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Abstract

Curve squealing of railway wheels occurs erratically in narrow curves with a frequency of about 4 kHz. Squealing is

caused by a self-excited stick-slip oscillation in the wheel–rail contact. The mechanism which activates squeal is still

unexplained and will be analyzed in the paper at hand. The squeal model consists of the first modal forms of an elastic

wheel and is equipped with a three-dimensional hard Coulomb contact. Based on this model, a linear stability analysis of

the stationary run through a curve is performed for the four wheels of the investigated bogie. The results show that in

particular the front inner wheel tends to squeal. A numerical simulation of the system’s differential inclusions performed

on the unstable states shows the existence of a self-excited stick-slip oscillation. The computed frequency of the limit cycle

agrees well with the measurements. The design of the squeal model, the steps necessary to perform the stability analysis on

systems with non-ideal constraints, as well as the non-smooth dynamics code used to perform the simulations are explained

in detail.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Curve squealing occasionally arises when railway vehicles run through tight curves at low speed. It is
characterized by a narrow-banded noise emission in the range of 4000Hz, which normally occurs for some
seconds. Despite of intensive and long-lasting research on this phenomenon, the mechanism behind squeal is
still not fully understood, and the remedies against it lack in many cases on scientific confirmation. Curve
squealing belongs to the class of self-induced vibrations. In contrast to external and parametric excitation, self-
induced vibrations require the system to be nonlinear. The source of squeal has to be attributed to the
wheel–rail contact: creep between wheel and rail, which always is present because of the kinematic design of
the curved rails in combination with the wheel sets, induces frictional vibrations in the contacts which manifest
themselves as structural oscillations of the wheels and rails. These vibrations are in the range of micrometers
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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because of the high frequencies at which squeal occurs, and are transferred as pressure oscillations to the
embedding medium, i.e. the air, from which they are perceived as noise.

A cooperation has been started between the Swiss Federal Railways (SBB) in the person of Roland Müller
and the Center of Mechanics at ETH Zurich. Within the framework of this cooperation, two doctoral theses
[1,2] have recently been written. Together, they provide a rather complete analysis of curve squealing, from the
mechanism of self-excitation up to the emission of noise, and may establish a basis for systematic development
of counter measures. The work [2] has focused more on the experimental characterization of the squeal
phenomenon, in which on-site measurement of the noise and the parameters responsible for it takes the center
stage, together with the acoustic modelling and simulation of the noise emission of the wheel. In addition, a
mechanical model of the mechanism of self-excitation has been developed in Ref. [1], for which the data from
Ref. [2] have been used as inputs. The paper at hand reports on the results obtained for the
numerical–experimental analysis of the mechanism of self-excitation. They are mainly taken from Ref. [1]
but supplemented with certain measurements from Ref. [2] and a concise description of the theoretical setting
on which the numerical codes are based.

Extensive experience in handling dry friction phenomena at the first author’s institute have led to the strong
belief that analyzing mechanisms of friction-induced vibrations requires utmost carefulness in both the
modelling of the mechanical system and the selection of the numerical schemes. Because of these reasons, the
following strategy has been chosen: In order to numerically analyze the squeal phenomenon, a mechanical
model tailored for resolving frequencies up to 6 kHz has been developed. This model is presented in detail in
Section 5. It consists of a single non-rotating elastic wheel with inertially fixed center and a rigid rail which
moves with constant speed relative to the wheel according to the nominal creep that is present in curves. The
interaction between the wheel and the rail is modelled by one frictional contact point, for which a hard
unilateral constraint is used in the normal direction, and a Coulomb friction element with constant friction
coefficient in the two tangential directions. The elastic modes of the wheel that are used in this squeal model
have been extracted in a previous step from finite element (FE) computations with succeeding modal reduction
of a real railway wheel. The FE model together with comparative measurements is presented in Section 3. In
addition to the elastic modes of the wheel, the squeal model in Section 5 requires as inputs the location of the
contact points, the inclination of the contact plane, the direction and magnitude of the nominal creep, and
approximates of the nominal contact forces as they appear during a stable stationary run through a curve. In
order to obtain these data, the stationary run of a specific driving trailer through a specific curve has been
simulated with commercial multibody software and has been supplemented with measurements. In progress of
the simulations, the system develops itself until a stationary state is reached and the nominal values of the
required data at all wheels are available. The multibody model, consisting of the rail and the trailer with its
two bogies, is presented in Section 4. For taking into account the wheel–rail interactions, the contact model of
Polach has been used in the multibody simulation. This contact model has been proven to excellently meet the
requirements of stationary or low-frequency dynamics as needed here to determine the nominal contact
parameters, but it provides too less insight to structurally analyze the mechanism behind the high-frequency
squeal dynamics. We have therefore intentionally used two different contact models for the computations, i.e.
the Polach model for the low-frequency dynamics within the stationary run in Section 4, and the unilateral
hard Coulomb contact for the high-frequency dynamics at the squeal phenomenon in Section 5 and beyond.
Additional aspects on the special needs of the high-frequency contact dynamics model are addressed in Section 5.
We furthermore want to stress that a combined numerical treatment of both the stationary run and the high-
frequency squeal dynamics is not reasonable because of the different time-scales at which the associated
dynamic phenomena occur: To achieve the stationary run, a track length of about 50m is needed. This takes
the train 12:5 s to go through when a driving speed of 4m=s is assumed. On the other hand, the period at a
squeal frequency of about 4 kHz is 250ms, which makes a factor of 50 000 between the two time scales and
forces the squeal model to be split from the model of the stationary run.

Based on the squeal model described in Section 5, curve squealing is numerically analyzed with the
institute’s research code in Sections 6 and 7. In Section 6, a linear stability analysis is performed on the
stationary run through a curve. Due to the always existing creep, the system is exclusively in the slip state
during this maneuver. Moreover, presence of Coulomb friction turns the persisting contact into a non-ideal
constraint, which requires special steps to set up the linearized equations on which the stability of the system is
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judged. It is shown in detail how linearization has to be performed for this particular case of a non-ideal
constraint. In Section 7, results of the numerical simulation of curve squealing are presented, together with a
full description of the integration scheme and the inequality solver used.

2. Measurements

In this section, some results of the field measurements performed in Ref. [2] are summarized. They will serve
as a basis for developing the squeal model. Measurements have been taken during regular train service in three
phases in a relatively tight curve (radius 200m, gauge 1450mm, cant 110mm, rail inclination 1:40, rail type
UIC54E) on track 303 near the station Bern-Ausserholligen, in which trains are running at low speed and
squeal has been frequently reported to occur. The vehicles singled out for the measurements are particular
regional trains of SBB (series 560) composed of a rail car, a driving trailer (type Bt 29–30) and some
intermediate cars, which periodically run on this track. Only trains leaving the station Ausserholligen have
been measured to not confuse the noise with break squeal.

Both sides of the track have been equipped with a free-field electret condenser microphone to record the
noise generated by the squeal. The recorded signals have been processed by a moving window FFT and
displayed as color-coded frequency–time diagrams, in which the time instants of the wheel axles passing the
microphones have additionally been marked (Fig. 1, without indication of the axles). In order to measure the
vibrations of the rails, triaxial acceleration sensors have been installed at the bottom of both rails. The velocity
of the axles passing by has initially been determined by axle counters, but has later been replaced by a couple
of laser distance sensors on each rail. In this way, the lateral displacements and the angles of attack of the
wheels relative to the rail have been accessed from the distances measured to the wheel rims.

