

2 )∥A
∀ (q1; u−

1 ), (q2; u−

2 ) ∈ ∂A, where ∥ · ∥A : x ↦→
√
xTAx is the

norm induced by the inner product with the metric A.
• Admissible velocities are unchanged, that is, (q; u−) ∈ A \

∂A−
⇒ Z̄(q; u−) = (q; u−).

• Post-impact velocities are admissible, that is, (q; u−) ∈

∂A−
⇒ Z̄(q; u−) ∈ ∂A+.

The condition of non-expansivity of Z̄ is equivalent to Lipschitz
continuity of Z̄ (in the metric A) with Lipschitz constant equal to
one [31].

Assumption 1 is a natural assumption, which is fulfilled for
the commonly used generalized Newton’s impact law for a single

constraint. The impact law of the generalized Newton’s impact law
for a closed constraint is given by [32]

− Λ ∈ Hg (γ̄ ) =

⎧⎨⎩
2(1 + e)
e − 1

proxR+

0
(−

1
G

γ̄ ) if 0 ≤ e < 1,

NR+

0
(γ̄ ) if e = 1,

(4)

and the impulsive force is zero if the contact is open. The operator
proxC(v) := argminv∗∈C∥v − v∗

∥ denotes the proximal point to
the set C. Here, the Delassus-operator G := wTM−1w is scalar and
not a function of q. The parameter e ∈ [0, 1] is the coefficient
of restitution and captures the energy dissipation of the impact.
According to [32], the explicit expression for the impact map Z̄ for
the generalized Newton’s impact law (4) is

Z̄
(

q
u−

)
=

(
q

Zq(u−)

)
with Zq(u−) = (1 + e)proxMTC (q)(u

−) − eu−,

where TC (q) =

{{
u|wTu ≥ 0

}
if g(q) = 0,

Rn if g(q) > 0.

(5)

It is shown in [32] that the impact map Zq in (5) from pre- to
post-impact velocities is non-expansive in the metricM for closed
constraints. Hence, Assumption 1 is indeed fulfilled for Newton’s
impact law.

In the following section, we consider the synchronization prob-
lem for mechanical systems of the form (1)–(3). The ‘peaking
phenomenon’, which appears when the Euclidean synchronization
error is considered, is induced by the nature of the underlying
system. In order to obtain a distance function which is continuous
when evaluated along solutions, the impact map Z̄ is explicitly
used in the construction. The property of non-expansivity of Z̄
leads to a great simplification in the construction of the distance
function.

3. Synchronization problem

For smooth systems, where solutions are continuous functions
in time, we consider two solutions as synchronized if they are
equal. In the case of nonsmooth systems, we need to take the
discontinuous behavior of the solutions into account. We do so by
introducing the following definition.

Definition 1. Two solutions x(t) and y(t) are called synchronized
at time t if x+(t) = y+(t).

Using the right-limit in Definition 1 is a small but considerable
change compared to the smooth case. At impact time instants, two
solutions are considered synchronized if they are mapped to the
same post-impact state and, for continuous motion, it agrees with
the notion of synchronization for smooth systems. We note that
the right-hand limits in Definition 1 can be replaced by left-hand
limits without altering the defined property of the solutions if the
impact map Z̄ is invertible (e.g., Newton’s impact law with e > 0).

In Section 3.1, we define the synchronization set as a subset
of the admissible state space such that it corresponds to syn-
chronization in the sense of Definition 1. Furthermore, solutions
are considered close to synchronization if they are close to the
synchronization set. This notion of distance is introduced in Section
3.2 and it is used to formulate the synchronization problem for
systems of the form (1)–(3) in Section 3.3.

3.1. Synchronization set

Following Definition 1, we say that two states x = (qx; ux) and
y = (qy; uy) are synchronized if they are identical or if they are
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mapped to the same point in the state space by the impact map Z̄ ,
which yields the equivalence relation

x ∼ y ⇔ Z̄(x) = Z̄(y). (6)

Similarly to the synchronization manifold defined for smooth
systems (see, e.g., [3]), we define the synchronization set S :=

{(x; y) ∈ A2
| x ∼ y}. The synchronization set S can be partitioned

as

S = S00 ∪ S01 ∪ S10 ∪ S11 (7)

with the four subsets defined by

S00 =

{(
x
y

)
∈ S

⏐⏐ x, y ∈ intA ∨ x, y ∈ ∂A+

}
, (8)

S01 =

{(
x
y

)
∈ S

⏐⏐ x ∈ ∂A+
∧ y ∈ ∂A−

}
, (9)

S10 =

{(
x
y

)
∈ S

⏐⏐ x ∈ ∂A−
∧ y ∈ ∂A+

}
, (10)

S11 =

{(
x
y

)
∈ S

⏐⏐ x, y ∈ ∂A−

}
. (11)

If two states are equivalent, then either both states are in the
interior intA or both are on the boundary ∂A of A. The partition-
ing (7)–(11) distinguishes whether the states x or y are immedi-
ately prior to an impact or not. More precisely, x has an imminent
impact if (x; y) ∈ S10 ∪ S11 and y has an imminent impact
if (x; y) ∈ S01 ∪ S11. Let us illustrate the synchronization set S
and its partitioning (7)–(11) by an example.

Example 1. The equivalence relation (6) and the partitioning (7)–
(11) are illustrated using a 1-DOFmechanical systemwith the state
vector (q; u) ∈ R2. We consider a single constraint g(q) = q ≥

0 with a generalized Newton’s impact law. The impact map (5)
simplifies to(

q
u+

)
= Z̄

(
q
u−

)
=

(
q

Zq(u−)

)
with Zq(u−) =

{
−e u− if q = 0 ∧ u− < 0,
u− otherwise.

(12)

A necessary condition for the equivalence of two points in the state
space x = (qx; ux) and y = (qy; uy) is qx = qy because the impact
map Z̄ does not alter the generalized coordinate. In the case of open
constraints (here: qx = qy > 0), two states x and y are equivalent if
and only if the velocities are identical and the synchronization set
consists only of the region (x; y) ∈ S00 as depicted in Fig. 2(a). The
case of closed constraints (here: qx = qy = 0) is depicted in Fig.
2(b) for a partially elastic impact and in Fig. 2(c) for a completely
inelastic impact. The region (x; y) ∈ S01 captures the case where
y is mapped to x by the impact (i.e., ux = −euy) and vice versa for
(x; y) ∈ S10. The region S11 fills the entire quadrant ux < 0, uy < 0
in the case of a completely inelastic impact.

We have now defined equivalence of points in the state space.
However, we are interested in the synchronization of trajectories
and therefore it is necessary to compare trajectories point-wise in
time. Since the velocities are discontinuous at impact time instants,
the state is undefined as it jumps from one point in the state space
to another. To deal with this problem, we introduce [x] := {x̃|x̃ ∼

x} as the equivalence class of x using the equivalence relation (6).
Furthermore, let A/∼:= {[x] | x ∈ A} denote the quotient
space, which is the set of all equivalence classes. Since the quotient
map is constructed using the impact map of the dynamics, the
solutions x(t) on the quotient map are continuous in time, that
is, [x−(t)] = [x+(t)], and we can define [x(t)] := [x+(t)] for all
t . Therefore, two solutions x(t), y(t) are synchronized at time t

(a) qx = qy > 0, e ∈

[0, 1].
(b) qx = qy = 0,
e ∈ (0,1].

(c) qx = qy > 0, e = 0.

Fig. 2. Partitioning of the synchronization set S for open constraints (a), closed
constraints with e ∈ (0, 1] (b), and closed constraints with e = 0 (c).

according to Definition 1 if they belong to the same equivalence
class at time t , that is, if [x(t)] = [y(t)].

3.2. Distance function

We will now introduce a notion of distance between two
points x and y in the state space in order to measure how far
two solutions are away from synchrony at a certain time t . In
contrast to the similar distance notions introduced in [23] and [33],
the distance function introduced here exploits the physical prop-
erties of the impact map Z̄ . In order to avoid the ‘peaking phe-
nomenon’ when evaluated along solutions, two states should also
be considered close if one state has just experienced an impact and
the other state is still on the verge of an impact. Using the equiv-
alence relation (6), this can be achieved by defining the distance
function d(x, y) as

d(x, y) = inf

⎧⎨⎩
N∑
j=0

xj − y j
 ⏐⏐⏐⏐N ∈ N0, x = x0,

y j
∼ xj+1 for 0 ≤ j < N, yN

= y

⎫⎬⎭ , (13)

where ∥ · ∥ : x ↦→
√
xTx denotes the Euclidean norm. The dis-

tance function d is the quotient metric on the quotient space A/∼
obtained by the equivalence relation (6), cf. [34]. The quotient
metric is indeed a metric on the quotient space if Assumption 1
on the impact map Z̄ is fulfilled, which is shown in the following
proposition.

Proposition 1. Let Assumption 1 be fulfilled. Then the quotient
distance function d(x, y) in (13) is a metric on the quotient space, that
is, ∀x, y, z ∈ A

(i) d(x, y) = 0 ⇔ (x; y) ∈ S ,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ d(x, z) + d(z, y).

Proof. See Appendix. □

Conditions (ii) and (iii) in Proposition 1 are also fulfilled if the
distance function d is considered on the original spaceA. Addition-
ally, x = y implies d(x, y) = 0, however, the converse is not true
as d(x, y) = 0 merely implies x ∼ y. The distance function d is
therefore only a pseudometric on the space A.

The distance function d is continuous in time when evaluated
along solution x(t) and y(t), since it fulfills d(x, y) = d(x∗, y∗)
∀x ∈ [x∗

], y ∈ [y∗
] by construction and solutions of (1)–(3) are

continuous in time on the quotient space. The distance function
at impact time instants can thus be defined as d(x(t), y(t)) :=

d(x+(t), y+(t)), as the result is not altered if the left limit for x(t)
or y(t) would be taken.
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In the next step, we construct a simpler (quotient) distance
function dA(x, y) which is equivalent1 to the distance function d if
the impact map is non-expansive. In the definition of the distance
function d in (13), the points xj+1

∼ y j can be seen as intermediate
points. The number of these points, denoted by N , is generally
unbounded. The new distance function dA(x, y) is simpler in the
sense that atmost two intermediate points are necessary as shown
in the following theorem.

