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Abstract The dynamic modeling and analysis of pla-
nar rigid multibody systems that experience contact-
impact events is presented and discussed throughout
this work. The methodology is based on the nons-
mooth dynamics approach, in which the interaction
of the colliding bodies is modeled with multiple fric-
tional unilateral constraints. Rigid multibody systems
are stated as an equality of measures, which are for-
mulated at the velocity-impulse level. The equations
of motion are complemented with constitutive laws
for the forces and impulses in the normal and tangen-
tial directions. In this work, the unilateral constraints
are described by a set-valued force law of the type of
Signorini’s condition, while the frictional contacts are
characterized by a set-valued force law of the type of
Coulomb’s law for dry friction. The resulting contact-
impact problem is formulated and solved as an aug-
mented Lagrangian approach, which is embedded in
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the Moreau time-stepping method. The effectiveness
of the methodologies presented in this work is demon-
strated throughout the dynamic simulation of a cam-
follower system of an industrial cutting file machine.

Keywords Nonsmooth dynamics - Augmented
Lagrangian approach - Moreau time-stepping
method - Contact-impact analysis - Multibody
systems

1 Introduction

The field of multibody system dynamics has its root in
classical and analytical methods of dynamics to meet
the growing demands in modeling and simulation of
complex and advanced mechanical systems in indus-
try and engineering. Multibody systems are ubiquitous
in many fields of application, such as aerospace, auto-
motive systems, circuit breakers industry, bipedal lo-
comotion, robotics, biological engineering, and com-
puter graphics [1-5]. Their numerical simulation has
become a crucial step not only for the virtual proto-
typing process in industry, but also in academic fields
like global behavior of complex systems, control and
stability, in which it is impossible to push forward
the studies without reliable simulation software pack-
ages [6-8]. Numerical simulation must in turn rely
on suitable mathematical models. In particular, sev-
eral points of unilateral contact usually exist in such
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systems, and impact phenomena and friction are ex-
tremely important features in most of multibody sys-
tems. As a consequence, multiple impacts may oc-
cur quite frequently and become a key point for the
numerical simulation of multibody systems. Hurmu-
zlu and Marghitu [9] studied the contact problem in
multibody systems, where a planar rigid-body kine-
matic chain undergoes an external impact and an arbi-
trary number of internal impacts. Based on the Keller’s
work [10], they developed a differential-integral ap-
proach and used different models for coefficient of
friction. Han and Gilmore [11] proposed a similar ap-
proach, using an algebraic formulation of the equa-
tions of motion, the Poisson’s model of restitution
and the Coulomb’s law to define the tangential mo-
tion. Different conditions that characterize the motion
(slipping, sticking, and reverse sliding) were detected
by analyzing velocities and accelerations at the con-
tact points. Han and Gilmore confirmed their simula-
tion results with experiments for two-body and three-
body impacts. Based on a canonical form of the equa-
tions of motion, Pereira and Nikravesh [12] presented
a methodology that solves this problem in the context
of multibody dynamics impact. Haug et al. [13] solved
directly the differential equations of motion by using
the Lagrange multiplier technique. Newton’s model
was used for impact while the Coulomb’s law was
used for friction [14].

Mechanical systems are often modeled as multi-
body systems with some degree of non-smoothness.
Typical examples in mechanics are the noise and vi-
bration produced in railway brakes, impact print ham-
mers, percussion drilling machines, or chattering of
machine tools. These effects are due to the nonsmooth
characteristics such as clearances, impacts, intermit-
tent contacts, dry friction, or a combination of these
effects [15-20]. In nonsmooth systems, the time evo-
lution of the displacement and the velocities is not re-
quested to be smooth. Due to the possible impacts, the
velocities are even allowed to undergo jumps at cer-
tain time instances in order to fulfill the kinematical
restrictions.

Contact-impact behavior strongly depends on the
material properties of the colliding surfaces, the na-
ture of the contact-impact problem, and the level of
contact-impact forces/impulses produced. Therefore,
the investigation on the contact-impact field is one of
the most challenging and demanding issues the en-
gineering. In addition, contact-impact events can fre-
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quently occur in multibody systems and in many en-
gineering applications the function of mechanical sys-
tems is based on them. Common examples can be de-
scribed by the contact between tire and road in ve-
hicles, wheel and rail in railway systems, contact in
robotics and grasping machines, cam and follower
mechanisms, just to mention a few [21-25]. As a re-
sult of an impact, the values of the system state vari-
ables change very fast, eventually looking like dis-
continuities in the system velocities. The knowledge
of the peak forces developed in the impact process
is very important for the dynamic analysis of multi-
body systems and has consequences in the design pro-
cess. Thus, the selection of the most adequate contact-
impact method used to describe the process correctly
plays a key role in the accurate design and analy-
sis of these kinds of systems [26-28]. In a broad
sense, the different methods to solve the impact prob-
lem in multibody mechanical systems are continu-
ous and discontinuous approaches [29-31]. Within
the continuous approach, the methods commonly used
are the continuous force model, which is in fact a
penalty method, and the unilateral constraint method-
ology, based on complementarity approaches [32-35].
The compliant continuous contact force models, com-
monly referred as penalty methods, gained significant
importance in the context of multibody systems with
contacts thanks to their computational simplicity and
efficiency. In these models, the contact force is ex-
pressed as a continuous function of penetration be-
tween contacting bodies. However, one of the main
drawbacks associated with these force models is the
difficulty to choose the contact parameters such as the
equivalent stiffness or the degree of nonlinearity of the
penetration, especially for complex contact scenarios.