Fig. 1 shows the frequency spectrum of the noise of a train passing by, which has been recorded by one of
the microphones. Squeal can be observed between 12 and 18 seconds. In addition to the fundamental
frequency of about 4 kHz, distinct superharmonics at 8 and 12 kHz are clearly visible in the diagram, which
points at the strong nonlinear character of squeal. Furthermore, one observes a slight shift of about 150Hz in
the fundamental frequency, which occurs at the very instant at which the squealing wheel passes the
microphone. This shift has also been found in the signals of the acceleration sensors and can be ascribed to
the Doppler effect [2], indicating that the noise is mainly emitted from the wheel but not from the rail. This
conclusion is drawn from the physical behavior that the wheel of a passing train can be regarded as a moving
point source, whereas the rail acts as a non-moving line source for the emitted sound. Because of this, only the
wheel is modelled in Section 3 as an elastic body, whereas the rail is considered as rigid for the entire analysis.
Flange noise can also be observed in Fig. 1. It occurs between 2 and 6 seconds and can clearly be distinguished
from curve squealing, as it is characterized by a wide-band frequency spectrum caused by the front outer wheel
of the associated bogie.
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Fig. 1. Frequency spectrum of the noise recorded at one microphone for a train passing by. Recording has been initiated when the first

wheel set passes the microphone.
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The measurements reported in Ref. [2] mount up to 3085 train passages, of which 524 can be assigned to
four particular trains, which have been singled out as noticeably noisy by their maximal sound intensity levels.
Out of them, 83 passages have been judged as squealing by visual inspection of their frequency spectra and
audio tests of the recorded noise. The wheels responsible for squealing have been identified by the axle
counters and by comparing the noise intensity and acceleration levels of the measurements taken at the inside
and outside of the curve. In 62 out of those 83 events, squealing has been uniquely attributed to the inside
of the curve, which confirms the observations in Refs. [3,4]. Squealing at the outside has been observed
occasionally, but much less frequently. In 32 out of the 62 squealing events at the inside of the curve, the
squealing wheel has been found to be the leading inner wheel of the leading bogie of the driving trailer,
and squealing has been around 4100Hz. Because of this accumulation of squealing events, one has chosen
the driving trailer to be the vehicle subjected to closer investigation (Section 4), and its utmost front inner
wheel the one of central interest. Furthermore, measurements have revealed that squealing trains keep their
ability to squeal robustly over weeks. This refers not only to the source of squeal within the train, but also to
the squealing frequency that has been unaltered in such cases.
3. Elastic FE model of the wheel

For the FE analysis of the elastic wheel (elasticity modulus 2:068� 1011 N=m2, Poisson ratio 0.29, density
7820 kg=m3) commercial software has been used. Fig. 2(b) shows a cross-section of the mesh which has been
modelled by 8-node linear solid elements and which has been proven to be reliable up to frequencies of about
6000Hz. The mesh is designed at the wheel rim in such a way that changes in the wheel diameter can easily be
adjusted without remeshing. Such changes occur during the lifetime of a wheel due to reprofiling of the wheel
surface as a maintenance procedure, which reduces the wheel diameter step by step from 820mm for a new
wheel to finally 760mm for a worn wheel. The cross-section of the mesh in Fig. 2(b) consists of 122 elements,
which results in a total of about 12 720 elements and 48 960 degrees of freedom for the wheel. Fig. 2(a) shows
the position of the FE nodes on the tread of the wheel. This diagram is later used together with the wheel–rail
profile pairing in Fig. 2(c) to determine the FE node on which the contact force acts. All calculations have
been performed with a mesh that is fixed on the wheel. The rotation of the wheel relative to the mesh and the
wandering of the contact force along the wheel’s circumference during squeal, as well as centrifugal effects
have been neglected. As reported in Ref. [5], those effects shift the natural frequencies of the wheel only by
about 10Hz because of the slow speeds at which squeal normally occurs.

The FE model of the wheel has been validated by measurements for two different situations, namely for a
free wheel in the laboratory at ETH and for a wheel mounted on the driving trailer at the SBB works in
Zurich. Measurements have been performed in form of an experimental modal analysis with a laser scanning
vibrometer. The wheels have been excited on their rims in axial direction by a piezo element with a periodic
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chirp signal which went up to 10 kHz. Fig. 3 shows the results of this comparison for three selected eigenforms
of a wheel with 820mm diameter. In Fig. 3(a), computed eigenforms are shown for the two boundary
conditions that the wheel is either freely floating or inertially fixed in three directions at its center nodes.
The latter takes into account the connection to the axle as it is for a mounted wheel, of which the
measurements are being displayed in Fig. 3(c). All measurements and calculations for the free wheel have also
been conducted for a wheel diameter of 760mm. For all cases investigated, the computed eigenfrequencies
deviate less than 5% over the entire frequency spectrum of up to 6 kHz from those having been measured by
the method described above. Interestingly, the wheel–rail contact, which naturally has been present in the
measurements of the mounted wheel but which has not been considered in the FE calculations, seems to have
only a minor influence on the results: If possible, the eigenforms align themselves at the wheel in such a way
that one of their nodal points agrees with the wheel–rail contact point. In other words, the dynamics of the
mounted wheel under contact with the rail seems to be adequately representable by the eigenforms computed
for the wheel with only the center nodes fixed. This set of eigenforms will therefore be used as the shape
functions for the squeal model to be developed in Section 5.

During the lifetime of a wheel, its diameter changes from 820 to 760mm, which causes a reduction in mass
from 258 to 190 kg. The wheel therefore looses nearly 70 kg of the material on its rim, which due to the reduced
mass and stiffness results in a heavy shift of its eigenfrequencies. The effect of this shift on the squeal
phenomenon will be discussed in Section 6. Fig. 4 shows a wheel with fixed center nodes, for which the
eigenfrequencies have been computed for diameters of 820, 800, 780 and 760mm. The resulting points in the
diagram have been connected by straight lines for a better display of the arising frequency shifts. The lines are
numbered consecutively in increasing order with respect to the eigenfrequencies that the wheel has at a
diameter of 820mm. Lines with double numbers refer to eigenforms which occur in pairs with a phase shift
of 90� relative to each other, and which position themselves uniquely in angular direction at the rail as soon as
the wheel–rail contact point has been taken into account. Some lines are drawn in heavy black. They refer to
eigenforms which turned out to be important for squeal. The same line type has been used for eigenforms with
similar modal shape. Solid lines in heavy black are assigned to eigenforms with only radial nodal lines but no
nodal circles, for which the wheel rim exhibits heavy out-of-plane oscillations. Mode 35–36 (depicted) has
12 nodal lines, mode 50–51 has 14 nodal lines. Eigenforms addressed by dashed and dotted lines in heavy
black have in common that they allow for a radial pulsation of the wheel rim. Modes 27–28, 31–32 (depicted),
and 42–43 are represented by dashed lines. They are characterized by a triangular-, tetragonal- (depicted), and
Fig. 3. Calculations versus measurements of selected eigenforms under different boundary conditions for a wheel with a diameter of

820mm: (a) FE computations for a wheel with fixed and free center nodes, (b) measurements on a free wheel at ETH laboratory, and (c)

measurements on a mounted wheel at SBB works.
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Table 1

Computed eigenfrequencies f i of the wheel with fixed hub (Fig. 3(a)) and measured modal damping values zi of the mounted wheel

(Fig. 3(c)) for a selection of modes and a wheel diameter of 820mm.

Mode no. 25–26 27–28 31–32 33–34 35–36 42–43 50–51

Eigenfrequency f i ðHzÞ 3125 3230 3896 4022 4079 4553 5161

Modal damping zi (–) 0.0005 0.0036 0.00057 0.00065 0.00144 0.00055 0.0085
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pentagonal-shaped radial vibration of the rim with heavy out-of-plane oscillations of the wheel disk, having 6,
8 (depicted), and 10 antinodal points circularly distributed on the disk. Modes 25–26 and 33–34 (depicted) are
represented by dotted lines. They are characterized by a nearly pure in-plane vibration of the entire wheel,
leading to tetragonal- and pentagonal-shaped (depicted) vibrations of the rim in mainly radial direction with
slight out-of-plane components.

Along with the measurements on the mounted wheel in Fig. 3(c), the modal damping values zi of all
eigenforms up to 6 kHz have been determined. For eigenfrequencies which are well separated from each other,
the associated modal damping values zi have been obtained via their quality factors Qi ¼ 1=ð2ziÞ from the
amplitude–frequency response curves. For eigenfrequencies close to each other, an analytical multi-mode
model [1] has been used to approximate locally the measured amplitude–frequency response and to identify in
this way the remaining zi. Table 1 lists as representatives the eigenfrequencies f i and modal damping values zi

of certain modes for a wheel with a diameter of 820mm. The modes selected in the table are those that are
marked with black lines in Fig. 4, i.e. those that we think to be important for squeal.
4. Multibody simulation of the stationary run

For the simulation of stationary runs through curves of the driving trailer, type Bt 29–30, a commercial
multibody simulation program has been used. The model of the driving trailer is schematically depicted in
Fig. 5. It consists of the car body, the two bogie frames and the four wheel sets, which are connected to the
bogies by axle guides. All bodies are modelled as rigid. The catch, the primary suspensions, the secondary
suspensions which contain an air spring model according to Krettek–Grajnert [6], the anti-roll bar, the vertical
primary damper as well as the lateral dampers are represented as force elements. All data are as much as
possible extracted from the technical documentation of the vehicle or have been chosen in close cooperation
with railway vehicle experts. The track in Ausserholligen is composed of three sections in the model: The first



ARTICLE IN PRESS

Fig. 5. Multibody model of the driving trailer and of its two bogies.
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section is a 15m long straight track. Then follows a 15m long transition curve in which the cant of 110mm
and the curvature is uniformly established. Finally, the track ends with the curve of constant radius of 200m.
The complete track has been modelled with an inclination of 1:40, a gauge of 1450mm and the standard rail
profile UIC54E. Flexibility of the rail and supporting underground as well as all sorts of irregularities have not
been considered. All calculations have been conducted with the standard wheel profile S1002 and the
wheel–rail contact model of Polach [7] which has been available in the multibody code. A detailed description
of the multibody model together with a list of all parameter values can be found in Ref. [1].

