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SUMMARY

We present the design of a state observer for Lagrangian systems subjected to frictionless geometric uni-
lateral constraints. A master–slave synchronization setup is used in which the unidirectional coupling only
consists of the information of the impact time instants. After a brief synchronization phase, the obtained
observer replicates the full state of the observed system, independently of the initial conditions and even in
the presence of accumulation points (Zeno behavior).

The key idea is that the (virtual) observer system is subjected to switched kinematic unilateral constraints
such that it may enjoy the property of incremental stability when the impact law is maximal monotone. The
main inequality impact laws for hard unilateral constraints, that is, the generalized Poisson’s and Newton’s
impact law, are under mild assumptions maximal monotone, which is a stronger condition than dissipativity.
The results are applied to two different examples of mechanical impact oscillators. Copyright © 2015 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we prove sufficient conditions for incremental stability of Lagrangian systems
subjected to switched kinematic unilateral constraints and apply the results to the observer design
of impact oscillators. The proposed observer uses only the Boolean contact information, that is,
which contacts of the observed system are open or closed. No additional measurements of the state
are necessary.

Incremental stability, being a system property, and several similar notions have been presented in
the literature [1–5]. A system, possibly excited by an input (e.g., a forced mechanical system), is
called (attractively) incrementally stable if all solution curves approach each other in forward time.
Incremental stability is beneficial in many control problems such as stabilization, tracking control,
output regulation problems, synchronization, and observer design [6–9].

A closely related stability notion of dynamical systems is the concept of convergence from
nonlinear stability theory, which has been developed in the 1960s in the Russian research commu-
nity [10–12] and is currently a topic of active research (e.g., [6]). A convergent system guarantees
the existence of a globally attractively stable steady-state solution which is bounded on the whole
time axis. Therefore, an incrementally stable system that admits a steady-state solution is conver-
gent. However, incremental stability and convergence are distinct stability notions as has been shown
in [13]. Although the convergence property has useful implications, the existence of a steady-state
solution is no prerequisite with regard to synchronization and observer design.
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The present paper is concerned with the dynamics of Lagrangian systems with unilateral
constraints, that is, mechanical systems with contacts. Such type of non-smooth systems can con-
veniently be described using the framework of measure differential inclusions [14–19]. Within this
framework, the system states are assumed to be special functions of locally bounded variation [20].
Phenomena such as accumulation points (infinitely many jumps in a finite time interval) are not
ruled out.

A classical problem in control theory is how to obtain state estimates for systems of which not the
full state is measured and/or the measurements are corrupted by noise. The design of state observers
for non-smooth systems is a challenging task, because classical approaches such as Kalman filtering,
Luenberger observers, or high-gain observers [21–23] are not (directly) applicable. A commonly
used approach is to design model-based state observers of the same dimension as the observed
system such that the state of the observer acts directly as estimate. In this case, the objective becomes
a synchronization problem as has been studied in, for example, [24, 25]. The link between observer
design and synchronization is discussed in [26].

Observer design for various classes of non-smooth systems has been widely investigated in the
literature. In [27], a convergence-based approach has been presented for a synchronization problem
for piecewise affine systems, whereas observer design for piecewise linear systems is discussed in
[28]. The problem of observer design for Lur’e systems with multivalued mappings in the feedback
path, which can be described by differential inclusions, is discussed in [29]. For systems with impul-
sive motion, we need to distinguish between settings in which the states of the observer and the
reference trajectory jump at the same time or not. If the impact time instants do not coincide, then
the (Euclidean) observer error may exhibit a ‘peaking behavior’ as has been discussed in [16, 30,
31]. In this case of mismatched discontinuities, a more sophisticated definition of an observer error
is necessary as has been introduced in [32]. Otherwise, if the discontinuities occur at the same time
instants, then (attractive) stability of the error dynamics can be shown if there exists a Lyapunov
function using the (Euclidean) error that is non-increasing during neither continuous nor impulsive
motion. In [33] and [34], state observers for impacting mechanical systems in the absence of accu-
mulation points have been presented. The case of coinciding impact time instants has also been
studied in [9] for linear complementarity systems and in [35] for measure differential inclusions.
All these proposed observers rely on continuous measurements of the observed system.

The novelty of the paper is that an observer for impact oscillators is developed, which uses only
the knowledge of the impact time instants and no additional continuous measurement is necessary.
A key aspect in the observer design is that we introduce a conceptually new type of unilateral
constraints to ensure coinciding impact time instants of the observer and the observed system. The
class of Lagrangian systems subjected to unilateral constraints, which we consider here, does not
require the strict passivity property, as has been assumed in, for example, [35]. More precisely,
the transfer matrix of the linear part of the system is in our case (in the absence of additional
measurements) only positive real and not strictly positive real [36]. Mechanical systems (without
any feedback) do generally not fulfill the strict passivity condition.

The paper contributes to the research fields non-smooth dynamics, stability theory, and control
theory in a number of different ways. Firstly, the concept of switched kinematic unilateral constraints
is introduced in this paper. Using this concept, it can be ensured that (when comparing different solu-
tion curves) the impact time instants coincide, omitting the undesired ‘peaking behavior’. Secondly,
it is shown under which conditions Lagrangian systems subjected to switched kinematic unilat-
eral constraints enjoy the property of attractive incremental stability. Finally, an observer design for
Lagrangian systems with geometric unilateral constraints is presented using the attractive incremen-
tal stability property. The proposed observer is based on master–slave synchronization, where the
unidirectional coupling consists only of the information of impact time instants.

This paper is organized as follows. The property of attractive incremental stability is defined
for measure differential inclusions in Section 2. Various unilateral constraints for mechanical sys-
tems, especially switched kinematic unilateral constraints, are discussed in Section 3. Subsequently,
Section 4 briefly reviews the generalized Newton’s and generalized Poisson’s impact law and dis-
cusses their compatibility with switched constraints. The property of maximal monotonicity of
impact laws and its implications is discussed in Section 5. It is shown in Section 6 under which
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conditions Lagrangian systems with switched kinematic unilateral constraints are attractively incre-
mentally stable. The application to synchronization-based observer design is presented in Section 7,
which is illustrated with two examples of mechanical impact oscillators. Finally, the relationship
with the concept of convergence and other conclusions are discussed in Section 8.

2. ATTRACTIVE INCREMENTAL STABILITY

Attractive incremental stability (a.i.s.) is a stability property of a dynamical system that implies that
all solution curves approach each other and remain close in a Lyapunov sense. To be more pre-
cise, we define the attractive incremental stability property of a time-invariant measure differential
inclusion with inputs of the form

dx 2 d�.x;w/; (1)

where x.t/ 2 Rn is the state vector and w.t/ 2 Rd is the time-varying input [16]. The admissible
set of the states is given by the set A; and we will restrict the input w.t/ to a certain class of
functions W .

A solution x.t/ D '.t; t0;x0/ of the measure differential inclusion (1) with the initial condi-
tion x0 is a function x W R! Rn, being of locally bounded variation, which fulfills (1) for all t > t0
and which is defined almost everywhere on the time axis [16]. The term almost everywhere captures
that the state is not defined at its discontinuity points. In the following, almost everywhere will be
referred to as a.e. and is always considered with respect to the Lebesgue measure.