The complementarity formulations associated with
the Moreau time-stepping algorithm for contact mod-
eling in multibody systems have attracted the attention
of many researchers [36—47]. Assuming that the con-
tacting bodies are truly rigid, as opposed to locally de-
formable or penetrable as in the penalty approaches,
the complementarity formulations resolve the contact
dynamics problem by using the unilateral constraints
to compute contact forces or impulses to prevent pen-
etration from occurring. Thus, at the core of the com-
plementarity approach is an explicit formulation of
the unilateral constraints between the contacting rigid
bodies [48]. One of the main features of unilateral con-
straints is the impenetrability, which means that points
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candidates for contact must not cross the boundaries
of antagonist bodies. This can be expressed by writ-
ing that the distance between contacting bodies or the
gap is nonnegative. Also, it is assumed that bodies are
not attracting each other, that is, the reaction force is
nonnegative, and this reaction force vanishes when the
contact is not active [49].

When dealing with the formulation of frictional
unilateral constraints, it is possible to distinguish ac-
tive and passive set-valued force laws. An active set-
valued force law is always associated with a closed
unilateral contact or a frictional contact, while a pas-
sive set-valued force law is related to open unilateral
contacts. An active set-valued force law can be de-
scribed at the velocity level by an inclusion. It should
be highlighted that a system with active unilateral con-
straints has variable degrees of freedom, being in gen-
eral, not known which degree of freedom is removed.
This problem is usually solved by looking at all pos-
sible solutions and finding the one that is physically
consistent. It is obvious that the search for a physi-
cal consistent is time-consuming. In addition, from the
numerical simulation point of view, it is quite unsuit-
able to change the number of the minimum general-
ized coordinates during each time step. Thus, the aug-
mented Lagrangian approach is quite an elegant way to
solve this type of problem, being constant the number
of generalized coordinates at all instants of time. The
number of generalized coordinates is always equal to
the number of degrees of freedom of the system with-
out unilateral constraints [S0-52].

The dynamic modeling and analysis of planar
multibody systems that experience contact-impact
events is presented and discussed throughout this
work. The methodology is based on the nonsmooth
dynamics approach, in which the interaction of the
colliding bodies is modeled with multiple frictional
unilateral constraints. The model of a rigid multibody
system is stated as an equality of measures, which are
formulated at the velocity-impulse level. The equa-
tions of motion are complemented with constitutive
laws for the forces and impulses the normal and tan-
gential directions. The unilateral constraints are de-
scribed by a set-valued force law of the type of Sig-
norini’s condition, while the frictional contacts are
characterized by a set-valued force law of the type of
Coulomb’s law for dry friction. The formulation of the
generalized contact-impact kinematics in the normal
and tangential directions can be performed by obtain-
ing a geometric relation for the gaps of the candidate

contact points. The gaps are expressed as functions
of the generalized coordinates. The candidate con-
tact points are modeled as hard contacts, being the
normal and tangential contact laws formulated as set-
valued force laws for frictional unilateral constraints.
Furthermore, when a system includes frictional uni-
lateral constraints, the occurring contact forces should
be taken into account in the equations of motion. In
the present work, due to its simplicity and robustness,
this problem is solved using the Moreau time-stepping
method, combined with the contact-impact formulated
as an augmented Lagrangian approach. Finally, results
for a planar rigid multibody system are presented and
used to discuss the main assumptions and procedures
adopted in this work.

2 Set-valued force laws for frictional unilateral
contacts

In the present work, the normal contact between rigid
bodies is characterized by a set-valued force law called
Signorini’s condition [53]. In this section, the Sig-
norini’s law, which is an elementary set-valued force
law, is formulated in three different ways, namely, as
complementarity conditions, as subdifferential equa-
tions, and as normal cone of the admissible contact
forces [52]. Figure 1 shows two convex rigid bod-
ies apart from each other by a relative normal gap or
distance denoted by gy. This relative normal gap is
uniquely defined for convex surfaces, being parallel
the tangent planes at the contact points 1 and 2. The
relative normal gap is nonnegative due to bodies’ im-
penetrability condition, being the two bodies in con-
tact with each other when gy = 0. On the other hand,
the normal contact force Ay is also nonnegative be-
cause the bodies cannot attract each other. The nor-
mal contact force vanishes when there is no contact,
i.e., gy > 0, and can only be positive when contact
happens, that is, gy = 0. Thus, under the assumption
of impenetrability between the bodies, expressed by
gn > 0, only two situations can occur, namely

gn=0A Xy >0 (closed contact) €))]
gy >0A Xy =0 (open contact) 2)

Equations (1) and (2) represent a complementarity be-
havior, being always zero the product of the relative
normal gap and normal contact force, that is,

gN)"N =0 (3)
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Tangent contact direction

(@)

Fig. 1 (a) Relative normal gap; (b) Normal and tangential contact forces

Fig. 2 (a) Signorini’s \
normal contact law; Ay
(b) Coulomb’s friction law

Thus, the relation between the normal gap and nor-
mal contact force can be described by

gniy =0 4)

which represents the inequality complementarity con-
dition between gy and Ay, the so-called Signorini’s
condition. The inequality complementarity behavior
of the normal contact law is depicted in Fig. 2a, which
shows a set-valued graph or a corner of admissible
combinations between gy and Ay [46].