Fig. 6 depicts the coordinates which are necessary for the interpretation of the simulation results. They are
shown exemplary for the left wheels, i.e. the curve-inner wheels of each wheel set. For each wheel, a reference
system ðeR

x ; e
R
y ; e

R
z Þ is defined, of which the eR

x -axis lies in the horizontal plane and is tangential to the rail in the
contact point. The eR

y -axis is inclined with respect to the horizontal plane by the cant angle. In addition, a
contact system ð�n; t1; t2Þ is introduced for each wheel, of which the orientation is determined by the
simulation results and therefore not a priori known. This contact system follows from the angle of attack b
around the eR

z -axis, and, subsequently, from the contact angle a around the new eR
x -axis obtained from the

original one by rotation about b. Herein, the vectors t1 and t2 span the contact plane, n is the contact normal,
and t1 lies in the plane of the wheel. Except for the contact angle a, all angles are assumed to be small. It
therefore does not play a role in which order the various angles are applied to finally arrive at the contact
angle. Furthermore, it does not matter in which approximate radial directions the likewise small lateral
displacements y of the wheel sets are interpreted.

The aim of the simulations is to predict the stationary motion of the driving trailer on the curved track for a
chosen constant driving velocity and chosen friction coefficients. The nominal values of the resulting loads and
contact-kinematical parameters of each wheel have to be extracted from these simulation results. Table 2
shows the illustrative results for the leading curve-inner wheel of the leading bogie, which have been calculated
for a driving velocity of 4:1m=s, being typical for curve squealing, and for various friction coefficients. The
triple ðf x; f y; f zÞ denotes the components of the contact force acting on the wheel displayed in the reference
system ðeR

x ; e
R
y ; e

R
z Þ, ðwT1; wT2Þ are the creep velocities of the wheel relative to the rail in the directions ðt1; t2Þ

at the contact point, a and b are the resulting angle of attack and the contact angle, and y is the lateral
displacement of the wheel set as defined in Fig. 6. From the lateral displacement y, the position of the contact
point on the tread of the wheel can be determined by the wheel–rail profile pairing diagram in Fig. 2(c).
Subsequently, the FE node closest to the contact point is identified from Fig. 2(a) which approximately
determines the point at which the contact force acts. An interpolation between the FE nodes has not been
conducted, because the squeal mechanism reacts much more sensitive to deviations in the direction of the
contact force, which is determined by the creep direction and the angles a and b, than to deviations in the
position of the contact point. In addition, the angle of attack bm and the lateral displacement ym have been
measured by using a pair of laser distance sensors being attached to the rails on each side of the track, where
various friction coefficients have been realized by artificial wetting of the rail surface. The entities b and y are
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Table 2

Results from the multibody simulation and measurements for the front inner wheel of the leading bogie at a driving velocity of 4:1m=s.

m (–) f x ðkNÞ f y ðkNÞ f z ðkNÞ wT1 ðmm=sÞ wT2 ðmm=sÞ a ðdegÞ b ðmradÞ bm ðmradÞ y ðmmÞ ym ðmmÞ Node ID

0.1 �0.04 �6.02 �50.62 0.4 �64.9 1.17 15.77 Wet 11.60 Wet 5019

0.2 �1.41 �11.02 �50.12 8.1 �61.3 1.38 14.92 13.49 5019

0.3 �3.61 �15.63 �49.90 13.4 �58.3 1.40 14.19 �15 13.62 �10:5 5019

0.4 �6.30 �20.01 �49.76 17.6 �57.0 1.40 13.87 13.64 5019

0.5 �9.28 �24.25 �49.74 20.4 �55.8 1.40 13.59 13.66 5019

0.6 �11.76 �28.70 �49.77 21.6 �54.9 1.41 13.38 Dry 13.67 Dry 5019
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Fig. 6. Kinematic model of the wheel sets and definition of the associated coordinates.
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nearly constant for the leading wheel set of the bogie because of the already existing flange contact at the
associated outer wheel. For the secondary wheel set, however, they depend strongly on the friction coefficient
as follows from calculations [1] and measurements [2].
5. Design of the squeal model

Sections 3 and 4 provide all the data that are necessary to set up the squeal model illustrated in Fig. 7. In the
model it is assumed that the center nodes of the wheel are fixed to the wheel reference frame ðeR

x ; e
R
y ; e

R
z Þ which

acts as an inertial frame, whereas the rail is moving relative to the center of the wheel with the (now negative)
creep velocities ðwT1; wT2Þ in ðt1; t2Þ-directions determined in Section 4. The actual creep velocities in the contact
are therefore the superposition of the creep velocities ðwT1; wT2Þ obtained for stationary motion and those
stemming from elastic vibrations. The contact point at the wheel is denoted by C, the associated point on the
rail by B.

The elastic model of the wheel uses the (symmetric and positive definite) mass and stiffness matrices
M 2 Rn;n and K 2 Rn;n from the FE calculation for a wheel with fixed center nodes and n degrees of freedom.
The Newton–Euler equation for the wheel can therefore be written as

M€zþ Kz ¼ fC , (1)

where z 2 Rn denotes the displacements of the n=3 nodes that are located in the reference configuration at the
positions p 2 Rn. The contribution fC of the contact force is still unknown and will be determined now from its
virtual work dW C and the displacement diagram Fig. 7(b). The node C on which the contact force FC 2 R3

acts has already been determined in Section 4 and can be accessed by the (constant) node selection matrix
SC 2 R

3;n. The positions rOĈ 2 R3 and rOC 2 R3 of node C in the reference and the deformed configuration, its
velocity vC ¼ _rOC � _rĈC 2 R3 as the time derivative of the position difference rĈC between Ĉ and C, and its
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virtual displacement drC 2 R3 are therefore expressed as

rOĈ ¼ SCp; rOC ¼ SCðpþ zÞ; vC ¼ SC _z; drC ¼ SCdz. (2)

By invariance of the virtual work under coordinate transformations and the last equation in Eq. (2), one
obtains from the virtual work of FC the term

dW C ¼ FT
CdrC ¼ FT

CSCdz¼: f
T
Cdz, (3)

from which the contribution fC of the contact force in Eq. (1) is identified as

fC ¼ ST
CFC . (4)

As displayed in the left and right diagram of Fig. 7(a), we finally decompose the contact force FC into its
components ðlN ; lT1; lT2Þ associated with the contact frame, of which the orientation has also been
determined in Section 4,

FC ¼ nlN þ t1lT1 þ t2lT2. (5)

In this form, the scalar values lN and ðlT1; lT2Þ of the normal force and the two tangential forces are later used
to set up the contact laws.

The middle diagram in Fig. 7(a) shows the entities necessary to describe the kinematics of the contact. These
are the contact gap gN in normal direction which can directly be calculated from the nodal displacements (2) of
point C,

gN ¼ nTrBC ¼ nTðrOC � rOBÞ ¼ nTSCðpþ zÞ þ a ¼ nTSCzþ â with â :¼ nTSCpþ a and a :¼ � nTrOB, (6)

and the relative velocities ðgN ; gT1; gT2Þ of point C with respect to point B on the rail. The normal relative
velocity gN ¼ _gN is obtained directly by projecting the nodal velocities (2) on the normal n, whereas the
tangential velocities gTi consist of the differences in nodal velocities in the tangential directions and the creep
velocities wTi,

gN ¼ nTðvC � vBÞ ¼ nTSC _z; gT1 ¼ tT1 ðvC � vBÞ ¼ tT1SC _zþ wT1; gT2 ¼ tT2 ðvC � vBÞ ¼ tT2SC _zþ wT2. (7)

The two creep velocities wTi obtained for stationary motion through the curve therefore enter the model as
kinematic excitation.