Definition 1
System (1) is said to be attractively incrementally stable if for all t0 2 R, admissible initial condi-
tions x1, x2 2 A, inputs w.t/ 2 W , and corresponding solution curves '.t; t0;xi / (i D 1; 2), it
holds that for any " > 0; there exists a ı D ı."/ such that kx1 � x2k < ı implies k'.t; t0;x1/ �
'.t; t0;x2/k < " for almost all t > t0 and additionally limt!1 k'.t; t0;x1/ � '.t; t0;x2/k D 0:

A measure differential inclusion of the form (1) is therefore a.i.s. if all solution curves are globally
uniformly attractively stable. An a.i.s. system ‘forgets’ the initial conditions, and all solutions con-
verge to each other (Figure 1). The wording ‘attractively stable’ has been used instead of the usual
term ‘asymptotically stable’, because attractivity of solutions of (measure) differential inclusions
can be asymptotic or symptotic (finite-time attractivity) [16]. Definition 1 of incremental stabil-
ity considers only global attractivity and uniform stability. Other incremental stability notions have
been presented in literature (e.g., [4, 5]).

Remark 1
Closely related to incremental stability is (uniform) convergence [10, 12]. A uniformly convergent
system admits a globally uniformly attractively stable steady-state solution, which is bounded for
almost all t 2 R. If an a.i.s. system admits a steady-state solution, then the system is uniformly con-
vergent [13, 16]. A standard way to prove the existence of a steady-state solution is to find a compact
positively invariant set. This type of proof has been given in the literature [12, 37] for certain classes
of smooth dynamical systems, and the extension of this technique to non-smooth systems described
by measure differential inclusions has been proposed in [16]. A uniformly convergent system has
useful properties such as uniqueness of the steady-state solution and that a periodic (or constant)
input implies a periodic (or constant) steady-state solution. These properties have been proven in [6]

Figure 1. All solutions of an attractively incrementally stable (a.i.s.) system converge to one another for
every input w.t/ 2W .
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for differential inclusions. Here, we develop a synchronization-based state observer for mechanical
systems with impacts, and the existence of a steady-state solution is therefore not essential. Hence,
we focus on the property of attractive incremental stability.

3. MECHANICAL SYSTEMS WITH UNILATERAL CONSTRAINTS

We consider an f -DOF linear time-invariant Lagrangian system. The system is subjected to a
time-dependent external forcing and perfect unilateral constraints. Let q 2 Rf be the generalized
coordinates and u 2 Rf be the generalized velocities. The non-impulsive dynamics of the system
is described by the kinematic equation Pq D u a.e. and the equation of motion

M PuC CuCKq D W �C f .t/ a.e.; (2)

where the mass matrixM 2 Rf �f and the stiffness matrix K 2 Rf �f are symmetric. The system
matrices M , C , and K are time invariant and positive definite. The time-dependent external forc-
ing f .t/ is bounded. The motion of the system is restricted by m unilateral constraints 0 6 g.q/ 2
Rm, which invoke constraint forces � 2 Rm together with generalized force directionsW 2 Rf �m,
which we assume to be linearly independent.

Correspondingly, the impulsive dynamics is described by the impact equation

M .uC � u�/ D W ƒ; (3)

where u� and uC denote the pre-impact and post-impact velocities and ƒ 2 Rm are the impulsive
constraint forces. The generalized coordinates q.t/ are absolutely continuous w.r.t. time, whereas
the generalized velocities u.t/ are special functions of locally bounded variation.

The equation of motion (2) and the impact (3) need to be complemented with a force law for
the constraint forces � and an impact law for the constraint impulses ƒ. These constitutive laws
depend on the type of the unilateral constraints and typically operate on local kinematic quantities.
We will assume that the constraint distances g.q/ are an affine function of the generalized
coordinates q, and the constraint velocities �.u/ are a linear function of the generalized velocities u,
that is,

g D W Tq C gr ;

� D W Tu;
(4)

where gr 2 Rm is a constant vector. In the following, the force and impact laws for the unilateral
constraints will be formulated using the so-called unilateral primitive Upr [19] defined by

Upr.x/ D @�
RC
0

D

8<
:
0 if x > 0;
.�1; 0� if x D 0;
; if x < 0;

(5)

which is the subdifferential of the indicator function �
RC
0

on the set RC0 . Using the unilateral prim-
itive Upr, an inequality complementarity is expressed as �y 2 Upr.x/, which is identical to x > 0,
y > 0, and xy D 0. If x;y 2 Rn, we use the notation �y 2 Upr.x/” 0 6 x ? y > 0 [16, 19].

Three types of perfect unilateral constraints will be considered:

(1) A kinematic unilateral constraint restricts the sign of a constraint velocity �i .u/ > 0 (where i
is the index of the considered unilateral constraint), thereby allowing for relative motion in
positive direction and blocking in the opposite direction. Kinematic unilateral constraints are
also known as one-way clutches or sprag clutches. The force law of a kinematic unilateral
constraint is described by the inequality complementarity

� �i 2 Upr.�i /: (6)
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(2) A switched kinematic unilateral constraint imposes a kinematic unilateral constraint �i .u/ > 0
whenever the corresponding Boolean switching function �i .t/ D 1 and imposes no con-
straint if �i .t/ D 0. The switching function �i .t/ W R 7! ¹0; 1º is an external input and thus
independent of the states. The force law is described by the inequality complementarity

� �i 2

²
Upr.�i / if �i .t/ D 1;
0 if �i .t/ D 0:

(7)

(3) A geometric unilateral constraint, also known as impenetrability constraint, restricts the sign
of a constraint distance gi .q/ > 0. Its force law is described by the inequality complementarity
(also referred to as Signorini’s law)

� �i 2 Upr.gi /; (8)

which can also be written on velocity level [19] as

� �i 2

²
Upr.�i / if gi .q/ D 0;
0 if gi .q/ > 0:

(9)

The switched kinematic unilateral constraints are ‘time triggered’, and �.t/ is an external input
independent of the constraint velocities � . This is contrary to the ‘state-triggered’ geometric unilat-
eral constraints, where the set of closed contacts is given by the constraint distances g. In the case
of geometric unilateral constraints, there exists a causality between the constraint distances g and
the constraint velocities � given by � D Pg for almost all t . In order to relate these two types of
constraints, we make the following definition.

Definition 2
The Boolean switching functions �.t/ are called to be generated by g.t/ if every component �i .t/
of �.t/ fulfills

�i .t/ D

²
1 if gi .t/ D 0;
0 if gi .t/ > 0:

(10)

By comparing the force laws (7) and (9), we observe that geometric unilateral constraints are
equivalent to switched kinematic unilateral constraints if the Boolean switching functions �.t/ are
generated by the constraint distances g.

4. IMPACT LAWS FOR PERFECT UNILATERAL CONSTRAINTS

In this section, we briefly summarize the generalized Newton’s impact law and the generalized
Poisson’s impact law, being the main inequality impact laws for hard unilateral constraints [16, 19,
38]. Each of these impact laws will be formulated here for perfect (frictionless) unilateral constraints
but may very well be extended to unilateral constraints with friction.

4.1. Generalized Newton’s impact law

The classical Newton’s impact law for a closed geometric unilateral constraint i

�Ci D �"i�
�
i ; gi D 0; 0 6 "i 6 1 (11)

relates the post-impact velocity �Ci to the pre-impact velocity ��i by a Newtonian coefficient of
restitution "i 2 Œ0; 1�. The case "i D 1 corresponds to a completely elastic impact, whereas "i D 0

corresponds to a completely inelastic impact. The impact causing the sudden change in constraint
velocity is accompanied by a constraint impulseƒi > 0. A unilateral constraint is called superfluous
if it does not participate in the impact, although the geometric unilateral constraint is closed/active
(gi D 0 for a geometric unilateral constraint or �i D 1 for a switched unilateral constraint).
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For ��i < 0; the occurrence of such a superfluous constraint only occurs for multi-constraint situa-
tions. Following [14, 38], we generalize the classical Newton’s impact law to account for superfluous
constraints by allowing post-impact constraint velocities larger than those prescribed by Newton’s
impact law in the case of a non-vanishing impulse, that is, �Ci > �"i��i . Summarizing, two cases
can occur at a closed/active unilateral constraint i :

(1) The unilateral constraint is participating in the impact process, that is, ƒi > 0 and �Ci D
�"i�

�
i .