The magnitude of contact force is denoted by Ay
and the direction of the contact force is normal to the
bodies’ surface, i.e., along the lines 1-2. When two
rigid bodies are contacting, the Signorini’s condition
given by Eq. (4) needs to be complemented with an
impact law, such as the well known Newton’s kine-
matical law that relates the pre and postimpact veloc-
ities to the bodies’ normal coefficient of restitution,
en [33].

The normal contact law can also be expressed as the
subdifferential of the indicator function ¥c,, to convex
set Cy [46]

gN € 0¥cy (—An) )

gn =0, AN =0,
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where Cy is the admissible set of negative contact
forces —Apn as

Cn={-Anv €R|Ay >0} =R~ (6)

Since the subdifferential of the indicator function is
the inverse of the subdifferential of the support func-
tion, then Eq. (5) can be rewritten using the conjugate
as

—AN €IWE, (gn) @)

Alternatively, the normal contact law can be formu-
lated in a compact form by means of the normal cone
of Cy [46]

8N € Noy (—AN) (8)

where Nc, (Ay) denotes the normal cone of the con-
vex set Cy at Ay, and Cy is the set of admissible con-
tact forces (6). It should be noted that this formulation
is identical to the complementarity given by Eq. (4).

For closed contacts with gy = 0, the Signorini’s
law, which is a set-valued law for normal contact at
the displacement level can be expressed at the velocity
level as

YN € Ncy(=An), gn=0 9
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where yy is the relative normal velocity. It is also
common to express the set-valued force law of Eq. (9)
in terms of impulsive forces instead of contact forces
[44].

The classical Coulomb’s friction law is another typ-
ical example that can be considered as a set-valued
force law [33]. The friction law of Coulomb states that
the sliding friction is proportional to the normal force
of a contact. The amount of the static friction force
is less than or equal to the maximum static friction
force which is also proportional to the normal con-
tact force. Furthermore, the sliding force has the op-
posite direction of the relative velocity of the frictional
contact. Consider again the two contacting rigid bod-
ies depicted in Fig. 1, in which Coulomb friction is
present at the contact points 1 and 2. The relative ve-
locity of point 1 with respect to point 2 along their
tangent plane is denoted by y7. If contact between the
two bodies takes place, i.e., gy = 0, then the friction
phenomenon imposes a tangential force A7 as it is il-
lustrated in Fig. 1b. If the bodies are sliding over each
other, then the friction force Ar has the magnitude
uiy and acts in the direction oppose to the relative
tangential velocity, that is,

—Ar = piy Sgn(yr) yr #0 (10)
where w is the friction coefficient and Ay is the nor-
mal contact force. If the relative tangential velocity
vanishes, i.e. yr = 0, then the bodies purely roll over
each other without slip. Pure rolling, or slip for locally
flat objects, is denoted by stick. Thus, if the bodies
stick, then the friction force must lie in the interval
—uAy < Ar < uiy. For unidirectional friction, that
is, for planar contact problems, three different scenar-
ios can occur, namely

(sticking) (11)
(negative sliding) (12)

yr=0 = |Ar|<Suin
yr <0 = Ar=+uiy
yr >0 = Ar=—piy (positive sliding) (13)

These three scenarios can be summarized by a set-
valued force law as [33]

—UAN yr >0
Ar €y [=L Huiy yr=0 (14)
HAN yr <0

Figure 2b shows the Coulomb’s friction law as a
set-valued force law. The admissible values of the neg-
ative tangential force A7 form a convex set Cr that is
bounded by the values of the normal force [32]

Cr(w) ={—Ar|—piy <At < +puy} (15)

Thus, the Coulomb’s law can be expressed with the
aid of the indicator function of C7 as

vr € 0Wc o) (—AT) (16)
or
vr € Ncpow) (—AT) 17

Alternatively, Eqs. (16) and (17) can be written as
[49]

—Ar € BW&(AN)(J/T) (18)

In short, the tangential forces are limited by a max-
imal friction force dependent on pA y in any direction
inside the tangential plane, and where p represents the
friction coefficient. Lower forces correlate with stick-
ing contacts and, therefore, yr = 0. Forces reaching
the boundary of the friction cone may indicate sliding
and, therefore, yr # 0. The full description of the spa-
tial Coulomb’s friction law as a set-valued force law
can be found in Leine and Glocker [54].