The wheel–rail contact is modelled as a hard unilateral constraint with spatial Coulomb friction and
constant friction coefficient m. The contact law in normal direction displayed on velocity level [8] reads as

gN40) �lN ¼ 0; gN ¼ 0 :
gN40 ) �lN ¼ 0

gN ¼ 0 ) �lNp0

(
(8)
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and contains the states of enduring and open contact, as well as the lift-off transition. The transition from an
open to a closed contact is not yet taken into account in Eq. (8), because it would require in addition an impact
law as it is later introduced in Section 7. The conditions from left to right in Eq. (8) have the following physical
meaning: For an open contact gN40 the normal contact force vanishes, lN ¼ 0. For a closed contact gN ¼ 0,
the further evolution depends on the normal relative velocities gN ¼ _gN : For gN40, the contact will
immediately open in near future, thus the (right limit of the) contact force has to disappear, lN ¼ 0. For
gN ¼ 0, the contact may stay closed with lN acting as a compressive force, lNX0. Although the state of an
open contact, and the lift-off and touch-down transition as a consequence, are most unexpectedly to occur for
curve squealing, they have been kept in the formulation because of two reasons: First, for an oscillation of
4 kHz they cannot be pre-excluded with final guarantee. Secondly, there is nearly no extra effort to keep them
in the algorithm [9] presented in Section 7. In tangential directions, the Coulomb friction law is employed
which reads as

cTa0 ) �kT ¼ mlNeT ðcT Þ

cT ¼ 0 ) k� kTkpmlN

(
with eT ðcT Þ ¼

cT

kcTk
(9)

and kT ¼ ðlT1 lT2Þ
T, cT ¼ ðgT1 gT2Þ

T, vT ¼ ðwT1 wT2Þ
T. The friction law makes a clear distinction between

stiction and sliding: If the contact is sliding cTa0, then the friction force kT has the magnitude mlN and
opposes the sliding direction eT . For a vanishing tangential relative velocity cT ¼ 0, the contact may be in
stiction, thus we have to allow tangential contact forces kT with a magnitude even smaller than mlN . Drilling
friction (pivoting friction) is not considered, as it is not essential for the squeal mechanism.

The dependency of the friction coefficient on the relative velocity, which is generally known as the Stribeck
effect, has deliberately been omitted in the modelling. If one imagines the conditions under which curve squealing
occurs in praxis, then it is implausible that the menagerie of decreasing friction curves that are used in the
literature [10–13] are responsible for this phenomenon: We have to keep in mind that squeal typically occurs with
a frequency of about 4 kHz and lasts in the case of Fig. 1 for about five seconds. At a velocity of 4m=s, this
corresponds with a distance of 20m over the track on which the wheel undergoes 20 000 periods of oscillation.
This implies that the wheel travels the distance of 1mm per oscillation period, which is very large with respect to a
typical amplitude of oscillation of 5mm. Each period of oscillation therefore occurs at a completely different
location on the track, i.e. 20 000 different locations on 20m. If one takes a closer look on a real railway track
which is subjected to everyday’s environmental conditions and wear processes (abrasion, corrosion, dirt, surface
irregularities, etc.), then it is doubtful that the frictional conditions on all these 20 000 locations have to be
described by just one particular friction curve. Moreover, it is questionable whether the classical understanding of
stiction and slipping still makes sense for displacements of 5mm being of the same order of magnitude as the size
of small asperities and big metal grains. We therefore believe that squeal is a rather stable oscillation mechanism
which is very insensitive to the exact form of the chosen friction curve and should therefore be reproducible even
by the simplest one. For this reason, we propose in this paper an oscillation mechanism for squeal which is
insensitive to the slope of the friction curve, either being negative or even slightly positive, and has therefore been
chosen to be constant for the numerical calculation. The reason why almost always a decreasing friction curve is
adopted in literature lies in the insufficient modelling of the dynamics of the wheel. Typically, the dynamics of the
physical system is reduced to a mechanical one-degree-of-freedom system having the structure of the classical
block-on-belt model [14,15], which can only exhibit a self-excited periodic oscillation if a decreasing friction curve
is chosen. In Ref. [16] it is therefore suggested to extend the common lateral models for squeal with forces in
longitudinal and normal direction which only makes sense if the wheel can dynamically respond in these
directions. From the literature [17–19] it is known that systems with degrees of freedom in normal and tangential
direction of the contact can exhibit friction-induced self-excited oscillations, even if the falling slope of the friction
curve is not present. These self-excited oscillations are caused by the proportionality between the friction force
and the normal force during sliding, as well as the coupling between the normal and tangential degrees of
freedom. The mechanical model proposed in the paper at hand contains degrees of freedom in normal and
tangential directions by the elastic model of the wheel and can therefore exhibit the aforementioned friction-
induced self-excited oscillations. Consequently, our model gives a mechanism for squeal which is, in a certain
range, insensitive on the chosen friction curve.
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The squeal model, being completely determined by Eqs. (1) and (4)–(9) in nodal displacements z 2 Rn,
is subsequently reduced to the first f ¼ 61 eigenforms ui 2 Rn from Section 3. They sufficiently approximate
the system up to 6 kHz. With U :¼ðu1; . . . ; uf Þ 2 Rn;f and q 2 Rf the associated modal amplitudes, one sets
by the classical reduction technique z ¼ Uq to obtain via differentiation and variation the kinematical
transformations

z ¼ Uq; _z ¼ U_q; €z ¼ U€q; dz ¼ Udq. (10)

Reduction of Eq. (1) is now classically performed with the help of the associated virtual work expression and
the kinematic transformations (10), which yields

0 ¼ dW ¼ dzTðM€zþ Kz� fCÞ ¼ dqTUT
ðMU€qþ KUq� fCÞ 8dq. (11)

After elimination of fC in Eq. (11) by Eqs. (4) and (5), and by taking the eigenforms ui such that they are
already normalized with respect to the system’s mass matrix M, we set

M :¼UTMU ¼ 1; K :¼UTKU ¼ diagðoiÞ; wN :¼UTST
Cn; WT :¼UTST

Cðt1; t2Þ (12)

to arrive at the Newton–Euler equations for the reduced system in the form

M€qþD_qþ Kq� wNlN �WTkT ¼ 0. (13)

The Newton–Euler equations expressed in the f ¼ 61 modal amplitudes q are therefore composed of the
identity mass matrix M 2 Rf ;f , the constant and positive definite diagonal stiffness matrix K 2 Rf ;f with the
eigenfrequencies oi as its entries, and the three constant generalized force directions wN 2 Rf , WT 2 Rf ;2 for
the three contact forces lN ; kT . In addition, the modal damping values zi of these 61 eigenforms are taken into
account in Eq. (13) by the diagonal and positive definite damping matrix D ¼ diagð2oiziÞ 2 Rf ;f with oi ¼

2pf i and f i the associated eigenfrequencies as displayed for a selection of modes in Table 1.
The kinematical relationships (6) and (7) have also to be transformed to the new variables q, which is again

performed with the help of Eq. (10). The resulting terms for the contact gap and the relative velocities are

gN ¼ wT
Nqþ â; gN ¼ wT

N _q; cT ¼WT
T _qþ vT (14)

for which the same expressions wN , WT occur as in Eq. (12). The gap function gN depends now in principle on
all the 61 modal amplitudes q which serve as the generalized coordinates. Similarly, the relative velocities
gN ; cT are dependent on the 61 modal velocities _q. In a last step, the distance a (Fig. 7(a)) between the wheel
center and the rail is adjusted such that the resulting normal contact force lN in the reduced (temporarily
frictionless) model agrees with the associated component of the contact forces ðf x; f y; f zÞ obtained from the
multibody simulation, i.e. lN ¼ nTðf x; f y; f zÞ. Note that a is not a constant geometric value but accounts for
the deformation of the deformable wheel under load. Due to the boundary conditions that we have chosen for
the model (rail inertially fixed, center of wheel inertially fixed), it is needed to pre-load the wheel according to
its nominal state.