Theorem 1. Let Assumption 1 be fulfilled and let d(x, y) be the
quotient distance function in (13) with the equivalence relation (6).
Let dA(x, y) be defined by

dA(x, y) := min
{
dA00, d

A
01, d

A
10, d

A
11

}
, (14)

where

dA00 = ∥x − y∥A , (15)

dA01 = inf
{x − y0


A +

x1 − y

A

⏐⏐ (x1
y0

)
∈ S10

}
, (16)

dA10 = inf
{x − y0


A +

x1 − y

A

⏐⏐ (x1
y0

)
∈ S01

}
, (17)

dA11 = inf
{x − y0


A +

x1 − y1

A +

x2 − y

A

⏐⏐(
x1

y0

)
∈ S01 ∧

(
x2

y1

)
∈ S10

}
(18)

with A = diag(K ,M), where M is the mass matrix and K is a
symmetric positive definitematrix. Then the distance functions d(x, y)
and dA(x, y) are equivalent. Furthermore, if A is the identity matrix I ,
then dA(x, y) = dI (x, y) = d(x, y).

Proof. See Appendix. □

Theorem1 bears similaritywith [25, Lemma 2.1], which consid-
ers one-dimensional systems together with Newton’s impact law.
In contrast to [25], Theorem 1 is more generically applicable to
multi-dimensional systems and the impact law is only assumed
to be non-expansive (which includes Newton’s impact law, but
allows for more generic impact laws).

Remark 1. If K in A = diag(K ,M) is the stiffness matrix of
the considered mechanical system, then ∥ · ∥A corresponds to the
metric of the mechanical energy of the system.

Example 1 (Revisited). We revisit Example 1 in order to illustrate
the distance function dA in (14)–(18). We write an intermediate
point (x1; y0) ∈ S10 as x1 = (0; −z), y0

= (0; ez) with z > 0.
The distance function dA can therefore be written as (14), where

dA00 =

(qxux

)
−

(
qy
uy

)
A
,

dA01 = inf
z>0

{(qxux

)
−

(
0
ez

)
A

+

( 0
−z

)
−

(
qy
uy

)
A

}
,

dA10 = inf
z>0

{(qxux

)
−

(
0

−z

)
A

+

( 0
ez

)
−

(
qy
uy

)
A

}
,

dA11 = inf
z1>0
z2>0

{(qxux

)
−

(
0

−z1

)
A

+

( 0
ez1

)
−

(
0
ez2

)
A

+

( 0
−z2

)
−

(
qy
uy

)
A

}
1 Let dα, dβ : E × E → R be two distance functions on a set E. Analogously to

equivalence of norms, the distance functions are called equivalent if there exist two
numbers c1 > 0, c2 > 0 such that c1dα(x, y) ≤ dβ (x, y) ≤ c2dα(x, y) ∀x, y ∈ E.

(a) dA00 . (b) dA01 . (c) dA11 .

Fig. 3. Distance function dA(x, y) for Example 1 for (a) dA00 , (b) d
A
01 and (c) dA11 .

with A = diag(k,m) positive definite. The term dA00 corresponds
to the Euclidean distance in the metric A, which is depicted in Fig.
3(a). The term dA01 consists of the sum of two Euclidean distances,
where the intermediate point (0; −z; 0; ez) ∈ S10 is chosen as
depicted in Fig. 3(b). Note that the term dA01 vanishes for x =

Z̄(y) ̸= y. The term dA10 is the symmetric case to dA01, that is,
dA10(x, y) = dA01(y, x). The term dA11 is the sum of three Euclidean
distances using the intermediate points (0; ez1; 0; −z1) ∈ S01 and
(0; −z2; 0; ez2) ∈ S10 as depicted in Fig. 3(c).

Remark 2. In [23], which focuses on hybrid systems formulated in
the framework of [11]with invertible jump laws, a related distance
function d̃(x, y) has been introduced as

d̃(x, y) = min
z∈S

(xy
)

− z
 . (19)

The distance function d̃ and the quotient distance function d are
equivalent under certain assumptions on the impact map Z . More
specifically, if Assumption 1 is fulfilled and if there exists a con-
stant α ∈ (0 1] such that 1

α
Z̄ restricted to ∂A− is non-contractive

(i.e., strictly expansive) in themetric A, then the distance functions
defined by (13) and (19) are equivalent. This statement is proven
in Proposition 2 in Appendix. Let us consider, for example, the
generalized Newton’s impact law for a single geometric unilateral
constraint for which the impact map Z̄ is given by (5). If the
coefficient of restitution e is sufficiently larger than 0 (i.e., if 1 >
(1 − e2) cond(M), where cond(M) is the condition number of the
mass matrix), then there exists a constant α ∈ (0, 1] such that 1

α
Z̄

restricted to ∂A− is non-contractive in the metric A as shown in
Lemma 1 in Appendix. Together with Assumption 1, this implies
that the distance function d̃ in (19) and the quotient distance
function d in (13) are equivalent for this example.

If the distance functions d and d̃ are equivalent, then any state-
ment using stability in the sense of Lyapunov does not depend on
the choice of either distance function. In the case of a completely
inelastic collision, the equivalence cannot hold as cond(M) ≥ 1
by definition. This is due to the fact that the definition of d̃ in (19)
uses only one intermediate point, whereas the definition of d
allows for more intermediate points. In any case, both distance
functions vanish if and only if the considered states are equivalent
according to Proposition 1. The present formulation of the distance
function d is preferred as it is themost natural choice of ametric on
the quotient space. Furthermore, in contrast to (19), the distance
function d(x(t), y(t)) evaluated along solutions x(t) and y(t) is
guaranteed to be a continuous function in time. Consequently,
d(x(t), y(t)) is also defined at impact time instants.

3.3. Synchronization problem

We define the synchronization problem for mechanical sys-
tems of the form (1)–(3) using the quotient distance function d
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given by (13). Given two trajectories x(t) and y(t), the error sig-
nal e(t) = d(x+(t), y+(t)) is a continuous function in time since
d(x−(t), y−(t)) = d(x+(t), y+(t)). This observation allows us to
formulate the synchronization problem as follows (confer [35] for
definitions of synchronization for smooth systems).

Definition 2 (Synchronization Problem). Consider two mechanical
systems described by (1)–(3) with solutions x(t) = (qx(t); ux(t))
and y(t) = (qy(t); uy(t)) for the initial conditions x−(t0), y−(t0) ∈

A. Let the coupling forces τx and τy acting on the first and
second system, respectively, be defined by a static interaction
law (τx(t), τy(t)) = (κx(x(t), y(t), t), κy(x(t), y(t), t)) and let the
distance function d be defined by (13). The coupled systems are
said to achieve local synchronization if for each ε > 0 there exists
a δ(ε) > 0 such that

d(x(t0), y(t0)) < δ(ε) ⇒ d(x(t), y(t)) < ε, ∀t ≥ t0 (20)

and there exists a δ0 > 0 such that

d(x(t0), y(t0)) < δ0 ⇒ lim
t→∞

d(x(t), y(t)) = 0. (21)

Furthermore, the coupled systems are said to achieve global syn-
chronization if (20) and (21) are fulfilled and δ0 in (21) can be
chosen arbitrarily large.

The quotient distance function d gives a natural notion of dis-
tance when comparing solutions and it is therefore appropriate in
the definition of the synchronization problem. If two solutions x(t)
and y(t) are close at a certain point in time (i.e., d(x(t), y(t)) is
small) and if the solutions are far away from the constraint, then
the Euclidean distance ∥x(t)− y(t)∥ is small as well. The Euclidean
distance might be large in the vicinity of the constraints even
if the solutions are arbitrarily close to each other w.r.t. d. How-
ever, generally for unilaterally constrained mechanical systems,
the width of the ‘peaks’ of the Euclidean distance tends to zero as
the solutions approach each other, see [17,23].

Remark 3. In the next section, the two systems in Definition 2
are coupled by the forces τx and τy, which are used to achieve
(local/global) synchronization. For τx = 0, Definition 2 describes a
master–slave synchronization problemwhere x(t) and y(t) are the
solutions of the master and slave system, respectively. In this case,
synchronization requires the solution of the master system to be
an asymptotically stable solution of the slave system with respect
to the distance function d, as defined in [17]. Here, we consider the
generic case of mutual synchronization.

4. 1-DOF mechanical impact oscillators

In this section, we consider the synchronization problem for a
1-DOF mechanical impact oscillator as depicted in Fig. 4. Even
though this is a canonical representative of the class of mechanical
systems presented in Section 2, the synchronization problem in-
cluding accumulation points has remained unsolved for this case.
This shows that the theory of synchronization of impacting sys-
tems including accumulation points is still in its infancy. The one-
dimensional case is a challenging first step and serves as stepping
stone in the direction of more general systems.

In the following, we design a Lyapunov function for the
1-DOF system which enables us to construct sufficient conditions
for local synchronization in the sense of Definition 2 without any
interaction. Furthermore, we design a synchronizing interaction
law and construct sufficient conditions for global synchronization
for the coupled case.

The states of the two coupled systems are denoted by x =

(qx; ux) and y = (qy; uy). The equation ofmotion is described by (1)

Fig. 4. Two identical unilaterally constrained 1-DOF mechanical systems subjected
to an external forcing f (t) and coupling forces τx and τy .

with h(q, u, τ , t) = −cu−kq−f (t)−τ . The impact equation is given
by (2).We assume that the stiffness k and the damping c are strictly
positive. Without loss of generality, we choose m = k = 1 as well
as w = 1 and g = q. This can always be achieved by rescaling the
states and time. The equations of motion of the coupled system are
obtained as
u̇x + cux + qx = λx − f (t) − τx with q̇x = ux a.e.,
u̇y + cuy + qy = λy − f (t) − τy with q̇y = uy a.e.