3 Multibody systems with frictional unilateral
constraints

It is known that impacts and frictional phenomena are
characterized by unilateral constraints, which usually
lead to unsteady dynamical behaviors. Thus, appro-
priate methodologies and procedures to deal with this
class of mechanical systems are required, being the
main purpose of the present work. From classical me-
chanics, the Newton—Euler equations of motion of a
multibody system with f degrees of freedom and with
only frictionless bilateral constraints can be written as
[32]

Mi—h=0 (19)
q=u ¥t (20)

where M = M(q,1) € R/*/ is the positive defi-
nite and symmetric mass matrix, h =h(q, u,7) € R/
denotes, in the present work, the vector that con-
tains the differentiable forces (both conservative and
non-conservative), such as spring forces, gravitational
forces, q = q(¢) € R/ is the f-dimensional vector of
generalized coordinates, u =u(¢) € R/ addresses the
system generalized velocities and 1 = u(r) € R/ is the
vector that contains the system accelerations.

Joint reaction forces of the bilateral constraints do
not appear in the equations of motion (19) because
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the coordinates q are minimal Lagrangian coordinates
with respect to bilateral constraints, i.e., the vector q
represents a set of coordinates that defines uniquely
the positions of all bodies in the system when all uni-
lateral contacts are open. The dependence of the sys-
tem matrices on ¢, u and ¢ has been omitted in Eq. (19)
for brevity. The terms M and h can be derived in a
straightforward manner, by taking q as a set of classi-
cal generalized system coordinates and evaluating La-
grange’s equations of second type or the associated
virtual work expressions [55].

Adding the contact forces to Eq. (19), the dynamic
equations of motion of a multibody system with nor-
mal and tangential contact forces during an impact can
be written at the acceleration level as [32]

Mfl—h—WN)»N —WT).TZO (21)
q=u WVt (22)

where wy = wy(q,7) € R/ and wr = wr(q,1) €
R/ represent the generalized normal and tangential
force directions, respectively. The normal and tangen-
tial contact forces have magnitudes Ay; and A7 for
each contact point i. The dual variables to the normal
contact forces Ay are the variations of normal gap dis-
tances gy, while the dual variables to the generalized
friction or tangential forces A7 are the variations of
the generalized sliding velocities y 7. The remaining
terms of Eq. (21) have the same meaning as described
above.

It is important to note that Eq. (21) requires the
existence of the velocities u and accelerations u both
being meaningless for the event of an impact. There-
fore, it is more adequate to talk about the left and
right limit of the velocity at the impact, that is, the
pre and postimpact velocity, but never about the ve-
locity at the impact itself, a meaningless term already
from the physical point of view. For the case of im-
pacts in multibody systems, Eq. (21) have to be sub-
stituted by a more suitable formulation, which consists
of use the equalities of measures firstly introduced by
Moreau [56] and that constitute the general framework
for nonsmooth rigid multibody dynamics.

Moreover, motion without impulses implies that
An(?) is (locally) bounded and time-continuous. The
friction force A7 (¢) is discontinuous when a slip-stick
transition takes place or when the relative sliding ve-
locity of a frictional contact reverses its sign. The ac-
celeration 1 is not defined when A7 () is discontinu-
ous. The set of time instances for which A7 () is dis-
continuous is of measure zero and Eq. (21), therefore,
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holds for almost all ¢, that is, ¢ = u does not hold at
single time instants at which impacts take place. Thus,
due to the presence of impulsive forces, a nonsmooth
system cannot be described solely by the equations of
motion (21). Equalities of measures provide an elegant
way to obtain a valid comprehensive description of a
nonsmooth system including the impact case. When
the equations of motion for the impact case are inte-
grated over a singleton in time yields

M(ut —u™) —wyAy —wrAr =0 (23)
q=u ae. 24

in which u™ and u™ represent the pre and post im-
pact velocities, Ay and A7 denote the normal and
tangential impulsive forces, being the remaining terms
defined as previously. Note that contact forces are re-
placed by the impulsive forces, which are well defined
in the case of an impact. Furthermore, finite forces,
such as gravity or reaction forces from springs and
dampers, do not contribute to the integral and, there-
fore, they are not considered in Eq. (23).

The equations of motion without impacts given by
Eq. (21) and the equations of motion for the impact
case (23) cannot be used together in the present form,
because the former is written at the acceleration level
and the second one is developed at the velocity level.
Therefore, Egs. (21) and (23) should be considered si-
multaneously. Multiplying Egs. (21) and (23) d¢ and
dn, respectively, yields

Mudsr —hdr —wyAydt —wrAp dr =0 (25)
M(ll+—ll_) dn —wyAydn —wrArdn=0 (26)
Adding now Egs. (25) and (26) results in

M[ad: + (u* —u”)dy] —hds
—wy@Andt+ Aydn)
—wr(Ardt +Ardn) =0 27

or more briefly
Mdu —hdt —wydPy —wrdP7r =0 (28)

where the Lebesgue measure is represented by d¢ and
dn represents the sum of the Dirac impulse measures
at the impact times [49].