(2) The unilateral constraint is superfluous, that is, ƒi D 0 and �Ci > �"i��i .

These two cases are combined in an inequality complementarity impact law on velocity–impulse
level as 0 6 ƒi ? .�Ci C "i��i / > 0, whereas ƒi D 0 if gi > 0 (or �i D 0/. Using the unilateral
primitive and �i D �

C
i C "i�

�
i , the inequality complementarity can be written in the form

�ƒi 2

²
Upr.�i / if gi D 0;
0 if gi > 0:

(12)

The generalized Newton’s impact law (12) is the simplest inequality impact law for hard unilat-
eral constraints as it only uses a single inequality complementarity. If the pre-impact velocities
fulfill ��i 6 0, then the post-impact velocities are admissible because of �Ci > �"i��i > 0.
The kinematic consistency [39] of the post-impact velocities �Ci > 0 of the generalized Newton’s
impact law therefore follows from the sign of the pre-impact velocities. This sign condition natu-
rally holds for geometric unilateral constraints as the bodies have to approach each other in order
to come into contact. However, this condition does no longer hold for switched kinematic unilateral
constraints, and the post-impact velocities are not generally admissible. The generalized Newton’s
impact law (12) is therefore not compatible with switched kinematic unilateral constraints.

4.2. Generalized Poisson’s impact law

The generalized Poisson’s impact law [38, 40] distinguishes between a compression phase and an
expansion phase. The impulsive forces maximize the reduction in the associated kinetic energy
within their admissible set. The compression phase ends when the normal relative velocities van-
ish. This corresponds to a completely inelastic collision and can be represented by the generalized
Newton’s impact law with "i D 0 as

M .uC � u�/ D W ƒC ; �ƒCi 2 Upr
�
�Ci
�
: (13)

The compression constraint impulses ƒC and the constraint velocities after the compression
phase �C are therefore nonnegative (by components).

The deformation energy gained during the compression is partly released during the expansion
phase and reconverted into kinetic energy. The dissipative behavior is expressed by the Poisson’s
restitution coefficients "i , which relate the expansion impulse to the compression impulse. The
expansion phase is described by an inequality complementarity as

M .uC � uC / D W ƒE ; �
�
ƒEi � "iƒ

C
i

�
2 Upr

�
�Ci
�
: (14)

Addition of (13) and (14) yields (3) with ƒ D ƒC C ƒE . The generalized Poisson’s impact
law is able to describe certain restitution effects of multi-constraint collisions that are not possi-
ble to describe with the generalized Newton’s impact law. The differences between the generalized
Newton’s impact law and the generalized Poisson’s impact law are explained in detail in [38–40].

The inequality complementarity of the expansion phase explicitly guarantees the kinematic
consistency of the post-impact velocities �Ci > 0 (independent of the sign of the pre-impact
velocities). This is achieved by increasing the expansion constraint impulse ƒEi for negative �Ci
until admissible post-impact velocities are achieved. Therefore, the generalized Poisson’s impact
law is, in contrast to the generalized Newton’s impact law, compatible with switched kinematic
unilateral constraints.
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5. MAXIMAL MONOTONICITY OF IMPACT LAWS

An impact law is usually expressed using the pre-impact and post-impact velocities �� and �C

(or u� and uC). In [17, 41, 42], a different kind of representation is proposed, which allows reflect-
ing the specific mathematical properties of the impact law. The key idea is to express the impact law
in dual variables. Hereto, we consider the kinetic energy T dissipated in the impact process

TC � T � D
1

2
uC

T
MuC �

1

2
u�TMu� D

1

2
.uC C u�/TM .uC � u�/

D
1

2
.uC C u�/TW ƒ D

1

2
.�C C ��/Tƒ D N�Tƒ;

(15)

where the impact (3), the kinematic relationship (4), and the symmetry of the mass matrix have been
used. In (15), we identify the kinematic quantity

N� D
1

2

�
�C C ��

�
; (16)

which one could call the ‘mean’ constraint velocity of the impact. The kinematic variable N� and
the kinetic variable ƒ are therefore dual variables in the sense that ı N�Tƒ is the virtual work of the
impulsive constraint force. Hence, we formulate the impact law as a set-valued relationship between
these dual variables as

�ƒ 2 H. N�/: (17)

The set-valued impact map H W Rm� Rm depends on which contacts are closed or open.
It will become apparent in Section 6 that the maximal monotonicity of the impact map H is

essential for the attractive incremental stability of Lagrangian systems with unilateral constraints.
We first recall the definition of maximal monotonicity of a set-valued function [43].

Definition 3 (Maximal monotonicity of a set-valued function)
A set-valued function F is called monotone if its graph is monotone in the sense that

.y1 � y2/
T.x1 � x2/ > 0 (18)

for all .x1;y1/ and .x2;y2/ such that y1 2 F.x1/ and y2 2 F.x2/. Furthermore, F is called
maximal monotone if it is monotone and if there exists no other monotone set-valued function whose
graph strictly contains the graph of F .

The generalized Newton’s impact law and the generalized Poisson’s impact law are both max-
imal monotone for a global coefficient of restitution. This property persists if the coefficients of
restitutions are different but close to each other or sufficiently small [41, 42].

Remark 2
Typically, an impact law fulfills that vanishing pre-impact velocities �� D 0 lead to vanishing
impulsive forces ƒ and therefore vanishing post-impact velocities �C D �� D 0. This implies the
natural condition 0 2 H.0/. If the impact map is maximal monotone and the natural condition is
fulfilled, we obtain �.ƒ � 0/T. N� � 0/ D �.TC � T �/ > 0. In this case, the impact dissipation
is positive. That is, the impact work is negative. We conclude that maximal monotonicity of the
impact law is a stronger condition than dissipativity. The generalized Newton’s impact law and the
generalized Poisson’s impact law are both dissipative for perfect unilateral constraints, "i 2 Œ0; 1�
and ��i 6 0 [39, 40].

Remark 3
If the impact map H enjoys the cyclic maximal monotonicity property, which is an even stronger
condition than maximal monotonicity [43], then the impact map can be written as the subdifferential
of a convex proper lower semi-continuous dissipation function as is discussed in [41].
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The impact law can also be defined by the mapping S W �C D S.��/ from pre-impact to post-
impact constraint velocities or the mapping Z W uC D Z.u�/ from pre-impact to post-impact
generalized velocities. In [41], the impact map H and the mappings S andZ are explicitly given for
the generalized Newton’s impact map. The property of maximal monotonicity of H is related to the
non-expansivity of the mappings S and Z in the following way.

Proposition 1
If and only if H is maximal monotone, then the mappings S and Z are maximal non-expansive,
each in their own metric [41, 43], that is,

�C D S.��/ maximal non-expansive in G�1 W k�C1 � �
C
2 k

2

G�1
6 k��1 � ��2 k2G�1 ; (19)

uC D Z.u�/ maximal non-expansive inM W kuC1 � u
C
2 k

2
M 6 ku�1 � u�2 k2M ; (20)

where G D W TM�1W is the Delassus matrix.