(22)

The external forcing f (t) in (22) is identical for both systems,
whereas the coupling forces τx and τy are generally unequal. The
two systems are coupled if the force τx depends on the state y
and/or vice versa for τy and x. The unilateral constraints are closed
if qx = 0 or qy = 0, respectively, and the constraint forces obey the
Signorini conditions

− λx ∈ NR+

0
(qx), −λy ∈ NR+

0
(qy). (23)

The generalized Newton’s impact law is chosen and completely
inelastic collisions are excluded, that is, the coefficient of restitu-
tion fulfills e ∈ (0 1]. The corresponding impact map Z̄ fulfills
Assumption 1 and is given by (12) as

Z̄
(
qx
u−

x

)
=

(
qx

Zqx (u
−

x )

)
, Z̄

(
qy
u−

y

)
=

(
qy

Zqy (u
−

y )

)
with Zq(u−) =

{
−e u− if q = 0 ∧ u− < 0,
u− otherwise.

(24)

Remark 4. Collisions with e = 0 dissipate the entire energy of a
1-DOF system,which typically leads to finite-time synchronization
after a few impacts, also in the absence of any coupling.

As we are interested in the synchronization problem for the
systemdescribed by (22)–(24),we aim to study the evolution of the
quotient distance function d defined in (13) along solutions. Since
the mass is normalized to be equal to one, the matrix A in (14)–
(18) can be chosen as the identity matrix. Additionally, Theorem
1 implies that the distance function dI is identical to d. Therefore,
we can reduce the complexity of the problem by considering the
simpler distance function dI .

In order to design the interaction laws

τx(t) = κx(x(t), y(t), t), τy(t) = κy(x(t), y(t), t) (25)

and to study synchronization of the coupled system (22)–(24),
we will now present a Lyapunov function suitable for investigat-
ing synchronization according to Definition 2. A naive approach
would be to choose the candidate Lyapunov function 1

2 (d
I )2 =

1
2 min

{
dI00

2
, dI01

2
, dI10

2
, dI11

2} and differentiate this function with
respect to time. However, this approach requires explicit knowl-
edge of the intermediate points which have to be obtained by
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Fig. 5. Level sets of the distance functions dI (x, y) = d(x, y) (gray) and d̂(x, y)
(black) for e = 0.5 and three different choices of x.

solving the minimization problem in the definition of dI01, d
I
10 and

dI11, see (16)–(18). In order to avoid this complication and to obtain
an explicit definition for a Lyapunov function, we approximate
the minimizers in (16)–(18) and obtain the following candidate
Lyapunov function:

V (x, y) := min{V00(x, y), V01(x, y), V10(x, y)}, (26)

where V00 :=
1
2 d̂

2
00, V01 :=

1
2 d̂

2
01, V10 :=

1
2 d̂

2
10,

d̂00 :=

√
(qx − qy)2 + (ux − uy)2, (28)

d̂01 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
(qx + qy)2 +

(
qx + qy
qx + eqy

)2

(ux + euy)2

if uxqy − uyqx > 0,√
q2x + u2

x +

√
q2y + u2

y if uxqy − uyqx ≤ 0,

(29)

d̂10(x, y) := d̂01(y, x). (30)

Remark 5. The Lyapunov function (26)–(30) can be written as
V =

1
2 d̂

2, where d̂(x, y) := min{d̂00(x, y), d̂01(x, y), d̂10(x, y)} is
an explicit approximation of the distance function dI in (14)–(18).
First, we note that d̂00(x, y) = d00(x, y). Furthermore, the func-
tion d11 in (18) is neglected, since d11 can be bounded from below2

using d00. The function d̂01(x, y) is obtained by selecting in (16) the
intermediate point (x̃1; ỹ0) ∈ S10 with −x̃1 =

1
e ỹ

0
= (0; z01) and

z01 =

{ uxqy − uyqx
qx + eqy

if uxqy − uyqx > 0,

0 if uxqy − uyqx ≤ 0.
. Therefore, (x̃1, ỹ0) acts as

an approximation of the minimizer in (16), thereby generating an
upper bound for d01(x, y). Analogously, the function d̂10(x, y) is an
approximation of d10(x, y). An interpretation of the approximation
of the intermediate point will be given later in Lemma 2.

Fig. 5 depicts level sets of the distance function dI = d (gray)
and of the approximation d̂ = min{d̂00, d̂01, d̂10} (black) in the qy-
uy-plane for three different choices of x. Depending on the inter-
mediate points, we can distinguish between four regions for dI =

min{dI00, d
I
01, d

I
10, d

I
11} and three regions for d̂ = min{d̂00, d̂01, d̂10}.

These regions are separated by dashed lines in Fig. 5. If the points x
and y are close, then the distance functions are given by dI = dI00
and d̂ = d̂00, respectively, and the level sets are concentric circles.

2 The lower bound is explicitly given in the proof of Proposition 2. The necessary
conditions are fulfilled for the impactmap (24)with e ∈ (0, 1] as shown in Lemma1
given in Appendix.

If the points x and y are close to the constraint but not close to each
other, then the minimum is no longer attained using the Euclidean
distance. The dotted line running through the origin and x is given
by uxqy − uyqx = 0 and it is used in the definition of d̂01 and
d̂10, see (29). We note that d̂ = d̂00 on the line uxqy − uyqx = 0.
Furthermore, we have d̂ < d̂10 in the region uxqy − uyqx > 0 and,
analogously, d̂ < d̂01 in the region uxqy − uyqx < 0. Consequently,
the distance function d̂ can be written as

d̂ =

⎧⎨⎩
min{d̂00, d̂01} if uxqy − uyqx > 0,
d̂00 if uxqy − uyqx = 0,
min{d̂00, d̂10} if uxqy − uyqx < 0.

(31)

The candidate Lyapunov function V is positive definite in the
distance function dI , which is shown in the following lemma.

Lemma 2. Let V be the function defined in (26)–(30) and let the
quotient distance function d in (13) be defined using the impactmap Z̄
in (24). Then,

1
2
d2(x, y) ≤ V (x, y) ≤

1
2

(
d(x, y)

e

)2

.

Proof. See Appendix. □

Note that Lemma 2 implies V (x, y) =
1
2d

2(x, y) for e = 1.
The candidate Lyapunov function (26)–(30) measures the dis-

tance between two states. Evaluated along solutions x(t) and y(t)
of (22)–(24), a scalar function V (x(t), y(t)) is obtained. The differ-
ential measure dV has a density V̇ with respect to the Lebesgue
measure dt and a density V+

− V− with respect to the atomic
measure dη, i.e., dV = V̇dt + (V+

− V−)dη. This is the case
because the jumps in the Lyapunov function V+

− V− are well
defined for all points in time in the Lebesgue-negligible set {t ∈

R | qx = qy = 0 ∧ |ux| + |uy| ̸= 0} (see later in Lemma
3). For every other point in time not in the set {t ∈ R | qx =

qy = 0 ∧ |ux| + |uy| ̸= 0}, the function V is locally Lipschitz
in both arguments and the considered solutions are functions of
special locally bounded variation. From [10, Prop. 6.3] it follows
that the candidate Lyapunov function is of special locally bounded
variation, which directly implies dV = V̇dt + (V+

− V−)dη. In
the following, the densities V̇ and (V+

− V−) are evaluated for
system (22)–(24), see Lemmas 4 and 3, respectively, which is used
later for the Lyapunov-based stability analysis.

Lemma 3. The Lyapunov function (26)–(30) evaluated along solu-
tions x(t), y(t) of (22)–(24) satisfies

V (x+(t), y+(t)) − V (x−(t), y−(t)) ≤ 0 ∀t.

Proof. See Appendix. □

The density V̇ is generally given by V̇ = ξT(ẋ; ẏ) with ξ ∈

∂V (x, y), where ∂V (x, y) denotes the Clarke’s generalized gradient
of V (x, y) [36]. In the following, we consider the three cases (i)
V00 < min{V01, V10}, (ii) V01 < min{V00, V10} and (iii) V10 <

min{V00, V01}. In these cases, the generalized gradient consists of a
single element, that is, the gradient in the classical sense. The case
for which the generalized gradient is set-valued is considered later
separately.

Lemma 4. Let the Lyapunov function V in (26)–(30) be evalu-
ated along solutions x(t), y(t) of (22)–(24). Consider the cases (i)
V00 < min{V01, V10}, (ii) V01 < min{V00, V10} and (iii) V10
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< min{V00, V01}. Depending on the case, the density V̇ is equal to

(i) V̇00 = −c(ux − uy)2 + (ux − uy)(−τx + λx + τy − λy), (32)

(ii) V̇01 = −c
(qx + qy)2

(qx + eqy)2
(ux + euy)2

− (1 − e)
qx + qy
qx + eqy

(
1 +

(ux + euy)2

(qx + eqy)2

)
(uxqy − qxuy) (33)

+
(qx + qy)2

(qx + eqy)2
(ux + euy)((λx + eλy) − (1 + e)f − (τx + eτy)),

(iii) V̇10: symmetric to case (ii). (34)

Proof. See Appendix. □

Lemma 2–4 show that the Lyapunov function (26)–(30) is posi-
tive definite in the quotient distance function, it is non-increasing
at discontinuities and the density V̇ in the different cases takes a
simple form. Therefore, the proposed Lyapunov function is suit-
able to study the synchronization problem of the mechanical sys-
tem (22)–(24).

Let us first consider two solutions which both keep a minimal
distance from the origin, that is, stay away from accumulation
points and grazing trajectories. Then, the constraint forces are zero
almost everywhere since there are no persistent contacts. If the
external forcing f satisfies a certain bound, then local synchroniza-
tion can be achieved without any coupling, which is stated in the
following theorem.

Theorem 2. Let x(t) and y(t) be the solution of (22)–(24) with
τx = τy = 0 for the initial conditions x−(t0), y−(t0) ∈ A
and let V (x(t), y(t)) be the Lyapunov function defined by (26)–(30)
evaluated along the solutions. Let the external forcing be bounded
by |f (t)| < fmax < ∞. If there exists a constant r1 > 1+e

1−e fmax such
that qx(t) + |ux(t)| > r1 and qy(t) + |uy(t)| > r1 for all t ≥ t0,
then dV ≤ 0 and limt→∞ V (x(t), y(t)) = 0 for all initial conditions
with d(x−(t0), y−(t0)) < e

2 r1. Therefore, local synchronization in the
sense of Definition 2 is achieved.

Proof. See Appendix. □

The region of attraction in Theorem 2 shrinks to zero for e → 0.
However, the condition d(x−(t0), y−(t0)) < e

2 r1 can be replaced
by d̂(x−(t0), y−(t0)) < 1

2 r1, where d̂ is the approximated distance
function in (26)–(30), and Theorem 2 still holds.