The measure for the velocities du = uds + (ut —
u~)dn is split in Lebesgue measurable part udt,
which is continuous, and the atomic parts which occur
at the discontinuity points with the left and right limits



Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events 2123

u~ and u™ and the Dirac point measure dn. For im-
pact free motion it holds that du = udz. Similarly, the
measure for the so-called percussions corresponds to
a Lagrangian multiplier which gathers both finite con-
tact forces A and impulsive contact forces A, that is,
dP = A df + A dn [43, 44]. In the case of nonimpulsive
motion, all measures dn vanish and a formal division
by dr yields the classical Newton—Euler equations of
motion given by (21).

Since the impenetrability condition between collid-
ing bodies is required, let us consider that a multibody
system has a total n of frictional unilateral constraints,
which can be represented by n inequalities as

gni(q, 1) >0, i=1,...,n (29)

where the quantities gy; are the normal gap functions
of the frictional contacts. They are formulated such
that, gny; > 0 indicates an open or positive contact with
an Euclidian distance of the contact points given by
the value of gyi, gni = 0 corresponds to a closed or
active contact, and gy; < O indicates the forbidden
overlapping or interpenetration between rigid bodies.
A good treatment of the definition of these inequali-
ties, under the framework of multibody systems for-
mulation, is discussed by Pfeiffer and Glocker [32]
and Glocker [33].

The set of active contacts in the present work is
stated as

H(t) = {i|gni(q.1) =0} (30)

which singles out the contact at which contact-impact
forces may occur. In fact, ideally when gyi(q,7) =0
the contact is active. However, due to the computation
round-off errors accumulation, a tolerance must be in-
troduced in order to accommodate for inaccuracies in
the numerical results. Therefore, when the first pene-
tration is within the penetration tolerance it is assumed
that such is the moment of the impact and the posi-
tion and relative velocity of the contact points and the
direction of the plane of collision are recorded. This
approach has implications with the integration scheme
and time steps, being the reader interested in the de-
tails on this particular topic referred to the work by
Studer et al. [47].

In theory, the constraints are active when the gap
vanishes and the constraint forces are such that the gap
does not become negative (no penetration). In the nu-
merical scheme the constraint is set active if the gap
function becomes zero or negative (i.e., is no longer

strictly positive). We therefore allow in the numeri-
cal scheme for small interpenetrations, being a numer-
ical approximation of gy = 0. However, the contact
law is evaluated on velocity level and it might there-
fore happen that the constraint drifts resulting in an
unwanted penetration of noticeable size. Such a con-
straint drift can be remedied with a projection to a
negative threshold (such that the constraint remains
active) if the penetration becomes too large. Further-
more, the time step needs to be small enough to de-
scribe hi-frequency bounces. However, if the exact so-
lution has multiple bounces within a time step of the
numerical solution, then the numerical solution is still
a “good” approximation of the exact solution in the
sense that the numerical solution converges to the ex-
act solution for decreasing step size.

In order to define the constitutive force laws which
relate the contact-impact impulse measures to the sys-
tem’s kinematics q and u, let first introduce the normal
and tangential relative velocities at the contacts as [57]

YNi = Wit + @31
Y = Wha + (32)

where wy; and wr; represent the generalized normal
and tangential force directions, respectively, and wy;
and wry; are the partial derivatives of the of the gap
functions with respect to time.

The equations of motion (28) can now be com-
plemented with constitutive laws for normal and tan-
gential contact-impact forces. In the present study, a
unilateral version of the Newton’s impact law is con-
sidered for the normal direction with local coefficient
of restitution ey; € [0, 1]. The Coulomb’s friction law
is used for the tangential direction with coefficient of
friction u;, which is complemented by a tangential co-
efficient of restitution &7; € [0, 1].

It is important to note that for the Newton’s impact
law, the impact, which causes the sudden change in the
relative velocity, is accompanied by a normal contact
impulse dPy > 0. Suppose that, for any reason, the
contact does not participate in the impact, that is, that
value of the normal contact impulse is zero, although
the contact is closed. This situation happens normally
for multiple contact scenarios. Therefore, for this case,
it is allowed that the post impact relative velocity to be
higher than the value prescribed by Newton’s impact
law, with the intent to express that the contact is su-
perfluous and could be removed without changing the
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contact-impact process. Thus, in order to account for
these possibilities, two parameters are defined as [57]

Eni = Vn: T ENiVN; (33)
En =y +envy (34

where (yy;, v7) == (ynis ym) (™).
Thus, normal and tangential impact laws can be
stated as

—dPy; € ¥, (6ni) (35
—dPp; € 811/&“T’_(PM) En) (36)
or, in terms of the normal cones

&Ni € Ney, (—dPy;) 37
&1i € Ny (—dPry) (38)

Finally, the complete description of the dynamics
of nonsmooth system, which accounts for both impact
and impact-free phases, is given by Egs. (28)—(38).