The reduced system is now completely described by the Newton–Euler equations (13), contact kinematics
(14), and the contact laws (8) and (9). Together, they constitute the equations of motion for our squeal model,
and all succeeding investigations are based on them. Unknowns are the evolution of qðtÞ, gNðtÞ, ðgN ; cT ÞðtÞ and
ðlN ; kT ÞðtÞ.

6. Stability analysis of the stationary run

In this section, the stability of the stationary run through a curve is analyzed, driven by the following
concept: The equations of motion (13), (14), (8) and (9) are general in the sense that they contain all the
different possible states of the system, i.e. enduring open contact, enduring closed contact with stiction,
enduring closed contact with sliding, and all the transitions between them (except for the impacts). The
stationary run through the curve is characterized by a solution q0ðtÞ of the equations of motion, for which
the wheel does not vibrate, i.e. for which q0 ¼ const: and _q0 ¼ €q0 ¼ 0 as a consequence. It can be shown that a
solution of the particular form q0 ¼ const:, which is called an equilibrium point of the system, fulfills in our
case the equations of motion for one and only one state, which is enduring closed contact with sliding. As long
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as the equilibrium is not at the boundary of this state, small superimposed oscillations will not cause the
system to leave this state, and first-order stability of the equilibrium can be investigated classically, i.e. by
linearization of the equations of motion in this state at the equilibrium point. This approach follows the theory
in Ref. [20], in which general theorems on the stability of motion of systems with hard Coulomb contact are
presented.

In order to proceed, we first have to extract the state of enduring contact with slip from the equations of
motion (13), (14), (8) and (9). Sliding ðcTa0Þ means that the first equation in the tangential contact law (9)
holds true, which enables us to express the tangential force kT in Eq. (13) in terms of its normal force,

M€qþD_qþ Kq� ðwN � mWTeT ð_qÞÞlN ¼ 0 with eT ð_qÞ ¼
WT

T _qþ vT

kWT
T _qþ vTk

. (15)

Enduring contact means that the gap function gNðtÞ is equal to zero within some open time interval, gN ðtÞ ¼ 0
for t 2 ðt1; t2Þ, and so its time derivatives gNðtÞ ¼ _gN ðtÞ ¼ 0 which follows from differentiation. For enduring
contact, the normal contact law (8) is therefore reduced to an equality law gN ¼ 0, gN ¼ 0, _gN ¼ 0, which
yields with Eq. (14)

gN ¼ wT
Nqþ â ¼ 0; gN ¼ wT

N _q ¼ 0; _gN ¼ wT
N €q ¼ 0, (16)

and for which the force restriction lN40 has to be verified afterwards. Eqs. (15) and (16) completely describe
the dynamics of the system for the state enduring contact with slip and will be used in the following to perform
the stability analysis.

Within the framework of linear stability analysis, we assume the solution qðtÞ of Eqs. (15) and (16) to be
composed of the equilibrium q0 ¼ const: and small superimposed deviations yðtÞ. In the same manner, the
overall normal force lN ðtÞ is assumed to consist of a nominal force lN0 ¼ const: together with small deviations
nNðtÞ,

qðtÞ ¼ q0 þ yðtÞ; lNðtÞ ¼ lN0 þ nN ðtÞ. (17)

The equilibrium point ðq0; lN0Þ as one solution of the equations of motion is now determined by putting
_q0 ¼ €q0 ¼ 0 into Eqs. (15) and (16), which results in

Kq0 � ðwN � mWTeT0ÞlN0 ¼ 0 with eT0 ¼
vT

kvTk
, (18)

gN0 ¼ wT
Nq0 þ â ¼ 0, (19)

from which the values of ðq0; lN0Þ can be calculated. One further recognizes that the last two equations in
Eq. (16) are identically fulfilled for the equilibrium point. With q0 from Eqs. (18) and (19), the 61 constant
modal amplitudes for stationary sliding are known. They depend on the creep direction eT0.

The Newton–Euler equations (15) are now linearized around the equilibrium position ðq0; lN0Þ. Note that
the only nonlinearity in the system stems from the direction of the friction force for sliding which is determined
by the direction eT ð_qÞ of the relative velocity in the contact point. By using Eq. (17), linearization yields

M€yþD_yþ Ky� ðwN � mWTeT0ÞnN þ mlN0WT

qeT

q_q

� �
0

_y ¼ 0, (20)

with the changes q=q_q in the sliding direction eT from Eq. (15), evaluated at the equilibrium

qeT

q_q

� �
0

¼
1

kvTk
�

vTvTT

kvTk
3

� �
WT

T ¼
1

kvTk
ð1� eT0e

T
T0ÞW

T
T ¼:RW

T
T with R ¼ RT psd. (21)

Eqs. (20) and (21) together yield

M€yþ ðDþ mlN0WTRW
T
T Þ_yþ Ky� ðwN � mWTeT0ÞnN ¼ 0, (22)

in which we abbreviate the terms in front of _y and nN as

H :¼Dþ mlN0WTRW
T
T ; wR :¼wN � mWTeT0 (23)
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to arrive with the Newton–Euler equations in the form

M€yþH_yþ Ky� wRnN ¼ 0 (24)

with constant, symmetric and positive definite matrices M, H and K. In a final step, the deviations nN in the
normal force are eliminated from Eq. (24), which is performed with the help of the equality constraints in Eq.
(16) and which basically follows the elimination procedure for non-perfect constraints introduced in Refs.
[21,22]. With qðtÞ from Eq. (17), the last equation in Eq. (16) becomes

_gN ¼ wT
N €q ¼ wT

N €y ¼ 0. (25)

The Newton–Euler equations (24) are now solved for €y,

€y ¼M�1wRnN �M�1ðH_yþ KyÞ, (26)

and then substituted into Eq. (25). The resulting equation

wT
NM

�1wRnN ¼ wT
NM

�1ðH_yþ KyÞ (27)

can then be solved for nN . By abbreviating the term in front of nN as

d :¼wT
NM

�1wR, (28)

the deviations nN in the normal force become

nN ¼
1

d
wT

NM
�1ðH_yþ KyÞ. (29)

This expression is finally re-substituted into Eq. (24), which yields

M€yþH_yþ Ky�
1

d
wRw

T
NM

�1ðH_yþ KyÞ ¼ 0 (30)

or, after having collected the velocity and displacement dependent terms,

M€yþ 1�
1

d
wRw

T
NM

�1

� �
H_yþ 1�

1

d
wRw

T
NM

�1

� �
Ky ¼ 0. (31)

With the abbreviations for d in Eq. (28), wR and H in Eq. (23) and R in Eq. (21), the equations of motion (31)
have the structure

M€yþ Bðm; eT0; kvTkÞ_yþ Cðm; eT0Þy ¼ 0. (32)

We recall that the only nonlinearity in the system is due to the sliding direction eT ð_qÞ. The linearization of this
nonlinear term contributes to both the stiffness and damping matrix in Eq. (32), which destroys their
symmetry and opens the possibility for dynamic instabilities. The (linear) stability of the stationary run is
determined by the eigenvalues of this linearized system (32). The artificial twofold null-eigenvalue which
occurs due to the implicitly still present constraint (16) can be disregarded in the stability analysis.

Note, however, that even for the frictionless case (m ¼ 0 and consequentlyH ¼ D, wR ¼ wN by Eq. (23)), the
damping and stiffness matrices in Eq. (31) may still be non-symmetric. In contrast to the terms resulting from
the Coulomb friction, these asymmetries are artificial and caused by the various steps that have been necessary
to eliminate the constraint force nN . These unessential asymmetries, as well as the aforementioned null-
eigenvalue can be removed by passing to a new set of minimal coordinates z 2 Rf�1 which implicitly fulfills the
constraint (16), see again Refs. [21,22] but also Ref. [8] for a clear structural interpretation of the necessary
steps,

y ¼ Qz ) gN ¼ wT
Nqþ â ¼ wT

N ðq0 þ yÞ þ â ¼ wT
Ny ¼ wT

NQz � 0 8z ) wT
NQ ¼ 0. (33)

This finally provides us with the well-known annihilator condition wT
NQ ¼ 0. As in Eq. (11), the reduction

of the equations of motion (30) to this set of new coordinates z is performed on the virtual work of the system.
In the resulting equation

QTMQ€zþQTHQ_zþQTKQz�
1

d
QTwRw

T
NM

�1ðHQ_zþ KQzÞ ¼ 0 (34)
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the term wR from Eq. (23) is re-substituted, which yields together with QTwN ¼ 0 the final form

QTMQ€zþQTHQ_zþQTKQzþ
m
d
QTðWTeT0w

T
NM

�1ÞðHQ_zþ KQzÞ ¼ 0. (35)

Obviously, the resulting matrices in the first three summands are symmetric, whereas non-removable
asymmetries may occur in the fourth summand due to the term WTeT0w

T
NM

�1. For the frictionless case
ðm ¼ 0Þ, constraint (16) becomes ideal and the fourth summand in Eq. (35) drops out, leading to symmetrical
equations of motion as expected.