In the following, we will design an interaction law for τx and τy
such that global synchronization is achieved without a bounded-
ness assumption of the external forcing f and also in the presence
of accumulation points and grazing trajectories, that is, the condi-
tions qx(t)+|ux(t)| > r1 and qy(t)+|uy(t)| > r1 for all t ≥ t0 are not
required anymore. The proposed interaction law for the coupling
forces τx and τy is given by (25), where

κx =

{
−f if qx > 0 ∧ qy > 0 ∧ min{V01, V10} < V00,

−f if qx > 0 ∧ qy = uy = 0,
0 otherwise,

(35)

κy =

{
−f if qx > 0 ∧ qy > 0 ∧ min{V01, V10} < V00,

−f if qx = ux = 0 ∧ qy > 0,
0 otherwise.

(36)

Using the interaction law (35)–(36), the right-hand sides
in (22) (without impacts) become discontinuous. Therefore, we
will consider Filippov-type solutions of system (22)–(24) together
with (35)–(36) [37].

We note that the coupling forces vanish if the solutions are
synchronized. The proposed interaction law compensates the ex-
ternal forcing f (t) whenever necessary such that the density V̇

of the Lyapunov function (26)–(30) evaluated along solutions is
non-positive. Using this interaction law, the global synchronization
problem is solved as shown in the following theorem.

Theorem 3. Let x(t), y(t) be the Filippov-type solutions of system
(22)–(24), where the coupling forces τx, τy are given by the interaction
law (35)–(36) and let V (x(t), y(t)) be the Lyapunov function defined
by (26)–(30) evaluated along the solutions. Then dV ≤ 0 and
limt→∞ V (x(t), y(t)) = 0 for all initial conditions x−(t0), y−(t0) ∈

A. Therefore, global synchronization is achieved in the sense of
Definition 2.

Proof. See Appendix. □

Corollary 1. Let x(t), y(t) be the Filippov-type solutions of sys-
tem (22)–(24) for the initial conditions x−(t0), y−(t0) ∈ A using the
interaction law
τx = κx(x, y) + kdux + kpqx,

τy = κy(x, y) + kduy + kpqy
(37)

with kp, kd ≥ 0 and κx(x, y) and κy(x, y) given by (35)–(36). Then,
global synchronization is achieved in the sense of Definition 2.

Proof. The differential gain kd simply increases the damping
constant c. The proportional gain kp increases the stiffness and
another rescaling of the states and time is necessary to obtain the
normalized equations of motion (22). Theorem 3 is applicable to
the rescaled systems, which implies global synchronization in the
sense of Definition 2. □

The interaction law (37) extends the interaction law (35)–(36)
with a PD-type coupling and generally increases the synchroniza-
tion speed. The coupling forces do not vanish if the solutions are
synchronized and the limit sets of the uncoupled systems are
therefore not preserved in the coupled case. Furthermore, the
stiffness and damping constants of the impact oscillators consid-
ered in this section (see (22)) are assumed to be strictly positive.
This assumption can be dropped when the extended interaction
law (37) is used with kp, kd > 0.

5. Illustrative examples

We illustrate the synchronization problem of a 1-DOF me-
chanical impact oscillator with several numerical examples. We
consider system (22)–(24) with a damping constant c = 0.01 and
a coefficient of restitution e = 0.8. The external forcing is chosen
as f (t) = 1+2 cos t+cos 3t . During the first part of the simulation,
the two mechanical systems are uncoupled. The interaction law
(35)–(36) is switched on at t = 20.

The solutions x(t) = (qx(t); ux(t)) and y(t) = (qy(t); uy(t)) for
the initial conditions x(t0) = (1; −0.2) and y(t0) = (1.1; 0.1) are
depicted in Fig. 6. No synchronization is achieved in the uncoupled
case even though they are initialized close to each other. This does
not contradict Theorem 2. Namely, the solutions diverge quickly
at t ≈ 3, where both solutions are close to the origin and the
assumptions of Theorem 2 are violated. After the interaction law
is switched on at t = 20, the distance between the solutions
decreases and synchronization is achieved in accordance with
Theorem 3.

Fig. 7 shows the Lyapunov function V (x(t), y(t)) =
1
2 d̂(x, y)

defined by (26)–(30) (solid black line). It is continuous in time
except when both constraints are closed at the same time, that
is, when one solution has an impact and the other is in persistent
contact. The Lyapunov function is an approximation of 1

2 (d
I (x, y))2

as discussed in Remark 5, and the quotient distance function d
defined in (13) is identical to the distance function dI in (14)–(18)
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Fig. 6. Solutions x(t) and y(t) of the 1-DOF mechanical impact oscillators. The
interaction law is switched on at t = 20.

Fig. 7. The Lyapunov function V (x, y) (solid black) is non-increasing and tends to
zero after the interaction law is switched on at t = 20 and it approximates 1

2 d
2(x, y)

(dashed black). The (Euclidean distance) function V00(x, y) =
1
2 ∥x − y∥

2 (gray)
shows the undesirable ‘peaking behavior’.

Fig. 8. Coupling forces τx and τy . The interaction law is activated at t = 20.

according to Theorem 1. The Lyapunov function is therefore an ap-
proximation of 1

2d
2(x, y) (dashed black line), which is continuous

in time. The (Euclidean distance) function V00(x, y) =
1
2∥x(t) −

y(t)∥2 (gray line) shows the undesirable ‘peaking behavior’ of the
Euclidean synchronization error. The Lyapunov function is initially
very small and increases rapidly at t ≈ 3, where both solutions are
close to a grazing trajectory. After the interaction law is switched
on at t = 20, the Lyapunov function is non-increasing and tends to
zero as stated by Theorem 3 (see magnification in Fig. 7).

The coupling forces τx and τy may differ only if one of the
contacts is persistent, which is the case right after the interaction
law is switched on at t = 20, see Fig. 8. The coupling forces
are discontinuous in time. Furthermore, the jump heights of the
discontinuities are in the order of the external forcing and do
not tend to zero while the Lyapunov function tends to zero. The
time average of the coupling forces for a moving window with
fixed width, however, tends to zero as the solutions synchronize.
The influence of the coupling force does therefore tend to zero as
well. Furthermore, all limit sets of the individual systems are also
present in the coupled case because there are no coupling forces if
the solutions are synchronized.

In consideration of the feasibility of the application of this in-
teraction law in a digital control setting, the simulation is repeated
in which the coupling forces, given by the interaction law (35)–
(36), are filtered with a zero-order hold (ZOH) filter with a time
interval of 0.2. Therefore, the coupling forces change no more than
five times per unit time interval and they are held constant in
between. The same parameters and initial conditions as in the

Fig. 9. Solutions x(t) and y(t) (left), Lyapunov function V (x, y) (right) and coupling
forces τx and τy (right). The interaction law is switched on at t = 20 and the coupling
forces are filtered by a zero-order hold filter with a time interval of 0.2.

Fig. 10. The interaction law (35)–(36) does not prevent accumulation points, and
finite time synchronization is achieved for the one-dimensional mechanical impact
oscillator.

previous simulation are used and the results are depicted in Fig.
9. The solutions x(t) and y(t) approach each other and stay close
to synchronization also with the ZOH filter as depicted to the left
in Fig. 9. The Lyapunov function and the coupling force are shown
to the right in Fig. 9. The effect of the ZOH filter is prominent in
the time evolution of the coupling force. The Lyapunov function
occasionally increases, especially at t ≈ 25 where both solutions
are close to the origin. A time interval of 0.2 for the ZOH filter is
challenging in this example, but clearly shows the robustness of
the interaction law (35)–(36).

Let us now illustrate that our results also apply in the presence
of the accumulation of impact events. Fig. 10 shows the solutions
for system (22)–(24) using the same damping constant and exter-
nal forcing as before. The initial conditions are chosen as x(t0) =

(1; −0.2) and y(t0) = (1.1; 2) and the coefficient of restitution is
lowered to e = 0.4. The coupling forces are given by the interaction
law (35)–(36) and the interaction law is switched on for the entire
simulation. Both solutions have an accumulation point at t ≈ 7
after which both solutions are in persistent contact for some time
interval. Because the system is one-dimensional, the solutions are
synchronized if they are both in persistent contact, that is, finite
time synchronization is achieved. The coupling forces vanish if the
solutions are synchronized, and the solutions remain synchronized
in the absence of any disturbances.

6. Conclusions

In this paper, the synchronization problem for mechanical sys-
tems subjected to a single geometric unilateral constraint inducing
impacts is investigated. In order to define and investigate the
synchronization problem for nonsmooth systems with jumping
state evolutions, it is necessary to use a distance function which
is more sophisticated than the Euclidean distance function. A dis-
tance function suitable to compare discontinuous solutions is the
one inducedby the quotientmetric,where the equivalence relation
is the equivalence kernel of the impact map. The quotient distance
function is continuous in timewhen evaluated along solutions. The
resulting synchronization problem does consequently not suffer
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from the ‘peaking phenomenon’ like the Euclidean distance func-
tion. Therefore, it is suitable to define stability in the sense of Lya-
punov and leads to an intuitive notion of synchrony. This quotient
distance function can be simplified significantly for generally used
impact laws due to their property of monotonicity and, equiva-
lently, the non-expansivity of the corresponding impact maps.

The definition of the synchronization problem together with
the distance function induced by the quotient metric is of generic
value and can directly be extended to, for example, Lur’e-type
systems and/or systems with multiple contacts. The presented
simplification of the distance function is however not possible for
multi-contact collisions for which the distance function generally
comprises of the infimum over an unbounded number of interme-
diate points.

The synchronization problem for a 1-DOF mechanical system
is investigated using Lyapunov stability analysis. The presented
Lyapunov function is constructed using an approximation of the
distance function. The same approach is applicable to construct a
candidate Lyapunov function for mechanical systems with multi-
ple degrees of freedom.

Local synchronization for a 1-DOF forced mechanical system is
shown without any coupling forces if both solutions keep a min-
imal distance from the origin. This minimal distance ensures that
any possible increase of the Lyapunov function due to the external
forcing is compensated by the decrease due to the monotonicity of
the impact law.