4 Augmented Lagrangian approach to solve
contact-impact events

In this section, the augmented Lagrangian approach
to solve the contact-impact problem of multibody sys-
tems with frictional unilateral constraints is presented.
In a simple way, this approach consists of transform-
ing the inclusions in normal and tangential directions
into equivalent equations using proximal point of con-
vex analysis, then the problem is solved iteratively
as a proximal point formulation [43, 54, 58]. After
discretization, the velocity-impulse equations of mo-
tion for nonsmooth mechanical systems can be written
as [14]

My Au —hy At — Way Py — Wry/Pr =0 39)

in which the subscript M denotes the mid point of the
integration time step. Equation (39) is used together
with the set-valued impulsive force laws,

—Py € 0¥, (EN) (40)
—Pr € V¢, p,) E1) (4D
where W and W p ) denote the support functions

of the indicator functions ¥, and ¥c, (py), respec-
tively, being N¢, and Nc,p,) the normal cones as-
sociated with the convex sets Cy and Cr. These two
convex sets represent the admissible normal and tan-
gential impulsive forces given by [43, 59]
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Cy ={-Py eR"|Py >0} (42)
Cri(Pyi) = {—Pr|IPrill < i Pyizi =1.....n}  (43)
The & and §7 parameters are expressed as [44]
Ev =VYNE T ENYNA (44)
§7 =VrE T ETY1A 45)

in which the actual normal and tangential velocities
are given by [52]

yne = WingUe + W (46)
Ve = Wiy UE + Wry 47)
Yaa = Whpta + Wy (48)
Yra = Wiyuia + Wiy (49)

In short, in each time step the equations of motion
(39) and the set-valued force laws (40) and (41) have
to be solved for Au, Py and Pr. The augmented La-
grangian approach is an elegant way to solve this prob-
lem, which transforms the set of algebraic inclusions
to a constrained optimization problem [60-62]. By
definition of proximal point to a convex set C yields
that

proxc(x) = argmin”x —x* || (50)
Vx*eC

which represents the closet point in C to its argument.
Thus, based on this concept, the normal and tangential
impulses are stated as two equalities:

Py = prox¢c, Py —rEy) (625
Pr = proxc, ) Pr —rép) (52)
with the convex sets Cy and Cr given by Egs. (42)
and (43). It should be mentioned that this approach
is dependent on a non-negative arbitrary parameter r,
which represents the slope of the regularization func-
tion. The value of » should be taken large enough
to make the problem well conditioned in the con-
strained region, but not too high in order to prevent
ill-conditioning. The interested reader on the issue of
the r-factor strategies for the augmented Lagrangian
approach is referred to the work by Foerg et al. [63].

Finally, the contact-impact problem of nonsmooth
systems based on the augmented Lagrangian approach
can be summarized by the following mathematical re-
lations:

My Au—hy At — Wy Ty (Py, )

— Wy lIlr (PN, Pr,§7) =0 (53)
Iy Py, §y) = proxc, (Py —rEy) (54)
1Py, Pr,§7) = proxc, p,)Pr —rér) (55)
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Thus, this set of algebraic equations can be eas-
ily included in the Moreau time-stepping method, be-
ing the saddle point of the augmented Lagrangian
found by employing, for instance, the modified New-
ton method, also called Newton—Raphson method [43,
54, 61]. Besides some possible divergences, the New-
ton root-finding algorithm is considered in the present
work due to its simplicity and computational effi-
ciency. In this process, the computed impulsive forces
are used as initial guesses in the next step. The New-
ton approach can fail if, for instance, the contact bod-
ies stick together during the dynamic analysis, be-
cause the Newton iteration becomes singular. In or-
der to overcome this numerical difficulty, the LU-
decomposition and the forward/backward-substitution
must be performed. The reader interested in the details
on this particular issue is referred to the work by Forg
et al. [43].

The computational strategy of the modified Newton
method is illustrated in the flowchart of Fig. 3 and is
summarized in the basic following steps:

(1) Initialize the counter variable k = 1 and specify
initial guesses for the impulses P’I‘V and P’};

(ii) Solve Au**! from the following equation:
MMAllk+1 =hy At + WNMP];V + WTMPI;

(iii) Evaluate §k+1 and 2k+1 from equations

kil —w e (U AU 4 Wy
kT+1 = Wiy (“A + A“k+1) +Wrm
(iv) Project PkJr1 and Pk+] as
Pl]cv-&-l = Iy (Pl](v’ k+1) proxCN(Pk —”Ek+l)
PEr = 7y (P P g
= proxc, iy (P — r&r'")
(v) Compute the tolerance error as
error = [Py — P | + [P — P

(vi) If the error is lesser than a specified tolerance
(tol), then the process has converged and should,
therefore, end; otherwise, increment counter k =
k + 1 and go to step (ii) to proceed with the pro-
cess of a new iteration step.

Since the Moreau time-stepping method with an
augmented Lagrangian approach involves a good deal
of mathematical manipulation, it is convenient to sum-
marize the main steps in an appropriate algorithm.