Fig. 8 shows the results of the stability analysis (18), (19), (32) for all four wheels of the leading bogie, which
have been computed with the eigenmodes of an 800mm wheel with fixed center nodes. The radial direction in
the stability charts corresponds to the chosen friction coefficient m, whereas the azimuth angle addresses the
nominal creep direction eT0 which has been varied numerically. The magnitude of the nominal creep kvTk has
been taken as computed from the multibody simulation (Table 2) and has not been varied. Points in the
stability charts, which correspond to the states calculated from the multibody simulation, are marked by black
stars. For the leading inner wheel, these points correspond to the friction coefficient and creep velocities in
Table 2. Points for which the real part of one of the eigenvalues of Eq. (31) is strictly positive are marked in
dark gray and correspond to unstable stationary driving states. The points in light gray indicate
asymptotically stable states. We infer from the upper left stability chart in Fig. 8 that the leading inner
wheel is prone to instability, as the actual calculated states from the multibody simulation enter the unstable
region already for small friction coefficients. Contrary, the inner second wheel is safely within the stability
region. The results for the leading outer wheel are doubtful, because the flanging in the simulation is only
modelled as a single but not as a more realistic double contact. The results of the outer second wheel indicate
that the stationary motion is stable, at least in theory. However, uncertainties in the model and irregularities in
the real system make this result questionable as the distance to the stability border is not large enough to
ensure stability in praxis. These theoretical results agree with the measurements of Section 2.

Fig. 9 shows the stability charts for the leading inner wheel calculated for various wheel diameters. It can be
seen that the instability region for diameters larger than 800mm is located at the left-hand side of the diagram,
whereas it is mostly on the right-hand side for diameters of 780mm, which implies a stable stationary motion
for this case. Accordingly, reprofiling of the leading inner wheel may in the long term cause the squeal
phenomenon to cease. The sudden disappearance of squeal has indeed been observed in the measurements
which lasted several months. Self-excited oscillations occur almost always at a frequency close to an
leading
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Fig. 8. Stability charts for the four wheels of the leading bogie.
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Fig. 9. Stability charts for the leading inner wheel of the leading bogie for various wheel diameters: (a) diameter 820mm, (b) diameter

800mm and (c) diameter 780mm.
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eigenfrequency of the system, as they are normally born from Hopf bifurcations [23]. As stated before, a
coupling between degrees of freedom in normal and tangential direction of the contact are necessary for
friction-induced vibrations with a constant friction coefficient. The normal degree of freedom causes a varying
normal contact force, which induces a varying friction force exciting the system in tangential direction. This
implies that at least two degrees of freedom need to be present. The intensity of the coupling is strong if the
eigenfrequencies of the normal and tangential direction are close to each other as this facilitates the necessary
exchange of energy. The three modes depicted on the right-hand side in Fig. 4 have almost the same
frequencies for large wheel diameters, but these frequencies separate from one another as the wheel diameter is
reduced. We are led to believe that for wheel diameters 820 and 800mm the modes 31–32 and 33–34 share the
variation of the normal contact force, whereas for 780mm just only mode 31–32 participates, which might
explain the transition of the stability region from the left- to the right-hand sides in Fig. 9. The precise
mechanism behind this phenomenon is still an open question. Moreover, the possibility of squeal at a
frequency of about 4400Hz for even smaller wheel diameters due to the approach of modes 33–34, 42–43 and
50–51 needs to be studied. All three modes, 31–32, 33–34, 35–36, are essential for squeal to appear at a wheel
diameter of 800mm. If one of these modes is removed from the numerical calculation, the squeal mechanism
ceases to exist.

We finally want to mention that isotropic Stribeck effects could be taken into account by making the
friction coefficient m dependent on the sliding velocity, m : Rþ0 ! R, v! mðvÞ with vðcT Þ ¼ kcTk. In this way,
the slope of the friction curve taken at the nominal creep, m0ðv0Þ ¼ m0ðkvTkÞ, would enter the linearization
process described above and would lead to an additional term in Eq. (20). In particular, R would have to be
replaced by R̂ :¼Rþ ðm0ðv0Þ=mðv0ÞÞeT0e

T
T0 in Eqs. (22) et seqq., as basic calculations show. The instability

regions in Figs. 8 and 9 depend continuously on the eigenvalues of the system (32), and the eigenvalues depend
continuously on the system parameters. As a consequence, the instability regions, computed for a constant
friction coefficient ðm0ðv0Þ � 0Þ as done in the figures above, would not change much for small slopes in the
friction curves ðkm0ðv0Þ=mðv0Þk51=v0Þ. Instability of the system is therefore structurally stable within certain
bounds of m0ðv0Þ.

7. Numerical simulation of self-excitation

In the linear stability analysis of Section 6 it has been shown that, in particular, the stationary run of the
inner leading wheel can become unstable. However, it is from the linear analysis still unknown whether this
instability leads to a bounded oscillatory motion and how this oscillatory motion would look like. To this end,
the nonlinear differential inclusions of the reduced model described in Section 5 are numerically simulated.
The simulations have been conducted with a research code dedicated to the simulation of mechanical systems
with impact and friction, see Ref. [30] and in particular Ref. [9] for a full account. The time integration is
performed with a half-implicit index-2-solver and the inequalities are solved with nonlinear projections [9].
Both are in detail reviewed in this section in a form tailored for the curve squealing problem.

In order to prepare the equations of motion (13), (14), (8), (9) for numerical integration, they have to be
displayed in an utmost compact and concise form, together with a unified structure for the contact laws. In a
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first step, the Newton–Euler equations (13) and kinematics (14) are left as they have been

M€qþD_qþ Kq� wNlN �WTkT ¼ 0, (36)

gN ¼ wT
Nqþ â; gN ¼ wT

N _q; cT ¼WT
T _qþ vT , (37)

but the contact laws (8) and (9) are re-formulated as normal cone inclusions. The latter require to specify the
(convex) sets CN and CT of negative admissible normal and tangential forces �lN and �kT , which are
according to Eqs. (8) and (9) given by

CN :¼R�0 � R; CT ðlNÞ :¼mlNB2 � R2 with B2 ¼ fa 2 R2jkakp1g, (38)

and which take into account the restrictions lNX0 and kkTkpmlN by the conditions �lN 2 CN and
�kT 2 CT ðlN Þ. It is now possible to express the two cases for gN ¼ 0 in the normal contact law (8) and the
whole tangential contact law (9) by one normal cone inclusion each, such that the complete contact laws are
represented by

gN40 ) �lN ¼ 0;

gN ¼ 0 ) gN 2NCN
ð�lNÞ;

(
cT 2NCT ðlN Þð�kT Þ. (39)

For a convex set C � Rm, the normal cone NCðxÞ � Rm at a point x 2 C is defined as to consist of all vectors
y, for which the variational inequality yTðx% � xÞp0 holds for all x% 2 C. It therefore consists of all vectors y
which do not form an acute angle with any line segment starting at x 2 C and endpoint x% in C. Note in
particular that NCðxÞ ¼ f0g if x is in the interior of C, which covers the cases gN ¼ 0 and cT ¼ 0 in Eqs. (8)
and (9) when strong inequalities are applied on the associated conditions for lN and kT . The reader should
check by himself that Eq. (39) is indeed an equivalent representation of the contact laws (8) and (9).