An interaction law is presented which achieves global syn-
chronization also in the presence of grazing trajectories and Zeno
behavior. The coupling forces compensate the external forcing
whenever necessary, but they are chosen such that they do not
dominate the overall dynamics. In particular, they vanish if the
solutions are synchronized and all limit sets of the uncoupled
systems are therefore preserved in the coupled case. In order to
increase the synchronization speed, the interaction law can readily
be extended by a PD-type coupling. This extension enlarges the
applicability of the presented interaction law to systems with no
viscous damping or vanishing stiffness such as the bouncing ball
example. The coupling forces are discontinuous and do not tend
to zero as the solutions approach each other. However, the time
intervals with non-vanishing coupling forces tend to zero, that is,
the time average for a moving window with fixed width tends to
zero as well.

The feasibility in a digital control setting is shown with a nu-
merical example where the coupling forces are filtered with a zero
order hold filter for which the synchronization error still tends to
and remains close to zero. This numerical example also shows the
robustness of the presented interaction law.
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Appendix

Proof of Proposition 1 and Theorem 1. The infimum in the def-
inition of the distance function d in (13) is attained if Assumption
1 is fulfilled. This result is shown in Theorem 1 and will be used
in the proof of Proposition 1. The proof of Theorem 1 is therefore
given before the proof of Proposition 1.

Proof of Theorem 1. Using the equivalence of the norms ∥ · ∥ and
∥ · ∥A, the distance function d in (13) is equivalent to

d̄A(x, y) := inf

⎧⎨⎩
N∑
j=0

xj − y j

A

⏐⏐⏐⏐N ∈ N0, x = x0,

y j
∼ xj+1 for 0 ≤ j < N, yN

= y

⎫⎬⎭ . (A.1)

Note that, if A is the identity matrix I , then d in (13) is identical
to d̄A(x, y) = d̄I (x, y). In the remaining proof, wewill show that the
distance function d̄A in (A.1) is identical to the distance function dA

given by (14)–(18).
The intermediate points (xj+1

; y j) in (A.1) are restricted to the
synchronization set S and we will show that it suffices to consider
intermediate points in S01 ∪ S10 only. First, we consider the two
consecutive summands ∥xj − y j

∥A + ∥xj+1
− y j+1

∥A with an inter-
mediate point (xj+1

; y j) ∈ S11. The sum is identical to ∥xj − y j
∥A +

∥z−z∥A+∥xj+1
−y j+1

∥A with two intermediate points (z; y j) ∈ S01,
(xj+1

; z) ∈ S10 and z such that z = Z̄(z). Therefore, every interme-
diate point in S11 can be replaced by two intermediate points in
S01 ∪S10. Secondly, we consider two consecutive summands ∥xj −
y j

∥A + ∥xj+1
− y j+1

∥A with an intermediate point (xj+1
; y j) ∈ S00,

which can be written as ∥xj − y j
∥A + ∥y j

− y j+1
∥A. The triangle

inequality implies that this sum is always larger than or equal
to ∥xj − y j+1

∥A, which shows that it is not necessary to consider
intermediate points in S00. Therefore, (A.1) can be simplified to

d̄A(x, y) = inf

⎧⎨⎩
N∑
j=0

xj − y j

A

⏐⏐⏐⏐N ∈ N0, x = x0,

(
xj+1

y j

)
∈ S01 ∪ S10 for 0 ≤ j < N, yN

= y

⎫⎬⎭ . (A.2)

In the next step, we show that it is sufficient to consider at most
two intermediate points in (A.2). To do so, we define d̄AN<2(x, y) :=

inf
{∑N

j=0∥x
j
− y j

∥A

⏐⏐⏐N ∈ {0, 1}, x = x0, (xj+1
; y j) ∈ S01 ∪

S10 for 0 ≤ j < N, yN
= y

}
and derive a lower bound of

d̄AN≥2(x, y) := inf

⎧⎨⎩
N∑
j=0

xj − y j

A

⏐⏐⏐⏐N ∈ N≥2, x = x0,

(
xj+1

y j

)
∈ S01 ∪ S10 for 0 ≤ j < N − 1, yN

= y

⎫⎬⎭
(A.3)

for the case where

d̄AN≥2(x, y) < d̄AN<2(x, y). (A.4)

Let us assume that (A.4) holds. We note that (xj+1
; y j) ∈ S01 ∪

S10, for j = 0, 1, . . . ,N − 1, implies xj+1, y j
∈ ∂A and the map Z̄

restricted to ∂A is non-expansive in the metric A by Assumption
1. Therefore, ∥xj − y j

∥A ≥ ∥Z̄(xj) − Z̄(y j)∥A for 1 ≤ j < N − 1
and

∑N−1
j=1 ∥xj − y j

∥A ≥
∑N−1

j=1 ∥Z̄(xj) − Z̄(y j)∥A holds. The triangle
inequality implies

∑N−1
j=1 ∥Z̄(xj) − Z̄(y j)∥A ≥ ∥Z̄(x1) − Z̄(yN−1)∥A.

Hence, d̄AN≥2(x, y) can be lower bounded by

d̄AN≥2(x, y) ≥ inf

{x − y0

A +

Z̄ (x1)− Z̄
(
y1)

A

+
x2 − y


A

⏐⏐⏐⏐ (x1y0

)
,

(
x2

y1

)
∈ S01 ∪ S10

}
. (A.5)
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Under the assumption (x1; y0) ∈ S10, Z̄(x1) = y0 together with
the triangle inequality implies ∥x − y0

∥A + ∥Z̄(x1) − Z̄(y1)∥A ≥

∥x − Z̄(y1)∥A, which violates (A.4). Therefore, if (A.4) holds, then
(x1; y0) in (A.3) satisfies (x1; y0) ∈ S01 and, thus, Z̄(x1) = x1.
Analogously, (A.4) implies Z̄(y1) = y1. Hence, assuming (A.4), the
lower bound (A.5) yields

d̄AN≥2(x, y) ≥ inf

{x − y0

A +

x1 − y1

A

+
x2 − y


A

⏐⏐⏐⏐ (x1y0

)
∈ S01,

(
x2

y1

)
∈ S10

}
. (A.6)

The lower bound (A.6) will be attained as such pairs (x1; y0),
(x2; y1) are allowed in (A.6), that is, it is not necessary to consider
more than two intermediate points if (A.4) holds. Also considering
the case where (A.4) does not hold, we distinguish between the
following four cases for the distance function d̄A:

d̄A(x, y) = inf

{
∥x − y∥A ,

x − y1

A +

x2 − y

A ,x − y0


A +

x1 − y

A ,
x − y0


A +

x1 − y1

A

+
x2 − y


A

⏐⏐⏐⏐ (x1y0

)
∈ S01,

(
x2

y1

)
∈ S10

}
. (A.7)

It remains to be proven that the infimum is a minimum. To do so,
we first note that S10 ∩ {(x; y) | ∥x∥A + ∥y∥A ≥ β} is closed for all
β > 0. If

inf
{x − y1


A +

x2 − y

A

⏐⏐⏐⏐ (x2y1

)
∈ S10

}
< ∥x − y∥A , (A.8)

then there exists a sequence {(x2j ; y
1
j )}j∈N with (x2j ; y

1
j ) ∈ S10 ∀j ∈ N

such that limj→∞∥x − y1
j ∥A + ∥x2j − y∥A < ∥x − y∥A, which,

using the triangle inequality ∥x∥A +∥y∥A ≥ ∥x− y∥A, implies that
∥x2j ∥A + ∥y1

j ∥A > β for some β > 0 and any j sufficiently large.
Furthermore, (A.8) yields ∥x2j ∥A + ∥y1

j ∥A ≤ ∥x − y1
j ∥A + ∥x∥A +

∥x2j − y∥A + ∥y∥A ≤ ∥x − y∥A + ∥x∥A + ∥y∥A ≤ 2(∥x∥A + ∥y∥A).
Hence, for any sufficiently large j, it holds that (x2j ; y

1
j ) is contained

in the set Sc
10 := S10 ∩ {(x2j ; y

1
j ) | β ≤ ∥x2j ∥A + ∥y1

j ∥A ≤ 2(∥x∥A +

∥y∥A)}. Therefore, limj→∞(x2j ; y
1
j ) lies in the compact set Sc

10 and
the infimum in (A.8) is a minimum. Analogously, we find that the
infimum is attained if

inf
{x − y0


A +

x1 − y

A

⏐⏐⏐⏐ (x1y0

)
∈ S01

}
< ∥x − y∥A . (A.9)

Lastly, we consider the case

inf
{x − y0


A +

x1 − y1

A +

x2 − y

A

⏐⏐⏐⏐ (x1y0

)
∈ S01,(

x2

y1

)
∈ S10

}
< inf

{
∥x − y∥A ,

x − y1

A +

x2 − y

A ,

x − y0

A +

x1 − y

A

⏐⏐⏐⏐ (x1y0

)
∈ S01,

(
x2

y1

)
∈ S10

}
(A.10)

and find a sequence of points {pj}j∈N, with pj = (x1j ; y
0
j ; y

1
j ; x

2
j ) ∈

S10 × S10, such that the limit limj→∞∥x − y0
j ∥A + ∥x1j − y1

j ∥A +

∥x2j −y∥A is smaller than the right-hand side of (A.10). Again using
the triangular inequality, we observe that ∥limj→∞(x2j ; y

1
j )∥ > β

and ∥limj→∞(x1j ; y
0
j )∥ > β for some β > 0. Hence, for sufficiently

large j, the points pj satisfy pj ∈ Sc
10 × Sc

10, which is a compact
set. Consequently, the infimum on the left-hand of the inequality
(A.10) is attained.

The infimum is attained for all the possible cases d̄A(x, y) =

∥x − y∥, (A.8)–(A.10). Therefore, we can replace the infimum in
(A.7) by aminimum,whichproves d̄A(x, y) = dA(x, y)with dA given
by (14)–(18). □

Proof of Proposition 1. Conditions (ii) and (iii) are fulfilled
because the quotient distance function d(x, y) is symmetric and
subadditive by construction.