Proof
The monotonicity condition (18) of H can be written as

0 >2. N�1 � N�2/T.ƒ1 �ƒ2/
D
�
�C1 C �

�
1 � �

C
2 � �

�
2

�T
G�1

�
�C1 � �

�
1 � �

C
2 C �

�
2

�
Dk�C1 � �

C
2 k

2

G�1
� k��1 � �

�
2 k
2

G�1
;

where (3), (16), and the symmetry of G have been used. Analogously, the monotonicity condi-
tion (18) of H can be rewritten as

0 >2. N�1 � N�2/T.ƒ1 �ƒ2/
D
�
uC1 C u

�
1 � u

C
2 � u

�
2

�T
W .ƒ1 �ƒ2/

DkuC1 � u
C
2 k

2
M � ku

�
1 � u

�
2 k
2
M ;

where (3), (4), (16), and the symmetry ofM have been used. �
The impact maps depend on the set of closed contacts, given by the switching functions �.t/ or

the constraint distances g, which is indicated using a subscript for

switched kinematic unilateral constraints: �ƒ 2 H�.t/. N�/; (21)

and geometric unilateral constraints: �ƒ 2 Hg. N�/: (22)

Naturally, the constraint impulses vanish if all constraints are open or switched off, respectively.
If we consider two different impact processes .ƒ1; N�1/ and .ƒ2; N�2/ of a system with geometric
unilateral constraints, then the constraint distances g1 and g2 are generally unequal, and therefore,
the set of closed contacts differ. In this case, it is meaningless to evaluate the maximal monotonicity
condition (18), because the impacting processes are described by different impact maps Hg1 and
Hg2 . This problem does not occur for switched kinematic unilateral constraints as the switching
functions �.t/ are an external input and therefore identical for all considered solutions. Hence, for
the maximal monotonicity condition (18) for switched constraints, we evaluate the condition

.ƒ1 �ƒ2/
T. N�1 � N�2/ 6 0 (23)

with �ƒ1 2 H�.t/. N�1/ and �ƒ2 2 H�.t/. N�2/ for the same values of �.t/. The concept of switched
kinematic unilateral constraints is thus necessary to exploit the maximal monotonicity property of
the impact law or, equivalently, the non-expansivity of the mappingZ. These properties will directly
be used to show the attractive incremental stability of constrained Lagrangian systems in Section 6.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:2542–2563
DOI: 10.1002/rnc



2550 M. BAUMANN AND R. I. LEINE

6. ATTRACTIVE INCREMENTAL STABILITY OF LAGRANGIAN SYSTEMS WITH
SWITCHED KINEMATIC UNILATERAL CONSTRAINTS

In this section, we show how the property of maximal monotonicity leads to attractive incremental
stability of constrained dynamical systems. More specifically, we consider forced linear time-
invariant Lagrangian systems with positive definite system matrices that are subjected to switched
kinematic unilateral constraints. Let us briefly summarize the full set of equations. The dynamics is
described by the kinematic equation, equation of motion, and impact equation

Pq D u a.e.;
M PuC CuCKq D W �C f .t/ a.e.; (24)

M .uC � u�/ D W ƒ; (25)

and the force and impact law

� �i 2

´
Upr.�i / if �i .t/ D 1;
0 if �i .t/ D 0; (26)

�ƒ 2 H�.t/. N�/; where N� D
1

2
.�C C ��/; (27)

together with the local kinematics

� D W Tu: (28)

Each switched kinematic unilateral constraint i is defined by a switched inequality complemen-
tarity (26) with a corresponding impact law (27) defined using the dual variables N� and ƒ. The
damping matrix C � 0 is assumed to be positive definite. The mass matrix M D MT � 0 as
well as the stiffness matrix K D KT � 0 are assumed to be symmetric and positive definite. The
Delassus matrix G D W TM�1W � 0 is positive definite because of the linear independence of
the generalized force directions. The constrained Lagrangian system (24)–(28) is chosen as simple
as possible in order to keep the further analysis concise.

Before we state Theorem 1, which claims the a.i.s. of (24)–(28), we need to make several assump-
tions. One important assumption is that no switched unilateral constraint can stay persistent forever
in forward time. Hereto, using the notation

Qa�t .t/ D
1

�t

Z tC�t

t

a.	/ d	 for a given �t > 0; (29)

we define the classes of functions K and Km as follows.

Definition 4
A Boolean switching function �.t/ is of class K if for each t; there exists a t�.t/ > t and a number
�t > 0 independent of t such that Q��t .t�/ D 0. Furthermore, the functions �.t/ are of class Km if
each component �i .t/ is of class K.

We will make the following assumptions on the system:

(A1) The switching functions �.t/ are of class Km and are generated by absolutely continuous
functions.

(A2) The external forcing f .t/ is bounded, that is, supt2R kf .t/k 6 fmax, for a given bound
fmax <1.

(A3) The impact map H�.t/. N�/ is maximal monotone.
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Assumption (A1) guarantees that the Lebesgue measure of the sum of time intervals for which
each constraint is switched off is infinite. This assumption does not exclude accumulation points,
but it guarantees that eventually, every constraint will open again after an accumulation point and
subsequent phase of persistent contact. Furthermore, the switching functions �.t/ are assumed to
be generated by absolutely continuous functions from which follows that all intervals during which
a constraint is switched off are open time intervals. This property together with Assumption (A2) is
used for the existence of solutions, but this is not in the scope of this paper.

The system (24)–(28) with given switching functions �.t/ can be written in the form (1), where
the inputw.t/ comprises the switching functions �.t/ and external forcing f .t/. Now, we are ready
to make the desired statement concerning the a.i.s. of (24)–(28) in the following theorem.

Theorem 1
System (24)–(28) for given switching functions �.t/ together with Assumptions (A1)–(A3) is
attractively incrementally stable.

Proof
According to Definition 1, we need to show that all solution curves of system (24)–(28) are
globally uniformly attractively stable. Therefore, consider two arbitrary solutions .q1.t/;u1.t//
and .q2.t/;u2.t// of system (24)–(28) for given switching functions �.t/. Let e D q1 � q2 and
v D u1 � u2 be the position and the velocity error between these two solutions, which we gather in
the state vector xe D

�
eT vT

�T
of the error dynamics. The Lyapunov function

V.xe/ D
1

2
ku1 � u2k

2
M C

1

2
kq1 � q2k

2
K D

1

2
kvk2M C

1

2
kek2K (30)

gives a notion of distance between these two solutions and is positive definite because of the positive
definiteness of the matricesM and K . The two solutions agree if and only if V D 0.

The Lyapunov function V.xe.t// given by (30) evaluated along the solution xe.t/ is a spe-
cial function of locally bounded variation in t , because the generalized velocities u.t/ are special
functions of bounded variation and the generalized coordinates q.t/ are absolutely continuous.
Therefore, the differential measure of the Lyapunov function dV contains a density PV with respect
to the Lebesgue measure dt and a density V C�V � with respect to a purely atomic measure d
 [20].
Because of the quadratic form of V , we have dV D PV dt C .V C � V �/d
 D 1

2
.vCC v�/TMdvC

eTKde. The density PV is given by

PV .t;xe/ D v
TM PvC eTK Pe

D vT .�CvCW .�1 � �2//

D �kvk2NC C .�1 � �2/
T.�1 � �2/;

(31)

where NC D 1
2

�
C C C T� denotes the symmetric part of C . Hence, the positive definiteness of C

(and thus of NC ) and the maximal monotonicity of the force law (26) imply PV .t;xe/ 6 �W.xe/
a.e., where W.xe/ D ku1 � u2k2NC is a positive semi-definite function in xe .