We introduce now some abbreviations to write the Newton–Euler equations (36) and kinematics (37) in a
more compact form. In particular, we distinguish explicitly between position and velocity coordinates, and we
set all terms which are associated with the normal direction N into the same vector-matrix notation as the
tangential terms T . With

u :¼ _q; hðq; uÞ :¼ �D_q� Kq; cN :¼ gN ; kN :¼ lN ; WN :¼wN ; vN :¼ 0, (40)

Eqs. (36) and (37) can be written together as

M_u� hðq; uÞ �
X

i2fN;Tg

Wiki ¼ 0; gN ¼ wT
Nqþ â; ci ¼WT

i uþ vi ði 2 fN;TgÞ. (41)

The distinction of cases for gN , which is still present in the normal contact law and which affects via CT ðlNÞ

also the tangential contact law, can be removed from Eq. (39) by introducing the index set

HðqÞ :¼
; if wT

Nqþ â40;

fN;Tg if wT
Nqþ â ¼ 0;

(
(42)

which determines by the second equation in Eq. (41) whether the contact is open or closed and whether
contact forces have to be considered or not. We therefore may now write the two remaining equations from
Eq. (41) together with the remaining conditions from Eq. (39) as

M_u� hðq; uÞ �
X
i2H

Wiki ¼ 0; ci ¼WT
i uþ vi; ci 2NCi

ð�kiÞ ði 2 fN ;TgÞ. (43)

The equations of motion, previously expressed by Eqs. (13), (14), (8), (9), are now fully determined by
Eq. (43), the index set (42) and the sets of admissible forces (38).

As already mentioned, the differential inclusions (43) completely describe the motion of the system with all
the different states and transitions between them, except of the impact. An impact due to a collision of the
wheel against the rail is a highly improbable event for curve squealing, because it would require a preceding
lift-off of the contact. Nevertheless, the differential inclusions (43) have even then to be extended to impacts
because of numerical reasons: An index-1-approach would require to re-formulate the contact laws on
acceleration level, which would lead to additional index sets like the one in Eq. (42), together with additional
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tolerances to decide when an index is changed numerically. This affects in particular the slip-stick transition,
for which zero tangential relative velocity has then to be detected numerically. Since the friction model is a
spatial one, root-finding cannot be applied but has to be replaced by a norm condition and succeeding
projection to null-velocity (which already is a velocity jump and hence an impact from the mechanical point of
view). All that would make the numerical scheme unreliable and prone to numerical drift. The much better
approach is to leave the contact laws on velocity level as in Eq. (43) and to discretize the Newton–Euler
equations in integrated form on velocity-impulse level, which corresponds with an index-2-approach. The
velocity-impulse level, however, is the level at which impacts are resolved, and numerics therefore naturally
asks for properly addressing the impact problem. We therefore state (43) on velocity-impulse level by
integration over any compact time interval I ¼ ½tA; tE � and additionally include the system’s impact dynamics
in the formZ

I

Mdu� hðq; uÞdt�
X
i2H

WidDi ¼ 0; c	i ¼WT
i u
	 þ vi; ð1þ eiÞc

�
i þ

Z
I

dci 2NR
I
dAi

Z
I

�dDi

� �
. (44)

Within this setting, the velocities uðtÞ are understood as functions of special bounded variations, allowing for a
countable number of discontinuities and for the right and left limit uþðtÞ and u�ðtÞ of uðtÞ to exist at every t.
Because of the discontinuities occurring in uðtÞ, its derivative must not be understood in the classical sense.
Instead, the differential measure [24] du ¼ _udtþ ðuþ � u�ÞdZ has to be used, to which the Lebesgue measure
dt and the Dirac point measure dZ contribute. The latter is needed to gain back by integration the
discontinuities in uðtÞ,

R
ftg
du ¼ uþðtÞ � u�ðtÞ. All properties of uðtÞ are passed by the second equation in

Eq. (43) to the relative velocities ci, for which dci ¼ _ci dtþ ðcþi � c�i ÞdZ consequently holds. In the same
manner, the finite forces ki from Eq. (43) have to be replaced in Eq. (44) by their associated force impulse
measures dDi ¼ ki dtþ Ki dZ, in which the impulsive forces Ki, needed to balance the discontinuities of uðtÞ at
the impacts, are contained. Accordingly, the force reservoirs Ci are to be replaced by dAi ¼ Ci dtþDi dZ.
Finally, the generalized coordinates qðtÞ have now to be understood as the integrals of the velocity functions
uðtÞ and become by integration absolutely continuous functions of time. The most challenging task in setting
up (44) is certainly the consistent extension of the contact laws to an expression that in addition includes some
well-defined impact laws and that is displayed in the last formula of Eq. (44). Each normal cone inclusion is
equipped with a coefficient of restitution ei with the usual values ei 2 ½0; 1�. It will be shown next that the
impact-free motion (43) is indeed still contained in Eq. (44), and how the equations for resolving the impacts
look like.

For motion without impacts, the Dirac measure dZ does not contribute to Eq. (44). As a consequence, the
velocities become continuous, uþ ¼ u� ¼ u, cþi ¼ c�i ¼ ci, and Eq. (44) reduces toZ

I

M_udt� hðq; uÞdt�
X
i2H

Wiki dt ¼ 0; ci ¼WT
i uþ vi; ð1þ eiÞci þ

Z
I

_cidt 2NR
I
Ci dt

Z
I

�ki dt

� �
, (45)

which verifies already the second equation in Eq. (43). The first equation in Eq. (43) can be obtained from the
first equation in Eq. (45) by the fact that Eq. (44) has been required to hold for any time interval I .
Equivalently, one pre-multiplies the Newton–Euler equations in Eq. (45) by test functions and applies the
fundamental lemma of variational calculus to obtain the desired result. In order to extract the normal cone
inclusion in Eq. (43) from the last expression in Eq. (45), we let I ! 0 with

R
I
_ci dt! 0 as an immediate

consequence. Furthermore, both the set Ci dt and the force �ki dt scale uniformly to zero by this process, such
that ð1þ eiÞci 2NCi

ð�kiÞ is obtained for the limit. We finally divide both sides of this inclusion by the positive
number ð1þ eiÞ40, which does not alter the right-hand side, because NCi

is a cone.
In order to extract the impact dynamics from Eq. (44), one takes for integration one single instant in time,

I ¼ ftg, such that the Lebesgue measure dt cannot contribute and only the Dirac measure dZ survives. This
yields

Mðuþ � u�Þ �
X
i2H

WiKi ¼ 0; c	i ¼WT
i u
	 þ vi; cþi þ eic

�
i 2NDi

ð�KiÞ. (46)

We call the first expression in Eq. (46) the Newton–Euler equations for impacts. They contain the impulsive
forces Ki that are necessary to realize the jump uþ � u� in the generalized velocities. The second equation in
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Eq. (46) expresses, as in Eq. (44), the kinematic transformation between generalized and contact relative
velocities. Finally, the normal cone inclusions on the right of Eq. (46) constitute the impact laws. In this
particular form, we call them the standard inequality impact laws of Newton type for frictional contacts. They
are discussed in detail for the planar case in Ref. [25]. The associated reservoirs for the impulsive forces are
DN ¼ R�0 and DT ðLN Þ ¼ mLNB2.

The design of reliable and accurate integration algorithms for measure differential inclusions of type (44) is
today one of the core activities in non-smooth mechanics. The so-called time stepping methods, which allow
for simultaneously handling the impact-free motion and the impacts, are difference schemes on velocity level
within which all inequalities together with the associated switching events are evaluated. In contrast to event-
driven integration, which aims at resolving the switching events by re-initialization procedures at the boundary
of the integration steps, are those events left in the interior such that multiple switching and even accumulation
points can be processed. To the best of our knowledge, time stepping for inequality problems in dynamics has
been introduced for the first time by Moreau [26]. His algorithm, which we consider still as the most
fundamental one, consists of a midpoint rule for the positions and an Euler backwards step for the velocities,
and has been applied here for integrating the measure differential inclusions (44). To perform one integration
step, the following problem has to be addressed: For given initial time tA, initial positions qA ¼ qðtAÞ and
initial velocities uA ¼ uðtAÞ, determine approximates qE and uE of the endpoint positions qðtEÞ and endpoint
velocities uðtEÞ at timetE . In order to apply Moreau’s time-stepping scheme one has to proceed as follows, see
Ref. [27] for details and helpful comments:
1.
 Choose a time step Dt and calculate the midpoint tM :¼ tA þ 1
2
Dt and the endpoint tE :¼ tA þ Dt.
2.
 Calculate the midpoint positions qM :¼ qA þ 1
2
DtuA.
3.
 Compute hðqM ; uAÞ and the index set HðqM Þ according to Eq. (42). For numerical reasons, the condition
wT

Nqþ â ¼ 0 is here replaced by wT
Nqþ âp0 to resolve also negative contact gaps which occur when the

bodies numerically interpenetrate each other.