The implication ‘⇐’ of condition (i) follows directly from (13)
by choosing N = 1, y0

= y and x1 = x. The implication ‘⇒’ of
condition (i) uses a result shown in the proof of Theorem 1, that
is, the infimum in (13) is attained if Assumption 1 is fulfilled.
Therefore, a vanishing distance function implies that there exists
a set of points y j

∼ xj+1 such that each summand ∥xj − y j
∥ in (13)

vanishes. The transitivity of the equivalence relation concludes the
proof. □

Proposition 2. Let Assumption 1 be fulfilled. Let there exists a
constant α ∈ (0 1] such that 1

α
Z̄ restricted to ∂A− is non-contractive

in the metric A, i.e., ∀(q1; u−

1 ), (q2; u−

2 ) ∈ ∂A−Z̄ (q1
u−

1

)
− Z̄

(
q2
u−

2

)
A

≥ α

(q1
u−

1

)
−

(
q2
u−

2

)
A
. (A.11)

Then, the quotient distance function d(x, y) in (13) and the distance
function d̃(x, y) in (19) are equivalent.

Proof. The quotient distance function d in (13) is equivalent to
the distance function dA in (14)–(18) as shown in Theorem 1. Fur-
thermore, the positive definiteness of A implies that the distance
function d̃ defined in (19) is equivalent to

d̃A(x, y) = min
z∈S

(xy
)

− z

Ã
, where Ã =

(
A 0
0 A

)
. (A.12)

Hence, we will prove Proposition 2 by showing the equivalence of
dA and d̃A. The synchronization set S in the definition (A.12) can be
divided into two parts as

d̃A(x, y) = min
{
d̃A02(x, y), d̃

A
1(x, y)

}
,

where d̃A02(x, y) = min
z∈S00∪S11

(xy
)

− z

Ã
, (A.13)

d̃A1(x, y) = inf
z∈S01∪S10

(xy
)

− z

Ã
. (A.14)

Assumption 1 implies that the impact map Z̄ restricted to the
domain A\∂A− is the identity transformation. Furthermore, the
non-expansivity of Z̄ together with the non-contractivity of 1

α
Z̄

both in the metric A and restricted to the domain ∂A− implies
that Z̄ restricted to ∂A− is a bijection. Therefore, the set S00 ∪ S11
is closed fromwhich follows that the minimum (A.13) exists and it
is obtained as

d̃A02(x, y) = min
z∗∈A

(xy
)

−

(
z∗

z∗

)
Ã

=
1

√
2
dA00(x, y), (A.15)

where dA00 is given by (15). The infimum (A.14) can be written as
d̃A1(x, y) = inf

{(∥x − y0
∥A; ∥x1 − y∥A)

 ⏐⏐ (x1; y0) ∈ S01 ∪ S10
}
.

Therefore, (A.14) can be bounded by (16) and (17) using the equiv-
alence of the Euclidean norm and the 1-norm as
1

√
2
min{dA01, d

A
10} ≤ d̃A1 ≤ min{dA01, d

A
10}. (A.16)

The distance function dA11 can be bounded frombelowby amultiple
of dA00 by deriving a lower bound for the middle summand ∥x1 −

y1
∥A in (18) with (x1; y0) ∈ S01 and (x2; y1) ∈ S10 such that



20 M. Baumann et al. / Physica D 362 (2018) 9–23

x1 = Z̄(y0) and y1
= Z̄(x2). Exploiting the non-contractivity of

1
α
Z̄ , we get ∥x1 − y1

∥A = ∥Z̄(y0) − Z̄(x2)∥A ≥ α∥y0
− x2∥A.

Consequently, dA11(x, y) ≥ inf{∥x − y0
∥A + α∥y0

− x2∥A + ∥x2 −

y∥A | y0
= Z̄(y0) ∧ x2 = Z̄(x2)}. Using α ∈ (0 1] and the triangle

inequality, we obtain

dA11(x, y) ≥ α inf
{
∥x − y0

∥A + ∥y0
− x2∥A + ∥x2 − y∥A

⏐⏐
y0

= Z̄
(
y0)

∧ x2 = Z̄
(
x2
)}

≥ αdA00(x, y). (A.17)

Eq. (A.15) implies 1
√
2
min{dA00, d

A
11} ≤

1
√
2
dA00 = d̃A02. Substituting

(A.17) in (A.15), we find d̃A02 =
1

√
2
dA00 ≤

1
√
2

1
α
dA11 and, together

with α ∈ (0 1], we obtain d̃A02 ≤
1
α
min{dA00, d

A
11}. The inequality

1
√
2
min{dA00, d

A
11} ≤ d̃A02 ≤

1
α
min{dA00, d

A
11} together with (A.16)

yields 1
√
2
dA(x, y) ≤ d̃A(x, y) ≤

1
α
dA(x, y). Therefore, the quotient

distance function d defined in (13) and the distance function d̃
defined in (19) are equivalent. □

Lemma 1. Let the impact map Z̄ be defined by (5)with a coefficient of
restitution e ∈ [0, 1]. If the condition number cond(M) of the mass
matrix fulfills 1 > (1− e2) cond(M), then there exists a constant α ∈

(0, 1] such that (A.11) holds, that is, 1
α
Z̄ restricted to ∂A− is non-

contractive in the metric A = diag(K ,M), where K ∈ Rn×n is some
symmetric positive definite matrix. Furthermore, if e = 1, then (A.11)
holds with equality and α = 1.

Proof. Consider the domain of the impact map Z̄ in (5) re-
stricted to (q; u−) ∈ ∂A−, i.e., g(q) = 0 and u−

̸∈ TC (q).
The proximal point function in (5) simplifies to proxMTC (q)

(u−) =

(I − M−1 wwT

G )u−, where I is the identity matrix and G =

wTM−1w is the scalar Delassus-operator. Substituting into the
impact map (5) yields Zq(u−) = (I − (1 + e)M−1 wwT

G )u−. We

find ∥I − (1 + e)M−1 wwT

G ∥
2

M = M−(1−e2)wwT

G , where wTM−1w
G =

1 has been used. Hence, for a given α and (q1; u−

1 ), (q2; u−

2 ) ∈ ∂A−,Z̄ (q1
u−

1

)
− Z̄

(
q2
u−

2

)2
A

− α

(q1
u−

1

)
−

(
q2
u−

2

)2
A

= ∥Zq(u−

1 ) − Zq(u−

2 )∥
2
M − α2

∥u−

1 − u−

2 ∥
2
M

+ (1 − α)∥q1 − q2∥
2
K

=
(
u−

1 − u−

2

)TP (u−

1 − u−

2

)
+ (1 − α)∥q1 − q2∥

2
K

with P := ((1 − α2)M − (1 − e2)wwT

G ). Therefore, the inequal-
ity (A.11) is fulfilled if the matrix P is positive semi-definite for
some α ∈ (0, 1]. For two matrices P,Q ∈ Rn×n, let P ⪰ Q denote
that P − Q is positive semi-definite. We note that M ⪰ λmin(M)I ,
whereλmin(M) denotes theminimal eigenvalue ofM . Furthermore,
since wwT

wTw is a projection matrix with wwT

wTw ⪯ I , we obtain wwT

G ⪯

λmax(M)wwT

wTw ⪯ λmax(M)I , where λmax(M) denotes the maximal
eigenvalue ofM .

Let α =

√
1 − (1 − e2) cond(M) and observe α ∈ (0, 1] follows

from the assumption in the lemma. We obtain P = (1 − α2)M −

(1− e2)wwT

G ⪰ ((1− α2)λmin(M)− (1− e2)λmax(M))I = 0. Finally,
e = 1 yields α = 1 and (A.11) is fulfilled with equality. □

Proof of Lemma 2. The quotient distance function d is identical
to dI in (14)–(18) according to Theorem 1. Thus, we show the
relation between dI01 and d̂01. The definition of dI01 (16) is rewritten

explicitly using (9) and (24) as

dI01(x, y) = min
z≥0

{(qxux

)
−

(
0
ez

)+

( 0
−z

)
−

(
qy
uy

)} .

Because the explicit solution to this minimization problem is cum-
bersome and thus not suited for differentiation necessary in the
Lyapunov analysis, an approximation is used. The approximated
intermediate point z01 = max

{ uxqy−uyqx
qx+eqy

, 0
}
used in the approxi-

mation d̂01 of dI01 is the solution to the slightly alteredminimization
problem z01 = argminz≥0{∥(qx; ux) − (0; ez)∥ + e∥(0; −z) −

(qy; uy)∥}. As we are using a non-optimal minimizer, we directly
obtain an upper bound dI01 ≤ d̂01. A lower bound for d01 is obtained
by

dI01 ≥ min
z≥0

{(qxux

)
−

(
0
ez

)+ e
( 0

−z

)
−

(
qy
uy

)}
=

((qxux

)
−

(
0
ez

)+ e
( 0

−z

)
−

(
qy
uy

))⏐⏐⏐⏐
z=z01

≥ e
((qxux

)
−

(
0
ez

)+

( 0
−z

)
−

(
qy
uy

))⏐⏐⏐⏐
z=z01

= ed̂01,

where e ∈ (0, 1] has been used. Analogously, an upper and
lower bound for dI10(x, y) is obtained by d̂10(x, y) ≥ dI10(x, y) ≥

ed̂10(x, y).
We have already noted that dI00 = d̂00. Furthermore, Eq. (A.17)

in the proof of Proposition 2 (the necessary conditions for Proposi-
tion 2 are fulfilled for the impactmap (24)with e ∈ (0, 1] as shown
in Lemma 1 given in Appendix) implies dI11 ≥ αdI00 with α = e and,
thus,we obtain dI = min{dI00, d

I
01, d

I
10, d

I
11} ≤ min{dI00, d

I
01, d

I
10} ≤

min{d̂00, d̂01, d̂10} = d̂ as well as d̂ = min{d̂00, d̂01, d̂10} ≤

min{dI00,
1
e d

I
01,

1
e d

I
10} ≤ min{dI00,

1
e d

I
01,

1
e d

I
10,

1
α
dI11} ≤

1
e d

I . These
inequalities together with V (x, y) =

1
2 d̂

2(x, y) yield 1
2 (d

I )2 ≤ V ≤

1
2 (

dI
e )

2, which concludes the proof. □

Proof of Lemma 3. At a given point in time, we can distinguish
between four cases depending on whether the right- and left-
limits of x and y agree or not. For the case x−