The jump in the Lyapunov function at impulsive time instants is given by

V C � V � D
1

2
.vC C v�/TM .vC � v�/ D

1

2
kvCk2M �

1

2
kv�k2M : (32)

The impact map H�.t/. N�/ is maximal monotone by Assumption (A3), which implies non-
expansivity of the mapping Z according to Proposition 1. The non-expansivity condition (20)
directly implies that the density (32) is non-positive and, consequently, the Lyapunov function
V cannot increase during neither continuous nor discontinuous flow. Therefore, the equilibrium
xe D 0 is uniformly stable [16]. Furthermore, because the Lyapunov function V is bounded from
below and non-increasing, the limit

V1 WD lim
t!1

V.xe.t// D lim
t!1

�
1

2
kvk2M C

1

2
kek2K

�
(33)
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exists and lies in the interval 0 6 V1 6 V.xe.t0//. Note that ke.t/k2
K

is absolutely continuous
and V.xe.t// tends to an absolutely continuous (i.e., constant) function. Hence, kvk2

M
must tend to

an absolutely continuous function as well.
From (31) and (32) follows

V1 � V.x
�
e .t0// 6 �

Z t

t0

W.xe.	//d	: (34)

We deduce that limt!1

R t
t0
W.xe.	//d	 D limt!1

R t
t0
kv.	/k2NC

d	 < 1, because the left-hand
side of (34) is finite. Because of the positive definiteness of NC andM together with the equivalence
of norms, we obtain

lim
t!1

Z t

t0

kv.	/k2Md	 <1: (35)

The velocity error v.t/ is discontinuous, and therefore we cannot invoke Barbalat’s lemma [44].
This lemma is originally defined for uniformly continuous functions, but it can be extended to
asymptotically absolutely continuous functions as presented in Proposition 3 in Appendix A. We
can apply the extended lemma of Barbalat to (35) because kv.t/k2

M
is asymptotically absolutely

continuous and obtain

lim
t!1
kv.t/k2M D 0: (36)

The positive definiteness ofM implies limt!1 v.t/ D 0. Substituting the limit of v in (33) yields

lim
t!1

e.t/ D c (37)

for some constant c satisfying V.xe.t0// > 1
2
kck2

K
> V1 > 0.

Up to now, we have proven that the error dynamics, governed by the equality of measures

MdvC Cvdt CKedt D W .dP1 � dP2/; (38)

is tending towards the limit point
�
cT 0

�T
for t ! 1, where dP1 D �1dt C ƒ1d
 and dP2 D

�2dt Cƒ2d
 are the constraint impulse measures of the two considered solutions. Integrating the
equality of measures (38) over the time interval Œt; t C�t� yields

M .vC.tC�t/�v�.t//CC .e.tC�t/�e.t//CK

Z
Œt;tC�t�

e.	/d	 D
Z
Œt;tC�t�

W .dP1�dP2/;

(39)
where �t > 0 is arbitrary. It proves useful to introduce the quantity Q��t .t/ D 1

�t

R
Œt;tC�t�.dP1 �

dP2/, which can be regarded as the average constraint force of the error dynamics over the time
lapse Œt; t C �t�. Subsequently, we take the limit t ! 1 and use v.t/ ! 0 and e.t/ ! c for
t !1. The integrated equality of measures (divided by �t ) yields

Kc D lim
t!1

W Q��t .t/ D lim
t!1

mX
iD1

wi Q��t;i .t/; (40)

which is, in an averaged sense, the equilibrium of forces at infinity. The columns wi of W are
linearly independent from which we deduce that each of the limits limt!1

Q��t;i .t/ has to exist. The
switching functions �.t/ are of class Km by Assumption (A1), and it holds that �1;i .t/ D �2;i .t/ D
0 andƒ1;i .t/ D ƒ2;i .t/ D 0 for �i .t/ D 0. Therefore, for every time t and every constraint i , there
exists a t�i > t for which �1;i .t/ D �2;i .t/ D ƒ1;i .t/ D ƒ2;i .t/ D 0 8t 2 Œt�i ; t

�
i C �t� if �t

is taken small enough. If the constraint forces and impulses for both solutions vanish, then also the
difference in the constraint impulse measures vanishes, and we obtain Q��t;i .t�i / D 0. We conclude
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that each limit limt!1
Q��t;i .t/ must vanish, and, according to (40) and K > 0, we obtain c D 0.

Therefore, xe.t/ D 0 is globally uniformly attractively stable, which concludes the proof. �
Uniform stability of all solution curves implies uniqueness of solutions and, which is an even

stronger condition, continuous dependence on initial conditions. Generally, the solutions of a
mechanical systems subjected to geometric unilateral constraints do not depend continuously on
initial conditions as shown in [45]. However, this property does hold for the considered class of
systems subjected to switched kinematic unilateral constraints as stated in the following corollary.

Corollary 1
The solution curves of system (24)–(28) for given switching functions �.t/ together with Assump-
tions (A1)–(A3) are unique and depend continuously on the initial conditions.

Proof
Consider two arbitrary solution curves x1.t/ D '.t; t0;x10/ and x2.t/ D '.t; t0;x20/ of the
system. Uniform stability of all solutions curves of the system is proven in Theorem 1. That is, for
every " > 0; there exists a ı."/ > 0, independent of t0, such that

kx10 � x20k < ı H) kx1.t/ � x2.t/k < " (41)

for all t > t0. For fixed t and t0, we define the propagator by the mapping 't;t0.x0/ WD '.t; t0;x0/.
The uniform stability of all solutions implies that for every " > 0; there exists a ı."/ > 0 such that

kx10 � x20k < ı H) k't;t0.x10/ � 't;t0.x20/k < "; (42)

which is the Weierstrass continuity condition of the propagator. Uniqueness of solutions follows
immediately from the continuous dependence on initial conditions. �

We have seen in Section 3 that geometric unilateral constraints can be expressed using switched
kinematic unilateral constraints if the switching functions �.t/ are generated by the constraint dis-
tances g rather than being an external input. We can state the following proposition concerning the
boundedness of solutions of system (24)–(25) subjected to geometric unilateral constraints, that is,
the force law and the impact law are given by (9) and (22).

Proposition 2
We consider system (24)–(25) with geometric unilateral constraints expressed by the force law (9),
the impact law (22), and the local kinematic quantities given by (4). We assume that the impact
map Hg is maximal monotone and fulfills the natural condition 0 2 Hg.0/. Furthermore, we assume
that the external forcing fulfills Assumption (A2) and that the solutions depend continuously on
initial conditions. Then, every solution of the considered system is bounded (in forward time), and
there exists at least one solution that is bounded for all t 2 R.

Proof
For the boundedness condition, we aim to construct a globally attractive compact positively
invariant set. Hereto, we consider the quadratic Lyapunov candidate function V.q;u/ D

1
2

����
�
q � qr
u

�����2
P

with qr D �M
�1W G�1gr and P D

�
K ˛M

˛M M

�
. The constant vector qr

fulfills W T .q � qr/ D g, which will be used in the following. Using (4) and (24), the density of
the Lyapunov function w.r.t. dt is found as

PV D �

����
�
q

u

�����2
Q

C ˛qT
rKq � q

T
r .K � ˛C /uC .˛g C �/

T �C .˛.q � qr/C u/
T f ; (43)

whereQ D

�
˛K 1

2
˛C

1
2
˛C T NC � ˛M

�
.
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According to the Schur complement condition (Theorem 7.7.7 [46]), the matrix P is positive
definite if ˛2 < ��1max.M / �min.K / DW c

2
1 , where �max.A/ and �min.A/ denote the maximal and

minimal eigenvalues of a given matrixA, respectively. The matrixQ is positive definite if ˛ fulfills
˛ > 0 and ˛ < �min. NC / .�max.M /C ��1min.K / �

2
max.
NC //�1 DW c2. Therefore, we choose ˛ between

0 < ˛ < min.jc1j; c2/ such that the matrices P andQ are positive definite.
The constraint forces � and the constraint velocities � as well as the constraint forces � and the

constraint distances g are complementarity variables according to (9). Therewith, the density (43)
can be bounded from above by

PV 6 ��min.Q/
�
kqk2 C kuk2

�
C ˇ1kqk C ˇ2kuk C ˇ3; (44)

where ˇ1 D ˛ .kKqrkCfmax/, ˇ2 D k.K�˛C
T/qrkCfmax, and ˇ3 D ˛kqrkfmax. The quadratic

term in (44) will dominate far away from the origin, which implies the existence of a bound ı1 > 0
such that PV < 0 for all kqk C kuk > ı1.

