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Abstract This paper is concerned with the dominant dissipation mechanism for a rolling disk in the final
stage of its motion. The aim of this paper is to present the various dissipation mechanisms for a rolling disk
which are used in the literature in a unified framework. Furthermore, new experiments on the ‘Euler disk’
using a high-speed video camera and a novel image analysis technique are presented. The combined experi-
mental/theoretical approach of this paper sheds some more light on the dominant dissipation mechanism on
the time-scale of several seconds.
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1 Introduction

If a coin is spun on a table, then we observe a peculiar kind of motion. After a brief initial phase, the coin
wobbles/spins while remaining on more or less the same spot. Very slowly the coin loses height. This motion
is accompanied by a ringing noise of which the frequency is rapidly increasing and tends to infinity before the
motion and sound abruptly stop. This phenomenon is exemplified by the ‘Euler disk’, a scientific toy consisting
of a heavy metal disk on a slightly concave mirror.

The abrupt halt of a spinning disk is often called the ‘finite-time singularity’ in literature [8,18]. There
exists a tremendous amount of literature on the dynamics of the rolling disk, e.g. [1–8,11–13,17–24] but this
list is far from complete. Here, we will only give an overview of the literature on dissipation mechanisms
which explain the finite-time singularity and of the literature reporting measurements of this phenomenon.

In a brief article of Nature, Moffatt [18] proposed a dissipation mechanism due to viscous drag of the layer
of air between the disk and the table. Moffatt showed that, according to this dissipation model, the inclination
θ(t) and precession rate α̇(t) of the disk vary with time according to the power-law

θ(t) ∝ (t f − t)n, α̇ ∝ (t f − t)−
1
2 n, (1)

with the exponent n = 1
3 . The viscous air drag model of Moffatt was extended by Bildsten [3] to account for

boundary layer effects which are expected to occur for larger values of the inclination angle. The derivations of
Bildsten reveal an exponent of n = 4

9 . Observations of spinning coins in vacuum led van den Engh et al. [23]
to suppose that air viscosity is not the dominant dissipation mechanism during the final stage of motion.
Moffatt [19] replies that air viscosity is rather insensitive to the pressure and, therefore, that these observations
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are inconclusive. Moreover, he points out that air drag has a smaller value of n than other dissipation mecha-
nisms and will therefore finally dominate. The article of Moffatt led to an increased interest in the finite-time
singularity of the rolling disk and opened the scientific discussion on the responsible dissipation mechanism.

McDonald and McDonald [17] present a dissipation mechanism for rolling friction for which n = 1
2 .

Furthermore, the precession rate of a rolling disk is determined experimentally using a flashlight and a photo-
transistor (5 kS/s) during 10 s. The experimental results of [17] agree well with n = 1

2 .
Stanislavsky and Weron [22] recorded the sound of a rolling disk and analysed the change in the spec-

trum of the sound between the various stages of motion. No definite conclusions can be drawn from these
measurements.

Kessler and O’Reilly [11] study the dynamics of a rolling disk under the influence of sliding, rolling and
pivoting dissipation. The sliding friction model in [11] has a static and a dynamic friction coefficient and
the numerical results therefore show stick-slip-like behaviour. The numerical simulations show an asymptotic
energy decrease, i.e. the disk does not stop in finite time.

Easwar et al. [8] report measurements of the precession rate with a high-speed video camera but do not
discuss the details of their measurement technique. The experimental results of [8] agree well with n = 2

3
which the authors attribute to rolling friction.

Petrie et al. [21] conducted measurements of the ‘Euler disk’ using a normal video camera (30 fps) during
140 s. A strip with markers was glued on top of the disk and the top view of the motion of the disk was recorded.
The precession rate and angular velocity around the axis of symmetry where retrieved from image analysis.
The inclination angle θ was determined from the variation of the apparent length of the strip, which resulted
in a large experimental error for the inclination angle θ . In [21] it is concluded that the disk rolls without slip
during the first 90 s. The measurements are inconclusive for the last 50 s because of the low frame rate.

Caps et al. [5] present a rather detailed experimental study of various rolling disks using a high-speed
video camera (125–500 fps) and a laser beam during about 10 s. The inclination angle, precession rate and
angular velocity around the axis of symmetry of the disk are each measured with a different experimental setup
during a different run and, therefore, have not been obtained simultaneously. The experimental results agree
with values of n between 1

2 and 2
3 . Measurements on a torus are believed in [5] to confirm the supposition of

van den Engh et al. [23] that air drag is only of minor importance.
In Le Saux et al. [13] and Leine et al. [15], being previous papers of the author, a detailed numerical study

has been carried out of a rolling disk under the influence of combined sliding, rolling and pivoting friction. The
presented modelling technique includes impact and stick–slip transitions and is able to numerically simulate
the transition of the disk from motion to rest and onwards, i.e. the finite-time singularity is within the simulation
time-interval.