This algorithm, presented in the flowchart of Fig. 4,
is developed under the framework of multibody sys-
tems formulation and can be condensed in the follow-
ing steps:

(1) Specify the initial conditions of the problem at
hand, 74, tr, At, qa,and uy;

(ii) Define the geometrical, inertial, and material
functions, gni, M, h, eni, €71, 1L, WNi, WTi, WA,
and Wy

(iii)) Compute the mid point state variables:

1
=t — At
M A+2

qu =qa + %AtuA
My =M(qm, tm)
hy =h(qu, a4, 1m)
gni = gni(qm, tm)
Hy = {i|gni(qu. 1) < 0}
n; = length(Hyy)
(iv) For every i € Hys evaluate:
W = mat(Wni(qu, tv)),
Wy = mat(wri(qar, 1ar)),
Wm = col (Wni(qar, tm)),
Wrm = col(Wri(qar, tm)).
Yna = col(ynai), Y1a = col(yrai),
ey = diag(eni), er = diag(en),
p =diag(pi), k=1,
Py =Pyx(Hy), Py =Pr(Hy)

(v) Compute while the Newton method does not
converge, i.e., while error > tol:

up =us + My, hy Ar + M Wy P
+ M, Wry Pk
yne = WanUE + Wam
Yie = Wiy UE + Wiy
k+l =7YNE T ENVYNA
=YrE+E€TYIA
Pk+1 =TIy (PIICV’ k+l) proxc,, (Pk —rEkH)
P = 1y (B B £5)
= proxc, @, (P —r§7"")
error = [P — PR || + [P — PG|
k=k+1

k+l
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START

A

Evaluate

k+1 gk+l

Specify Compute
k=1

P =P, 7 Ad

P/ =P, (Use Eq. (54)

Increment
counter

k=k+1

\i

N T

(Use Egs. (44-45)

y

Project
K+l k g+l
Py’ :HN(PN’ N+)
K+l K+l pk gkl
| A =HT(PN+’PT’ T )

Is error<tol?

_ k+1 _ pk k+1 _ pk
error = "PN PN" + "PT P, "

Evaluate

A

Fig. 3 Computational strategy for the iterative Newton method

(vi) Compute the positions at the end of the integra-
tion time step:
1
qe =qum + 3 Atug
(vii) Increment time step:
th =tp+ At

(viii) Update system states’ variables q4 = qg and
uy = ug. Go to step (iii) and proceed with the
process for the new time step. These steps must
be performed until the final time of analysis is
reached.

5 Analysis of the cam-follower mechanism

This section contains a demonstrative example of ap-
plication in which the contact-impact events are mod-
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eled and analyzed under the nonsmooth dynamics ap-
proach. This example deals with a cam-follower mech-
anism with of an industrial application of a cutting file
machine [64-66]. Figure 5 shows the overall view and
the schematic representation of this machine-tool. The
file teeth are produced by impact of the cutting beater
(system composed by follower, cylinder, and chisel),
with a reciprocate movement. To generate this move-
ment, the cutting bench has a wheel with six rebounds
(cam) whose rotation forces the pin to move up. This
will lift up the cylinder, to which the chisel is attached,
which immediately falls down, when reaching the up-
dead-point, impelled by the spring and its own weight.

The impact energy of the chisel depends on the re-
lationship between the spring force and the maximum
distance between the chisel and the file (adjusted by a
presser foot). The chisel describes a reciprocating mo-
tion that always reaches the same up dead point (max-
imum distance between the chisel and the file), while
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Fig. 4 Flowchart of the
Moreau time-stepping
algorithm with augmented
Lagrangian approach

(2)
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Compute while error>tol
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Fig. 5 (a) Overall view of the cutting file machine; (b) Schematic representation of the corresponding mechanical system
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the pin, rigidly attached with the cylinder which moves
the chisel, which always passes by the tops of cam. On
the other hand, the down dead point of the chisel is
variable, and depends on the impact energy absorbed
by the file body. The chisel impact energy depends on
the relationship of the regulations of the spring pre-
load and on the maximum distance between the chisel
and file. During the file manufacture, in order to obtain
a tooth with the appropriate geometry (depth of the
penetration), it is required, not only the impact energy
should be adequately adjusted, but also the maximum
distance between the chisel and the file resulting from
the regulation of the presser foot should have a value
that allows the chisel to pass above the last produced
tooth.

When the machine operates correctly, the kinetic
energy produced during the descending chisel move-
ment is totally absorbed by the base body of the file.
For that purpose, the presser foot must be adjusted in
order to prevent impacts between cam and pin during
the descent of the chisel movement. It means that the
pin should never collide with cam. When this situation
does not happen, as consequence of incorrect position-
ing of the presser foot, it can be observed that the cut-
ting operation produces a hard and increasing noise.
The noise is due to the impact of the pin on the cam,
and strongly depends on the spring force. This clash
is undesirable for two main reasons; first, because it
accelerates the cam and follower wear, and secondly,
because it decreases the kinetic energy available for
the cutting operation, since part of the energy is be
absorbed by that impact. Hence, the file quality is sig-
nificantly penalized [65].

The multibody system of the cutting file ma-
chine is made of three rigid bodies (cam—the driver,
follower—the driven element, and the ground or
frame), one revolute joint, and one translational joint.
Figure 6a depicts the kinematic configuration of the
cam follower mechanism. It is known that for n, rigid
body system with n, independent constraint equations,
the mobility or degrees of freedom (DOF) is given

by [2]

DOF =6 x np — n, (56)
This mathematical expression, usually called as Griie-
bler equation, can be used to determine the mobility
of multibody system. Thus, from Eq. (56), the DOF

of the cam-follower mechanism is equal to 1, imply-
ing one, and only one, motion generator. Since the fol-
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lower can not rotate about its own axis, and the fol-
lower curvature radius is very large when compared
to its own dimensions, the follower can be considered
flat faced. The flat faced follower has the advantage
of a zero degree pressure angle throughout its mo-
tion, which is an important feature, since most of cam-
follower mechanisms are designed with pressure an-
gles as small as possible [67, 68].