The change of the Lyapunov function due to impacts is given by

V C � V � D

�
.q � qr/
1
2

�
uC C u�

� �T �
˛M .uC � u�/

M .uC � u�/

�
D ˛gTƒC N�Tƒ; (45)

where (4) and (25) have been used. The constraint impulse ƒi of a constraint i vanishes for gi > 0.
The impulse ƒi may only be positive if the constraint distance gi D 0 vanishes and, thus, ƒ and
g are complementarity variables. Furthermore, the impacts are dissipative, according the maximal
monotonicity of Hg together with the natural condition, which yields V C � V � 6 0.

We have found that the differential measure of V fulfills dV < 0 for all kqk C kuk > ı1.

Let ı2 D maxkqkCkuk6ı1 V.q;u/. Consequently, the set

²�
q

u

�
2 R2f

ˇ̌̌
V.q;u/ 6 ı2

³
is compact

positively invariant, and every solution starting outside of this set will approach it in forward time.
Therefore, every solution is bounded in forward time. Furthermore, the existence of a compact pos-
itive invariant set together with continuous dependence on initial conditions of the solutions curves
implies the existence of a bounded steady-state solution. This conclusion follows from Proposition 4
presented in Appendix B, where the corresponding lemma of Yakubovich is extended to measure
differential inclusions. �

For Proposition 2, the condition of maximal monotonicity together with the natural condition can
be relaxed to dissipativity of the impact map. The condition of continuous dependence on initial
conditions is generally difficult to be checked [17]. The system considered in Proposition 2 without
external forcing admits a stable equilibrium as shown in [47]. Note that Proposition 2 is generally
not valid for systems subjected to switched kinematic unilateral constraints even if the impact map is
maximal monotone. Generally, there exist unbounded solutions of system (24)–(28) if the switching
functions �.t/ do not fulfill Assumption (A1).

The existence of a bounded solution of an a.i.s. system imply the boundedness of all solutions.
The boundedness of solutions is not only interesting in itself but is also necessary to define the error
using the difference of solutions. However, Proposition 2 does not imply the existence of a bounded
solution for system (24)–(28), and therefore the convergence property of the system subjected to
switched kinematic unilateral constraints cannot be deduced.

7. OBSERVER DESIGN

The property of attractive incremental stability is used in this section to design a state observer using
master–slave synchronization. The master system is subjected to geometric unilateral constraints,
whereas the slave system is a perfect replica of the master system with one-way clutch constraints
that are switched on when the corresponding constraints of the master system are closed. If the slave
system is initialized with the same initial conditions as the master system, then the motion of the
slave system is an exact copy of the master system. Under the conditions of Theorem 1, the slave
system is a.i.s. because of the switched kinematic unilateral constraints. The attractive incremental
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Figure 2. Master–slave system coupled by the Boolean switching functions �.t/ for a forced double mass
impact oscillator. The master system (left) is subjected to geometric unilateral constraints, and the slave

system (right) is subjected to switched kinematic unilateral constraints.

stability implies that all solutions of the slave system converge to each other and also to the motion
in synchrony with the master system. Therefore, the synchronization error tends to zero, and the full
state of the master system is reconstructed by the slave system.

Example 1 (Double mass impact oscillator)
We illustrate the synchronization-based observer using the example of a double mass impact oscil-
lator as depicted in Figure 2. The oscillator consists of two masses coupled by spring–damper
elements, and the upper mass is externally forced. The master system and the slave system are
modeled as forced linear time-invariant Lagrangian systems subjected to geometric and switched
kinematic unilateral constraints, respectively. However, the geometric unilateral constraints of the
master system can be envisaged as switched kinematic unilateral constraints for which the switching
functions are internally generated by the constraint distances. The constraints of the slave system
are switched on whenever the corresponding constraint distances of the master system vanish.

The dynamics of the master system as well as the slave system are described by (24)–(27) with

M D

�
m1 0

0 m2

�
; C D

�
c1 C c2 �c2
�c2 c2

�
; K D

�
k1 C k2 �k2
�k2 k2

�
; W D

�
1 0

0 1

�
;

f .t/ D

�
0

1

�
f0 cos .!t/:

(46)

The generalized force directions are linearly independent, and the system matricesM , C andK are
symmetric and positive definite. The impacts are modeled using the generalized Poisson’s impact
law. The coefficients of restitution are chosen equal to ensure the property of maximal monotonicity
of the impact law. The harmonic excitation f .t/ is bounded by supt2R kf .t/k D f0 < 1. The
system parameters of the master system are chosen such that its solution moves on a chaotic attractor
for which both contacts keep on opening and closing in a chaotic way.

The constraints may repeatedly experience accumulation points and stay closed during some time
intervals, but they will always open again eventually. Furthermore, for both constraints, there exists
a �t > 0 such that for every t; there exists a t�.t/ > t such that the constraint is open during the
interval Œt�; t�C�t� because of the chaotic motion. Therefore, the switching functions �.t/, which
are fed to the slave system, are of class K2. The necessary Assumptions (A1)–(A3) in Section 6 are
fulfilled, and attractive incremental stability of the slave system follows from Theorem 1.

Let us consider the Lyapunov function
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Figure 3. Lyapunov function (top) and the first generalized coordinate of the master system and the slave
system (bottom) for the coupled double mass impact oscillator.

V.t/ D
1

2
kum � usk

2
M C

1

2
kqm � qsk

2
K ; (47)

which captures the mechanical energy of the error between the master system (index m) and the
slave system (index s). It has been shown that this Lyapunov function tends to zero as t tends
to infinity for every choice of initial conditions, and we have limt!1 qs.t/ � qm.t/ D 0 and
limt!1 us.t/ � um.t/ D 0. Synchronization is achieved using only the Boolean contact informa-
tion of the master system without any continuous measurements. The state of the slave system can
directly be used as state estimate of the master system.

The Lyapunov function V.t/ and the first generalized coordinate of each subsystem, that is, qm;1
and qs;1, are depicted in Figure 3 for a simulation with the set of parameters m1 D m2 D 2 kg,
k1 D k2 D 1 N=m, c1 D c2 D 0:02Ns=m, gr D �

�
1:6 1:5

�T
m, f0 D 5N, ! D 3 rad=s,

and "1 D "2 D 0:8 and the initial conditions qm0 D
�
1:6 1:8

�T
m, um0 D

�
1 1

�T
m=s, qs0 D�

1:6 1:6
�T

m, and us0 D
�
2 1:3

�T
m=s.

The solution of the master system is chaotic such that solutions starting nearby diverge rapidly.
Note that the master system does not enjoy the property of incremental stability because it is sub-
jected to geometric unilateral constraints. Figure 3 shows that discontinuities are present in the
evolution of the Lyapunov function at impact time instants. Impacts are not essential for synchro-
nization if C � 0 but improve the synchronization rate. The Lyapunov function is non-increasing,
but it is not strictly decreasing as the mechanical system is not strictly passive. Nevertheless, the
Lyapunov function asymptotically tends to zero as t goes to infinity and synchronization between
the master system and the slave system is achieved also in the presence of accumulation points.