= x+, y−
= y+,

the function V is continuous. If the state y jumps and x does not,
then u−

x qy − u−
y qx = −u−

y qx ≥ 0 and u+
x qy − u+

y qx = −u+
y qx ≤

0 together with (31) imply V−
= min{V00(x, y−), V01(x, y−)}

and V+
= min{V00(x, y+), V10(x, y−)}. Considering ux > 0, we

obtain V−
= V01(x, y−), which implies together with the impact

law (24) that V+
= V00(x, y+). Furthermore, the impact law

yields V00(x, y+) = V01(x, y−). Analogously, ux < 0 yields V−
=

V00(x, y−) = V10(x, y+) = V+. Since the candidate Lyapunov
function is symmetric, we can immediately conclude that V+

−

V−
= 0 also for the case where the state x jumps and y does

not. The differential measure V+
− V− is only non-zero if both

solutions jump simultaneously. In this case, the density is obtained
as V+

−V−
= V00(x+, y+)−V00(x−, y−) = −(1−e2)V00(x−, y−) ≤

0, where the impact map (24) has been used. Combining all four
cases concludes the proof. □

Proof of Lemma 4. For case (i) the generalized gradient of V
consists of the single element ∂V (x, y) = {∇V00(x, y)}. To-
gether with the equation of motion (22), we obtain (32). For case
(ii) we note that the term uxqy − qxuy is positive as we have
seen in (31). The differential measure V̇ evaluated using ∂V (x, y)
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= {∇V01(x, y)} yields

V̇01 = ∇V01(x, y)T
(
ẋ
ẏ

)
= (qx + qy)(ux + uy) −

(qx + qy)2

(qx + eqy)2
(ux + euy)(qx + eqy)

+
(qx + qy)
(qx + eqy)

(ux + euy)2

(qx + eqy)2
((ux + uy)(qx + eqy) (A.18)

− (qx + qy)(ux + euy)) − c
(qx + qy)2

(qx + eqy)2
(ux + euy)2

+
(qx + qy)2

(qx + eqy)2
(ux + euy)

(
(λx + eλy) − (1 + e)f − (τx + eτy)

)
.

The first two terms in (A.18) can be written as (qx + qy)(ux + uy)−
(qx+qy)2

(qx+eqy)2
(ux + euy)(qx + eqy) =

(qx+qy)
(qx+eqy)

((qx + eqy)(ux + uy) − (qx +

qy)(ux+euy)). Togetherwith (qx+eqy)(ux+uy)−(qx+qy)(ux+euy) =

(1 − e)(uxqy − uyqx), we obtain V̇01 =
(qx+qy)
(qx+eqy)

(1 − e)(uxqy −

uyqx) +
(qx+qy)
(qx+eqy)

(ux + euy)2
(1−e)(uxqy−uyqx)

(qx+eqy)2
− c (qx+qy)2

(qx+eqy)2
(ux + euy)2 +

(qx+qy)2

(qx+eqy)2
(ux + euy)

(
−(1 + e)f − (τx + eτy) + (λx + eλy)

)
, from

which (33) follows. Finally, the case (iii) is symmetric to case (ii),
since V10(x, y) = V01(y, x). □

Proof of Theorem2. The density (V+
−V−) is non-positive accord-

ing to Lemma 3. If theminimum is attained by twominimizer, then
this happens either at a (Lebesgue negligible) point in time or the
solution curve runs along the boundary of two regions for which
the density V̇ is single-valued and agrees with the limits from
either side of the boundary. Furthermore, the set of points in time
for which the density V̇ is undefined due to impacts is Lebesgue
negligible. Therefore, the density V̇ is defined for almost all t and is
equal to either V̇00, V̇01 or V̇10 given in Lemma 4 depending on the
minimizer in the definition of V .

Since the assumption qx + |ux| > r1 and qy + |uy| > r1 excludes
persistent contact, Lemma 4(i) yields

V̇00 = −c(ux − uy)2. (A.19)

In the following we will show that

V̇01 ≤ −c
(qx + qy)2

(qx + eqy)2
(ux + euy)2. (A.20)

According to Lemma 4(ii) together with τx = τy = 0 and λx =

λy = 0, (A.20) holds if Q := −(1− e) qx+qy
qx+eqy

(
1 +

(ux+euy)2

(qx+eqy)2

)
(uxqy −

qxuy) +
(qx+qy)2

(qx+eqy)2
|ux + euy|(1 + e)|f | ≤ 0. Using |f | < fmax yields

Q ≤ −(1 − e)
(qx + qy)2

qx + eqy

((
1 +

(ux + euy)2

(qx + eqy)2

)
uxqy − qxuy

qx + qy

−
|ux + euy|

qx + eqy

1 + e
1 − e

fmax

)
. (A.21)

In order to simplify (A.21) further, it is necessary to find a lower
bound for uxqy−qxuy

qx+qy
. Therefore, we assume that the condition

d̂(x, y) <
1
2
r1 (A.22)

is fulfilled for all x(t), y(t) and we argue later (see (A.24)) that
this condition is met. The condition (A.22) together with (29)
yields qx < 1

2 r1. Together with qx + |ux| > r1, we obtain |ux| >

r1 − qx > r1 −
1
2 r1 =

1
2 r1 and, analogously, we find |uy| > 1

2 r1. The
condition (A.22) together with (29) also implies |ux + euy| < 1

2 r1,
where 1 ≤

qx+qy
qx+eqy

≤
1
e has been used. The sign of ux and uy

is given by ux > 0 and uy < 0 as any other choice leads to a
contradiction. To be specific, the velocities ux and uy cannot have
the same sign as uxuy > 0 together with |ux| > 1

2 r1, |uy| > 1
2 r1

and |ux + euy| < 1
2 r1 yield the contradiction 1

2 r1 > |ux + euy| =

|ux| + e|uy| > (1 + e) 12 r1. Furthermore, ux < 0 and uy > 0
yield uxqy − qxuy ≤ 0, which contradicts V = V01. The desired
lower bound follows from ux > 1

2 r1, uy < −
1
2 r1 as uxqy−qxuy

qx+qy
>

1
2 r1qy+qx 1

2 r1
qx+qy

=
1
2 r1. Substituting

uxqy−qxuy
qx+qy

> 1
2 r1 and fmax < 1−e

1+e r1
in (A.21) yields

Q ≤ −(1 − e)
(qx + qy)2

qx + eqy

·

((
1 +

(ux + euy)2

(qx + eqy)2

)
1
2
r1 −

|ux + euy|

qx + eqy
r1

)
. (A.23)

The term Q is non-positive because the term
(
1 +

(ux+euy)2

(qx+eqy)2

)
1
2 r1 −

|ux+euy|
qx+eqy

r1 =
1
2 r1
(
1 −

|ux+euy|
qx+eqy

)2
in (A.23) is non-negative. There-

fore, (A.20) holds if the condition (A.22) ismet. The symmetry ofV01
and V10 immediately yields

V̇10 ≤ −c
(qx + qy)2

(eqx + qy)2
(eux + uy)2. (A.24)

Summarizing, V+
−V−

≤ 0 together with (A.19), (A.20) and (A.24)
imply that the Lyapunov function is non-increasing, that is, dV ≤

0. Together with d(x−, y−) ≤
1
2 r1 assumed in the theorem and

Lemma 2, we obtain that condition (A.22) is fulfilled as d̂(x, y) ≤

d̂(x−, y−) ≤
1
e d(x

−, y−) ≤
1
2 r1.

In order to keep the derivation concise, we will simply
write V (t) instead of V (x(t), y(t)) in the following. Because the
candidate Lyapunov function V is non-increasing and bounded
from below, it attains the limit

lim
t→∞

V−(t) = V∞

with 0 ≤ V∞ ≤ V−(t0). In the following, we show that V∞ =

0. Using (V+
− V−) ≤ 0 and the differential measure dV , the

candidate Lyapunov function can be written as V−(t) = V+(t0) +∫
(t0 t) dV ≤ V−(t0) +

∫
(t0 t) V̇dt . Taking the limit as t → ∞ yields

V∞ ≤ V−(t0) + lim
t→∞

∫
(t0 t)

V̇dt. (A.25)

We split the time interval I∞ = (t0, ∞) into the three sets
I∞00 = {t ∈ I∞ | V (t) = V00(t)}, I∞01 = {t ∈ I∞ | V (t) = V01 ̸= V00(t)}
and I∞10 = {t ∈ I∞ | V (t) = V10 ̸= V00(t)} and rewrite (A.25) as

V∞ ≤ V−(t0) +

∫
I∞00

V̇00dt +

∫
I∞01

V̇01dt +

∫
I∞10

V̇10dt. (A.26)

The unboundedness of I∞ implies that at least one of the cases (i)
dt(I∞00 ) = ∞, (ii) dt(I∞01 ) = ∞ or (iii) dt(I∞10 ) = ∞ holds. The
three integrals in (A.26) are non-positive and thus bounded from
below as V∞ ≥ 0. Let us first consider case (i). Substituting (A.19)
into

∫
I∞00

V̇00dt > −∞ yields∫
I∞00

c(ux − uy)2dt < ∞. (A.27)

The function (ux(t) − uy(t))2 is not absolutely continuous and
therefore we cannot invoke Barbalat’s lemma. However, the func-
tion V−

00 considered on I∞00 is asymptotically absolutely continuous
(i.e., it approaches an absolutely continuous function asymptoti-
cally [22]). Furthermore, (qx(t) − qy(t))2 is absolutely continuous
and c > 0. According to the definition V00 =

1
2 (qx − qy)2
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+
1
2 (ux − uy)2, we obtain that (ux(t) − uy(t))2 is asymptotically

absolutely continuous when considered on I∞00 . Therefore, we can
apply the extended Barbalat’s lemma3 [22] to (A.27) and ob-
tain lim t→∞

t∈I∞00
(ux(t) − uy(t))2 = 0. This limit together with the

definition of V00 yields V∞ = lim t→∞

t∈I∞00

1
2 (qx(t) − qy(t))2. The non-

impulsive dynamics of qx −qy is obtained by (22) with τx = τy = 0
and λx = λy = 0 as (u̇x − u̇y) + c(ux − uy) + (qx − qy) = 0,
from which follows that lim t→∞

t∈I∞00
|u̇x(t) − u̇y(t)| = lim t→∞

t∈I∞00
|qx(t) −

qy(t)| =
√
2V∞. The individual velocities ux(t) and uy(t) are

assumed to be functions of special locally bounded variation and,
consequently, the velocity difference ux(t) − uy(t) is a function
of special locally bounded variation as well. Therefore, the limits
lim t→∞

t∈I∞00
|ux(t) − uy(t)| = 0 and lim t→∞

t∈I∞00
|u̇x(t) − u̇y(t)| =

√
2V∞

imply lim t→∞

t∈I∞00
|u̇x(t) − u̇y(t)| = 0, that is, V∞ = 0 in case (i).