Figure 6b schematically illustrates the experimen-
tal data relative to the follower displacement diagram
corresponding to a sixth part of the cam angle rota-
tion, since the cam has six rebounds and the cam-
follower motion repeats itself six times in each com-
plete cam rotation [66]. In Fig. 6b, point A repre-
sents the maximum follower displacement, point B
defines the instant of impact between the follower
and file body, point C corresponds to the minimum
follower displacement, that is, the maximum pene-
tration/deformation of the body file, and finally, and
point D represents the recontact between the cam and
follower after the rebound effect. Observing Fig. 6b,
it is evident that the follower motion can be divided
into two main phases, namely, the fall and the rise
movements. In turn, these two phases can be ana-
lyzed into two different parts. Starting from maxi-
mum follower elevation, point A, the follower motion
can be described and summarized by the following
steps:

(i) Fall #1—from point A to point B: the follower
motion is influenced by three main factors, the
gravity effect, the spring action and friction phe-
nomenon that exists between the follower and
guide. At point A, the follower is pushed down
by preloaded spring and gravity action;

(ii) Fall #2—from point B to point C: point B rep-
resents the initial instant of impact between the
follower (chisel) and the file body. The maximum
penetration depth, which corresponds to the edge
height, is represented by the distance between
points B and C. Point C corresponds to the end
of follower fall motion;

(iii) Rise #1—from point C to point D: this phase
represents the rebound effect caused by the ac-
cumulated energy during the contact-impact pro-
cess between the follower and file body. In this
process, there is no contact between the fol-
lower and cam due to rebound effect and cam
speed;
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Fig. 6 (a) Kinematic configuration of the cam follower mechanism; (b) Follower displacement

Table 1 Parameters used in the dynamic simulation of the cam
follower system

Follower mass—m 1.0 kg
Cam speed—aw 20.94 rad/s
Cam base radius—R), 0.003 m
Maximum follower stroke—# 0.017 m
Pre-load spring 00N
Spring stiffness—Kj 240 N/mm
Initial position—yyp 0.017 m
Initial velocity—uvg 0.0 m/s
Gravity acceleration—g 9.81 m/s?
Coefficient of restitution—e y 0.4
Integration time step—A¢ 0.0001 s

(iv) Rise #2—from point D to point A: the follower is
in permanent contact with the cam surface, hence,
the follower is rising and the spring is preloading
in this process.

The simulation parameters of the cam follower sys-
tem are listed in Table 1. The system is considered to
be frictionless.

In order to keep the analysis simple, the follower
motion is considered to be of sinusoidal type, being
the displacement expression given by

(6 1 270 57
y‘S<E_E““7> ©7

where s is maximum stroke of the follower, 6 repre-
sents the angle of the cam rotation corresponding to
displacement of the follower y and g is the angle of
cam rotation to reach the stroke s. Since the cam fol-
lower has one degree of freedom, the variables neces-
sary to define the problem are as follows:

q=©) (58)
u=(y) (59
M= (m) (60)
h=(—-mg — K;y) (61)
gN=Yy—Rp—s (62)
Wy =(1) (63)
Wy =(—Y) (64)

Figure 7 shows the behavior of the follower for the
data presented above and for a full cam rotation, that
is, the follower displacement and the follower veloc-
ity. From these two plots, the different contact sce-
narios between the cam and follower are well visible,
namely the continuous or permanent contact and the
impact followed be rebounds due to the impacts that
take place. The global results are in line with those
offered in the literature [64]. Figure 8 shows an ani-
mation sequence of the simulation of the cam follower
movement during the first instants after the follower
reaches the up dead point.
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6 Conclusions

A general and comprehensive methodology for mod-
eling and analyzing contact-impact events in multi-
body systems has been presented in this work. In the
process, the main issues of the nonsmooth dynamics
approach have been revised in face of their suitabil-
ity to represent the interactions developed between the
colliding bodies. The unilateral constraints were de-
scribed by a set-valued force law of the type of Sig-
norini’s condition, while the frictional contacts were
characterized by a set-valued force law of the type of
Coulomb’s law for dry friction. The resulting contact-
impact problem was formulated and solved as an aug-
mented Lagrangian approach, which was incorporated
in the Moreau time-stepping method.

The proposed methodology has been exemplified
through the application to a cam-follower mechanism
of an industrial cutting-file machine. The proposed
methodology is able to capture different phenomena
involved in the dynamics of multibody system with
multiple contacts, such as impacts followed by re-
bounds, sliding friction, and stick phenomenon. This
type of response strongly depends on the system’s dy-
namic behavior. An important result from this research
work is that multibody systems with multiple impacts
can have a predictable nonlinear performance.
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