Example 2 (Impacting beam)
As a second example, we consider a forced beam with a unilateral support as depicted in Figure 4.
The vertical displacement w.t; x/ is measured with respect to a solid frame, which itself is excited
by e.t/ D e0 cos!t . The support is at the location xc , which corresponds to a node of the third
eigenmode, and the contact is closed for w.t; xc/ D 0. The beam is modeled as a plane linearized
Euler–Bernoulli beam for which the rotational inertia is neglected. In this case, the virtual work is
given by

0 D ıW D

Z l

0

�
ıw00EIw00 C ıwA� Rw C ıwd. Pw � Pe/

�
dx � ıw.xc/� 8ıwjıw.0/ D 0 (48)
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Figure 4. Master–slave system coupled by the Boolean switching function �.t/ for the impacting beam
model. The master system (top) is subjected to a geometric unilateral constraint, and the slave system

(bottom) is subjected to a switched kinematic unilateral constraint.

with length of the beam l , elastic modulus E, second moment of area I , density �, cross-sectional
area A; and damping coefficient d . The damping is modeled as linear viscous damping with the
frame as reference. Even though there are physically more intuitive ways to model the damping
effects, this choice is made because it leads to the same decay rate for all eigenmodes.

The first three eigenmodes of the free beam are given by

vi .x/ D cosˇix � coshˇixC
cosˇi l C coshˇi l

sinˇi l C sinhˇi l
.� sinˇixC sinhˇix/ for i 2 ¹1; 2; 3º; (49)

where ˇi is the i-th root of cosˇi l coshˇi l C 1 D 0. We proceed with the Galerkin approach by
approximating the displacement w.t; x/ and the virtual displacements ıw.t; x/ using the first three
eigenmodes as

w.t; x/ � wn.t; x/ D v.x/
Tq.t/C e.t/C const.;

ıw.t; x/ � ıwn.t; x/ D v.x/
Tıq.t/;

(50)

where q.t/ are the generalized coordinates and ıq.t/ are the corresponding virtual displacements.
Substituting the approximation (50) into (48) yields

0 D ıqT
� Z l

0

v00EIv00Tdx„ ƒ‚ …
K

qC

Z l

0

vA� vTdx„ ƒ‚ …
M

RqC

Z l

0

vA� dx Re„ ƒ‚ …
�f .t/

C

Z l

0

v d vTdx„ ƒ‚ …
C

Pq� v.xc/„ƒ‚…
W

�
�
8 ıq:

(51)

The impacting beam model can therefore be written in the form (24)–(27) with

M D �Al

0
@ 1 0 00 1 0

0 0 1

1
A ; C D d l

0
@ 1 0 00 1 0

0 0 1

1
A ; K D EI

l3

0
@ .ˇ1l/4 0 0

0 .ˇ2l/
4 0

0 0 .ˇ3l/
4

1
A ; W D v.xc/;

and f .t/ D

0
@ f1.t/f2.t/

f3.t/

1
A ; where fi .t/ D �2

�Al

ˇi l

cosˇi l C coshˇi l

sinˇi l C sinhˇi l
e0!

2 cos!t for i 2 ¹1; 2; 3º:

(52)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:2542–2563
DOI: 10.1002/rnc



2558 M. BAUMANN AND R. I. LEINE

Figure 5. Lyapunov function V.t/ and the energy contents Vi .t/ of the first three eigenmodes (top) and
the time evolution of the vertical displacement at the location of the support (bottom) for the impacting

beam model.

We consider the same master–slave synchronization setup for the state observer design as pro-
posed at the beginning of this section. The impacts are modeled using the generalized Poisson’s
impact law. Assumptions (A1) and (A3) are fulfilled using the same reasoning as in Example 1,
and the excitation f .t/ meets Assumption (A2) because max j Re.t/j D !2e0 < 1. Therefore, the
slave system is a.i.s, and the Lyapunov function (47) capturing the mechanical energy of the error
dynamics tends to zero. The Lyapunov function can be split up into the energy contents of each
eigenmode as

V.t/ D

3X
iD1

Vi .t/; where Vi .t/ D
1

2
�Al.umi � usi /

2 C
1

2

EI

l3
.ˇi l/

4.qmi � qsi /
2: (53)

The time evolution of the Lyapunov function V.t/ and the energy content V1.t/, V2.t/, V3.t/ of the
eigenmodes are depicted in Figure 5. The Lyapunov function is plotted using a logarithmic axis for a
simulation with the set of parameters " D 0:7, �Al D 1 kg, EI

l3
D 1N=m, d l D 0:085Ns=m, e0 D

0:03m, ! D 9:5 rad=s, gr D 0m, qm0 D
�
0:05 0 0

�T
m, qs0 D �

�
0:14 0:023 0:0081

�T
m, and

um0 D us0 D
�
0 0 0

�T
m=s:

Figure 5 also shows the time evolution of the vertical displacement wm.t; xc/ and ws.t; xc/ for
the master system and the slave system at the location of the support. The vertical displacement
of the master system is restricted to wm.t; xc/ > 0 because of the geometric unilateral constraint.
The slave system, however, is subjected to a switched kinematic unilateral constraint, and therefore,
there is no restriction on the sign of the vertical displacement ws.t; xc/.

During non-impulsive motion, the eigenmodes are decoupled, and their energy is non-increasing
because of the positive definiteness of the damping matrix C . The only coupling of the eigenmodes
is due to the support. At collision time instants, energy may transfer between the first two eigen-
modes. The energy content of the first and second eigenmodes, that is, V1.t/ and V2.t/, may increase
at impacts, but the sum is strictly decreasing. The third eigenmode is not influenced by the impact
because the support is chosen to be located at a node of this eigenmode, and it is therefore decoupled
from the other eigenmodes.

The attractive incremental stability property of the impacting beam model is due to the maximal
monotonicity of the impact law and the internal damping. This property persists for an arbitrary
number of eigenmodes (or generally Ansatz functions) and other models for the internal damping
as long as the system matrices remain positive definite.
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8. CONCLUSIONS

An observer design for Lagrangian systems subjected to (multiple) unilateral constraints has been
presented, which uses only the information of the impact time instants. Of prime importance are the
new concept of switched kinematic unilateral constraints and the maximal monotonicity property of
the impact map. The switched kinematic unilateral constraints ensure that the discontinuities of the
observer system and the observed system occur at the same time instants. The maximal monotonicity
of the impact map guarantees that the distance between the considered solutions is non-increasing
at impact time instants.

The observer proposed in the paper is applicable to passive systems which are not necessarily
strictly passive. Other approaches assume strict passivity which is enforced through continuous
measurements of the state, for example, as in the case of a Luenberger observer. The novelty of
our approach is that mechanical systems are considered, which are typically only passive, and no
continuous measurements of the state are used. Furthermore, the presented state observer is, strictly
speaking, a state detector as the observed system may have non-observable states that are unaffected
by any unilateral constraints.

The master–slave synchronization approach, which has been introduced in this paper, where the
Boolean information captures which contacts of the master system are open or closed, is fed into
the slave system. This approach is no longer applicable if the coupling is inherently bidirectional,
for example, in the case of two identical impact oscillators coupled by a spring–damper element.

The solution of the slave system (observer) tends to the solution of the observed system for every
initial condition also in the presence of accumulation points. Synchronization is guaranteed because
the slave system is globally a.i.s. and the solutions of both systems are identical if the slave sys-
tem is started using the initial conditions of the master system. If the slave system is a.i.s. and
admits a steady-state solution, then it is uniformly convergent. The property of uniform conver-
gence has generally useful implications such as uniqueness of the steady-state solution or that a
periodic input implies a periodic output. In observer design, however, the focus lies on tracking the
reference trajectory generated by the observed system, and uniform convergence is therefore not a
necessary requirement.