We will use the same reasoning as in case (i) to show that
V∞ = lim t→∞

t∈I∞01

1
2 (qx(t) + qy(t))2 holds in case (ii). The inequal-

ity (A.26) implies
∫
I∞01

V̇01dt > −∞ and, substituting (A.20), yields∫
I∞01

c (qx+qy)2

(qx+eqy)2
(ux + euy)2dt < ∞. The asymptotic absolute conti-

nuity of V−

01 and (qx + qy)2 when considered on I∞01 together with
the definition of V01 yields that (qx+qy)2

(qx+eqy)2
(ux + euy)2 is asymptotic

absolutely continuous as well when considered on I∞01 . The ex-
tendedBarbalat’s lemmayields lim t→∞

t∈I∞01

(qx+qy)2

(qx+eqy)2
(ux+euy)2 = 0 and,

together with the definition of V01, V∞ = lim t→∞

t∈I∞01

1
2 (qx(t)+ qy(t))2.

In the following, we will use a proof of contradiction to show
that V∞ = 0 in case (ii) as well.

Let us assume that V∞ > r2 for some r2 > 0. Taking the
limit lim t→∞

t∈I∞01
of (33) in Lemma 4(ii) and substituting lim t→∞

t∈I∞01
|ux +

euy| = 0 yields

lim
t→∞

t∈I∞01

V̇01 = lim
t→∞

t∈I∞01

−(1 − e)
qx + qy
qx + eqy

(uxqy − qxuy). (A.28)

In the derivation of (A.20), we have noticed the two inequalities
uxqy−qxuy

qx+qy
> 1

2 r1 and qx + qy < 1
2 r1. The latter implies 1

qx+eqy
≥

1
e

1
qx+qy

> 1
e

1
1
2 r1

. Substituting into (A.28) yields lim t→∞

t∈I∞01
V̇01 ≤

−
1−e
e lim t→∞

t∈I∞01
(qx + qy)2. Together with the assumption V∞ =

lim t→∞

t∈I∞01

1
2 (qx(t) + qy(t))2 > r2, we obtain

lim
t→∞

t∈I∞01

V̇01 ≤ −2
1 − e
e

r2. (A.29)

The limit (A.29) implies that the integral
∫
I∞01

V̇01dt is not bounded
from below, which contradicts V∞ ≥ 0. Therefore, V∞ = 0
must hold in case (ii). The symmetry of V01 and V10 immediately
yields V∞ = 0 also in case (iii).

The Lyapunov function V is positive definite in the distance
function d as shown in Lemma 2. Consequently, dV ≤ 0 implies
∀ε > 0 : d(x(t0), y(t0)) < min{eε, e

2 r1} ≤ eε ⇒ d(x(t), y(t)) <

min{ε, 1
2 r1} ≤ ε, ∀t ≥ t0. Furthermore, V∞ = 0 implies

d(x(t0), y(t0)) < min{e ε, e
2 r1} ⇒ limt→∞d(x(t), y(t)) = 0.

Therefore, local synchronization is achieved according to Defini-
tion 2, which concludes the proof. □

3 Small adjustments are necessary to apply thementioned lemma here. Since we
consider only the domain I∞00 ⊂ R, the limit limt→∞ is substitutedwith lim t→∞

t∈I∞0
and

the proof is adjusted accordingly.

Proof of Theorem 3. Let V (t) = V (x(t), y(t)) be the candidate
Lyapunov function defined by (26)–(30) evaluated along the so-
lutions of (22)–(24) with τx, τy defined by (35)–(36). As we have
seen in Theorem2, the density (V+

−V−) is non-positive according
to Lemma 3. In the following, we will show that the differential
measure V̇ is bounded from above almost everywhere by

V̇ ≤ −c(ux − uy)2 if V = V00, (A.30)

V̇ ≤ −c
(qx + qy)2

(qx + eqy)2
(ux + euy)2 if V = V01 ̸= V00, (A.31)

V̇ ≤ −c
(qx + qy)2

(eqx + qy)2
(eux + uy)2 if V = V10 ̸= V00. (A.32)

First, we consider the case for which both constraints are open and
the constraint forces vanish. The interaction law (35)–(36) yields
κx = κy = 0 for min{V01, V10} ≥ V00 and κx = κy = −f
for min{V01, V10} < V00. Substituting λx = λy = 0 and κx =

κy = 0 into Lemma 4(i) yields that (A.30) is fulfilled. Furthermore,
substituting λx = λy = 0 and κx = κy = −f into Lemma
4(ii) and (iii) yields that (A.31) and (A.32) are fulfilled because
uxqy − qxuy > 0 for V01 < V00 and uxqy − qxuy < 0 for V10 < V00.

Secondly, we consider the case qx = 0 and qy > 0. Note that
we only need to consider persistent contact in the evaluation of V̇
as {t | qx(t) ∧ ux(t) ̸= 0} and {t | qx(t) ∧ ux(t) = 0 ∧ u̇x(t) ̸= 0} are
Lebesgue negligible. Persistent contact of x yields λx − f (t) − τx =

0 according to (22). Furthermore, the definition of the candidate
Lyapunov function yields V = V00 if one state is in persistent
contact and the interaction law (35)–(36) yields κx = 0, κy = −f .
Substituting into Lemma 4(i) yields (A.30). Analogously, if qx > 0
and y is in persistent contact, then (A.30) is fulfilled with κx = −f
and κy = 0. Finally, if both contacts are persistent, then both states
are identical, the candidate Lyapunov function is zero and there are
no coupling forces.

The coupling forces switch depending on the state and the
solution concept of Filippov is used such that sliding modes may
occur. According to the interaction law (35)–(36), we need to
consider the following three switching surfaces: (a) qx > 0, qy > 0,
min{V01, V10} = V00, (b) qx = ux = 0, qy > 0 and (c) qx > 0,
qy = uy = 0. In case (a), the convexification of (35)–(36) yields
τx = τy ∈ [−|f |, |f |]. However, any choice of τx = τy together with
λx = λy = 0 fulfills (A.30) according to Lemma 4(i). In case (b), the
convexification of (35)–(36) yields τx ∈ [−|f |, |f |] and τy = 0. A
persistent contact qx = 0 implies λx − f (t) − τx = 0 according
to (22) and V = V00. Together with λy = 0, Lemma 4(i) yields
(A.30). Finally, the case (c) is symmetric to case (b). Therefore, the
differential measure dV fulfills (A.30)–(A.32) for almost all t also
on the sliding surfaces.

The remaining part of the proof is very close to the proof of
Theorem2. The candidate Lyapunov function V (t) in not increasing
neither during continuous flow nor at discontinuity points, that is,
dV ≤ 0. Furthermore, V is bounded from below, thus attaining a
limit limt→∞ V−(t) = V∞. In the following, we show V∞ = 0.

As in the proof of Theorem 2, the time interval I∞ = (t0, ∞)
is split into the three sets I∞00 = {t ∈ I∞ | V (t) = V00(t)},
I∞01 = {t ∈ I∞ | V (t) = V01 ̸= V00(t)} and I∞10 = {t ∈

I∞ | V (t) = V10 ̸= V00(t)}. Furthermore, dt(I∞) = ∞ implies
that at least one of the cases (i) dt(I∞00 ) = ∞, (ii) dt(I∞01 ) = ∞

or (iii) dt(I∞10 ) = ∞ has to hold. Using the same arguments as in
the proof of Theorem 2, it holds for case (i) that (ux(t) − uy(t))2

considered on I∞00 is asymptotically absolutely continuous. The
extendedBarbalat’s lemma [22] implies lim t→∞

t∈I∞00
(ux(t)−uy(t))2 = 0

and, thus, V∞ = lim t→∞

t∈I∞00

1
2 (qx − qy)2. Analogously for case (ii),
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we obtain lim t→∞

t∈I∞01

(qx+qy)2

(qx+eqy)2
(ux + euy)2 = 0 and, thus, V∞ =

lim t→∞

t∈I∞01

1
2 (qx +qy)2. Case (iii) yields lim t→∞

t∈I∞10

(qx+qy)2

(eqx+qy)2
(eux +uy)2 = 0

and, thus, V∞ = lim t→∞

t∈I∞10

1
2 (qx + qy)2. As we have seen before,

V = V00 always implies λx − f (t) − τx = λy − f (t) − τy.
The non-impulsive dynamics of qx − qy is obtained by (22) as
u̇x− u̇y+cux−uy+qx−qy = 0, which is valid for almost all t ∈ I∞00 .
In case (i), together with V∞ = lim t→∞

t∈I∞00

1
2 (qx − qy)2 and using the

same arguments as in the proof of Theorem 2 yields V∞ = 0. For
the cases (ii) and (iii), we consider the evolution of qx +qy. Because
λx − f (t) − τx = 0 and λy − f (t) − τy = 0 whenever V = V01 ̸=

V00 or V = V10 ̸= V00, the dynamics is obtained using (22) as
u̇x + u̇y + cux + uy + qx + qy = τx + τy + 2f (t) = 0, which is valid
for almost all t ∈ I∞01 ∪ I∞10 . Together with V∞ = lim t→∞

t∈I∞01

1
2 (qx + qy)2

in case (ii) and V∞ = lim t→∞

t∈I∞10

1
2 (qx + qy)2 in case (iii), we obtain

V∞ = 0 also in these cases.
Condition (20) is fulfilled with δ(ε) = eε using dV ≤ 0 and

Lemma 2. Furthermore, limt→∞V (t) = 0 together with Lemma 2
yield that condition (21) is fulfilled for any δ0. Therefore, global
synchronization is achieved in the sense of Definition 2. □
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