4.
 Compute uE from the discretized inclusion problem (44),

MðuE � uAÞ � hDt�
X
i2H

WiDi ¼ 0; cA
i ¼WT

i u
A þ vi; cE

i ¼WT
i u

E þ vi; cE
i þ eic

A
i 2NAi

ð�DiÞ. (47)

For the discretization, the terms du, dci, dDi, dAi and dt in Eq. (44) have been approximated by uE � uA,
cE

i � cA
i , Di, Ai and Dt. Furthermore, the upper indices þ and � have been replaced by the initial time and

end time indices A and E. The sets Ai in Eq. (47) are AN ¼ R�0 and AT ðDN Þ ¼ mDNB2.

5.
 Compute the endpoint positions qE :¼ qM þ 1=2Dt 
 uE with uE from Eq. (47).

The discretization scheme introduced above is of first order and requires therefore relatively small step sizes.
A scheme which allows for a higher-order integration within the intervals of smooth motion and which is
equipped with a step width control can be obtained from the above by extrapolation, as originally presented in
Ref. [9].

There are many approaches suggested in the literature on how to solve the inclusion problem (47).
The most fundamental one is in our opinion the proximal point method combined with a blockwise Gauss–
Seidel iteration, from which most of the other approaches can be extracted and interpreted as special cases, see
Refs. [28,29]. In order to set up the required structure, the discretized Newton–Euler equations in Eq. (47) are
solved for uE ,

uE ¼ uA þM�1hDtþ
X
i2H

M�1WiDi (48)

and substituted into the term cE
i þ eic

A
i built from the second and third equation in Eq. (47). In the resulting

equation

cE
i þ eic

A
i ¼WT

i M
�1WiDi þ

X
kai

WT
i M
�1WkDk þWT

i M
�1hDtþ ð1þ eiÞc

A
i (49)
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for which the sum
P

kai consists of only one element for curve squealing, we employ the abbreviations

ni :¼ cE
i þ eic

A
i ; Gij :¼WT

i M
�1Wj ; ci :¼WT

i M
�1hDtþ ð1þ eiÞc

A
i (50)

to display it together with the normal cone inclusions of Eq. (47) as

ni ¼ GiiDi þ
X
kai

GikDk þ ci; ni 2NAi
ð�DiÞ. (51)

After elimination of ni, one obtains an implicit inclusion for the unknown impulsive forces Di,

GiiDi þ
X
kai

GikDk þ ci 2NAi
ð�DiÞ, (52)

which can then be re-substituted into Eq. (48) to finally determine the endpoint velocities uE needed for step 5
of the integration algorithm.

While inclusions of type (52) are most powerful instruments for analytical investigations, they cannot
directly be implemented in numerical schemes. However, there is a way to equivalently express the normal
cone inclusions as (nonlinear) equations, provided by the proximal point approach. We do not mean here any
kind of regularization, but indeed an equivalent representation of them. We denote by x ¼ proxCðzÞ the
proximal point to z 2 Rm in the convex set C � Rm, i.e. the point x 2 Rm which minimizes for given z the
Euclidean distance dðxÞ ¼ kz� xk under the constraint x 2 C. Note that proxCðzÞ is the identity map for
the case z 2 C. It can now generally be shown [30] that the line segment z� x from x 2 C to z is always
contained in the normal cone of C at x and vice versa, which yields the equivalence x ¼ proxCðzÞ3 ðz� xÞ 2

rNCðxÞ for any r40. Multiplication with the scalar r40 does not alter this result, because cones are by
definition invariant under this operation. By setting now y :¼ðz� xÞ=r and eliminating z from the above
equivalence, we obtain y 2NCðxÞ3x ¼ proxCðryþ xÞ which can be used to write (51) as

ni ¼ GiiDi þ
X
kai

GikDk þ ci; �Di ¼ proxAi
ðrini � DiÞ. (53)

Final elimination of ni yields an implicit equation for the unknown impulsive forces Di,

�Di ¼ proxAi
ðriGii � 1iÞDi þ ri

X
kai

GikDk þ rici

" #
, (54)

which can be iteratively solved by fixed point methods. In particular, blockwise Gauss–Seidel iteration has
proven to be the most successful one when contact problems with Coulomb friction are treated. For a proper
choice of the relaxation parameters ri one should consult [9]. We finally want to mention that the nonlinear
map proxC : R

m ! C � Rm is continuous, weakly contractive and idempotent, which as a nonlinear projector
makes it well suited for numerical evaluation.

The results of the simulations for curve squealing have been obtained with the standard midpoint rule
described above and evaluation of the contact laws according to Eq. (54). For the restitution coefficients, the
values eN ¼ eT ¼ 0 have been chosen. The simulation results will exemplarily be shown for the leading inner
wheel with the initial condition corresponding to the black circle in the upper left stability chart of Fig. 8.
Hence, we consider the run of a wheel with a diameter of 800mm, a friction coefficient of 0.3 and the
associated data which follow from Table 2. Fig. 10 shows the results of these simulations after the motion of
the wheel has reached a periodic state and the initial transients have decayed. Fig. 10(a) shows the response of
the friction force ðl2T1 þ l2T2Þ

1=2 (dotted line) which in stiction phases reduces to values much smaller than the
stiction threshold mlN (solid line). Both the longitudinal and lateral relative velocities gT1 and gT2 vanish
during these stiction phases as is seen in Fig. 10(b). The phase planes of the longitudinal and lateral contact
displacements are depicted in Figs. 10(c), (d) and reveal a limit cycle behavior. Note that the contact
displacements are shown on the horizontal axes, whereas the contact velocities, being their time derivatives,
are shown on the vertical axes. The latter equal the differences gTi � wTi of the relative velocities gTi and the
stationary creep velocities wTi. Stiction ðgTi ¼ 0Þ occurs in the phase planes when the contact velocities reach
the lines of stiction indicated in the figures. The phase plane for the longitudinal direction clearly shows a
corner in the limit cycle at the transition from sliding to stiction, i.e. when the line of stiction is hit, which is
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typical for stick-slip oscillations. This non-smooth effect is also present in lateral direction but hardly visible.
The motion in lateral direction is much larger than the one in longitudinal direction as can be seen from the
comparative inset in the lower diagram. We emphasize that each calculation has been conducted with one and
only one friction coefficient, being independent on velocity and time, which serves at the same time as static
and dynamic friction coefficient. The friction-induced limit cycle shown in Fig. 10 has a frequency of about
3:99 kHz.

A qualitative comparison of simulations and measurements is depicted in Fig. 11. The diagrams in
Fig. 11(a) show the frequency content of the measured squeal noise, i.e. the noise corresponding to the dashed
line in Fig. 1, and the FFT of the lateral contact velocity. In Fig. 11(b), the measured frequency content of an
acceleration sensor, being attached to the foot of the rail, is compared to the calculated lateral contact
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acceleration. This comparison, which is of only qualitative nature, reveals that the relative intensity of the
superharmonic resonances in the measurements and simulations agree quite well.
8. Conclusion

The proposed approach, which consists of a multibody simulation, a FE calculation and numerical analysis
of the resulting system equations, enables us to completely describe the squeal phenomenon of railway
vehicles. All phenomena related to squeal, which have occurred in the measurements or have been discussed
with railway experts, can be explained by the results of the numerical calculations. Important parameters for
the curve squeal phenomenon are the contact kinematical entities, i.e. the position of the contact point, the
wheel–rail contact pairing, the lateral displacement, and the angle of attack. Of equal importance is the
geometry of the wheel which determines its eigenforms and frequencies, and of course the friction coefficient.
The particular form of the friction curve, which is normally regarded to be of prime importance, plays in fact
only a minor role. At present, three modes of the free wheel with fixed center nodes can be identified to
be essential for the squeal mechanism. These three modes have to occur at similar frequencies, one for which
the wheel oscillates in lateral direction at its rim, and two radial modes which allow for a variation of the
normal force.

Each calculation step presented in the paper opens the way to test arbitrary wheel designs and railway
profiles on their vulnerability for squeal, in order to propose targeted changes in their design. From the
theoretical point of view, a detailed bifurcation analysis of the system has still to be conducted. Furthermore,
it still needs to be clarified how the choice of the eigenmodes in the system reduction influences the results, and
whether the squeal phenomenon might finally be reduced to only two relevant modes.
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