In the foregoing, the constraint distances are assumed to be affine and autonomous, but the devel-
oped results on attractive incremental stability can directly be generalized to the non-autonomous
case. Furthermore, only the time information of the impacts of the master system is used so far,
while the value of the (vanishing) constraint distances is unused. This additional information could
be used to achieve faster (or finite time [48]) synchronization. The idea is to allow for position
jumps of the slave system, which is feasible, because the slave system is not a physical system.
The generalized coordinates of the slave system are in that case no longer absolutely continuous
but rather special functions of locally bounded variation. The extension to position jumps is part of
further research.
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APPENDIX A: EXTENSION OF BARBALAT’S LEMMA

The lemma of Barbalat is originally defined for uniformly continuous functions, and it is often
used for invariance-like theorems. Here, we extend Barbalat’s lemma for the special functions
of locally bounded variation, which are asymptotically absolutely continuous. These functions
approach an absolutely continuous function asymptotically, and therefore the atomic measure tends
to zero.
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Definition 5
A function f W R 7! R of special locally bounded variation is called asymptotically absolutely
continuous if there exists an absolutely continuous function g W R 7! R such that

lim
t!1
jf .t/ � g.t/j D 0: (A.1)

The following extension of Barbalat’s lemma is based on the proof presented in [44].

Proposition 3 (Barbalat’s lemma for asymptotically absolutely continuous functions)
Let f W R 7! R be a special function of locally bounded variation on Œ0;1/; which is
asymptotically absolutely continuous. If the limit

lim
T!1

Z T

0

f .t/dt (A.2)

exists and is finite, then

lim
t!1

f .t/ D 0: (A.3)

Proof
We will establish a proof by contradiction. Let us assume that (A.3) does not hold; then 9c1 >
0 8T1 > 0 9t > T1 W jf .t/j > c1. Because the function f is asymptotically absolutely continuous,
there exists an absolutely continuous function g such that 9T2 > 0 W jf .t/ � g.t/j <

c1
4

for almost
all t > T2. Therefore, there exists a time Ot > max ¹T1; T2ºwith

ˇ̌
f
�
Ot
�ˇ̌
> c1 and jf .t/ � g.t/j < c1

4

for almost all t > Ot . Because of the absolute continuity of g.t/, there exists a time interval �t > 0

such that
ˇ̌
g.t/ � g

�
Ot
�ˇ̌
< c1

4
8 t 2

	
Ot ; Ot C�t



. Together with the triangle inequality and the fact

that f .t/ has the same sign for almost all t 2
	
Ot ; Ot C�t



, we obtainˇ̌̌

ˇ̌Z OtC�t
Ot

f .t/dt

ˇ̌̌
ˇ̌ D Z OtC�t

Ot

jf .t/j dt

>
Z OtC�t
Ot

ˇ̌
f
�
Ot
�ˇ̌
�
ˇ̌
f
�
Ot
�
� g

�
Ot
�ˇ̌
�
ˇ̌
g
�
Ot
�
� g.t/

ˇ̌
� jg.t/ � f .t/j dt

>

Z OtC�t
Ot

c1 �
c1

4
�
c1

4
�
c1

4
dt

D
c1

4
�t:

(A.4)

For every T1 > 0; there exists a Ot > T1 for which (A.4) holds. This is in contradiction with the
existence of the finite limit (A.2). �

APPENDIX B: EXISTENCE OF A STEADY-STATE SOLUTION

In [10], Yakubovich proves a lemma that formulates that if a non-autonomous differential inclu-
sion (or discontinuous differential equation with solutions in the sense of Filippov) with bounded
right-hand sides exhibits a compact positively invariant set C, then the existence of a solution that is
bounded for all t 2 R is guaranteed. The differential inclusions considered in [10] are not guaran-
teed to have uniqueness of solutions in forward (and backward) time. Consequently, the solutions
of the considered differential inclusions do not enjoy continuity with respect to the initial condition.
The technical difficulties that arise because of the non-uniqueness of solutions are handled in the
proof of [10] by using an elegant choice of subsequences of solution curves. The non-uniqueness of
solutions results in a set-valued propagator 't;t0.x0/; which maps each point x0 in the state space
at time t0 to a set of points at time t . Although not explicitly mentioned in [10], an essential ingre-
dient in the proof of [10] is that the propagator of the considered differential inclusion is an upper
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semicontinuous set-valued map with compact images (see also [49], Theorem 4.11). Hence, every
compact subset K of the state space is mapped by the propagator to a compact subset 't;t0.K/ of
the state space. Furthermore, the proof in [10] also relies on the fact that the solutions of differential
inclusions are absolutely continuous in time.

In [16], it has been suggested that the lemma of Yakubovich may be extended to measure dif-
ferential inclusions, for which the solution curves are discontinuous in time. Here, we make this
assertion more precise. In the following, the lemma of [10] will be modified such that it is valid for
a certain class of dynamical systems, which are characterized by the following properties:

(P1) For each point x0 in the admissible subset A of the state space R2f and for each time
instant t0 2 R, there exists a unique forward solution curve '.t; t0;x0/ 2 A for almost
all t > t0.

(P2) The solution curve '.t; t0;x0/ may be discontinuous in time t but is of locally
bounded variation.

(P3) The propagator, defined by the mapping 't;t0.x0/ D '.t; t0;x0/, is a (single valued)
continuous map. That is, the solutions are continuous with respect to the initial condition x0.

The Property (P2) implies that the left limit '�.t; t0;x0/ and the right limit 'C.t; t0;x0/ exist for
all t 2 R. The following modified lemma is on the one hand more general as it also applies to
measure differential inclusions and on the other hand more restrictive because it is only applicable
to systems with continuity with respect to the initial condition (and therefore uniqueness in forward
time).

Proposition 4 (Modification of Yakubovich [10], Lemma 2)
Consider a dynamical system enjoying the properties (P1)–(P3). If C � Rn is a compact positively
invariant set such that

x0 2 C ) '.t; t0;x0/ 2 C for almost all t > t0 (B.1)

independent of t0, then there exists a solution curve Nx.t/ 2 C for almost all t 2 R.

Proof
We set C0 D C and denote by C1 the set of all points x 2 Rn, which are the images of the propagator
'C0;�1.x0/ D '

C.0;�1;x0/ with x0 2 C0:

C1 WD ¹x 2 Rn j x D 'C.0;�1;x0/;x0 2 C0º; (B.2)

or we may use the short-hand notation C1 D 'C.0;�1; C0/. It holds that C1 � C0 because C0 is
positively invariant. Similarly, we define the sets Cj D 'C.0;�j; C0/. The sets Cj are generally
not positively invariant, but they are nested. Namely, if A � B; then it holds for any continuous
mapping f that f .A/ � f .B/. Similarly, because 'C.�j;�.j C 1/; C0/ � C0 because of the
positive invariance of C0 and because of the definition of the sets Cj , it holds that CjC1 � Cj . That
is, the sets are nested such that

C0 � C1 � C2 � : : : (B.3)

The existence of solution curves implies that the sets Cj are nonempty. Furthermore, for any con-
tinuous mapping f; it holds that if A is compact, then also f .A/ is compact. The propagator
't;t0.x0/ is assumed to be continuous with respect to the initial point x0; and therefore the sets
Cj D 'C.0;�j; C0/ are compact. From (B.3) and the fact that the sets Cj are nonempty and com-
pact, it follows that there is a point a0 2

T
Cj . The solution curve '.t; 0; a0/ remains in the

positively invariant set C0 for almost all t > 0 because a0 2 C0. Moreover, a0 2 Cj implies that
there exists a point aj 2 C0 and a solution curve Nx.t/ D '.t;�j; aj / with Nx.0/ D a0 such that
Nx.t/ 2 C0 for almost all t > �j . Because j is an arbitrary integer, the solution curve fulfills
Nx.t/ 2 C for almost all t 2 R. �
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