From the above literature overview we can draw a number of conclusions. Apparently, the general opinion
in the scientific community is tending to believe that rolling friction is the dominant dissipation mechanism
during the final stage of motion. At this point we have to ask ourselves on which time-scale the final stage of
motion is considered. The viscous air drag dissipation might (for highly polished surfaces) be dominant during
the last milliseconds, whereas rolling friction can be dominant if we consider the final stage of motion on the
time-scale of seconds. The current state-of-the-art experimental results of [5] are only partially satisfactory.
The inclination angle, precession rate and angular velocity around the axis of symmetry of the disk are mea-
sured, but not simultaneously. Some analytical work exists on the exponent n for various dissipation models,
but the results are scattered over the literature and are presented in different notation.

The aim of this paper is twofold. Firstly, the various existing dissipation mechanisms are discussed in
a unified framework. This allows for a better comparison of the dissipation mechanisms. Secondly, new
experiments on the ‘Euler disk’ are presented in this paper. The experiments have been conducted with a
high-speed video camera (1,000 fps) during 10 s. An image analysis technique is presented with which the
inclination angle θ and precession rate α̇ are obtained simultaneously. The combined experimental/theoretical
approach of this paper gives more insight into the dominant dissipation mechanism on the time-scale of several
seconds.

The paper is organised as follows. The equations of motion of a rolling disk are reviewed in Sect. 2.
A theoretical analysis of the dissipation-free dynamics of the disk is given in Sect. 3 and it is shown that
the dissipation-free dynamics has a manifold of stationary states for which the inclination remains constant.
The stability of these stationary states is analysed using the method of Lyapunov functions by exploiting the
integrable structure of the system. Subsequently, all dissipation mechanisms for the rolling disk, which are
used in the literature, are discussed in Sect. 4. The effect of these dissipation mechanisms on the dynamics of
the rolling disk is discussed in Sect. 5. The exponent of the power-law (1) is determined for each dissipation
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mechanism and an overview of the energy decay for the various dissipation mechanisms is given. The experi-
mental setup and experimental results are presented in Sect. 6. Finally, conclusions are given in Sect. 7 and a
discussion of the results of this paper in comparison to the results of the existing literature is given.

2 Rolling disk model

In this section, we give a model for a thick rolling disk under the assumption of pure rolling, i.e. rolling without
slip, see also [2,20,22]. The rigid-body kinematics of a rolling disk are presented in Sect. 2.1 and the equations
of motion are briefly derived in Sect. 2.2. Finally, the contact forces are discussed in Sect. 2.3.

2.1 Kinematics

The kinematical model, presented here, describes the mechanical system under consideration as a thick disk
submitted to a bilateral geometric constraint at the contact point C (Fig. 1a).

An absolute coordinate frame I = (O, eI
x , eI

y, eI
z ) is attached to the table. We introduce the frame R =

(O, eR
x , eR

y , eR
z ) which is obtained by rotating the frame I over an angle α around eI

z , i.e. eR
x = cos α eI

x +
sin α eI

y , eR
y = − sin α eI

x + cos α eI
y and eR

z = eI
z . Furthermore, we introduce the frame K = (B, eK

x , eK
y , eK

z )

which is obtained by rotating the frame R over an angle β around eR
x , i.e. eK

x = eR
x , eK

y = cos β eR
y + sin β eR

z

and eK
z = − sin β eR

y + cos β eR
z . Note that frame K is not body-fixed, but moves along with the disk such

that eK
y is the axis of revolution and the eK

x -axis remains parallel to the table. The components of a vector r in
frame I are expressed as I r .

We consider a disk with an (outer) radius r0 and height 2h (Fig. 1b). The disk’s bottom surface, with
which the disk is in contact with the table, has a rounded edge. The contact point C between the disk and the
table therefore runs for small inclination on a tread with constant radius r being slightly smaller than r0. The
geometrical centre of the bottom surface is denoted with B. The centre of mass S is located on the eK

y axis at

a distance h from B. The disk has mass m and the principal moments of inertia I1 = I2 = 1
4 mr2

0 + 1
12 mh2

and I3 = 1
2 mr2

0 with respect to the centre of mass S. The inertia tensor in frame K therefore reads as

K �S = diag(I1, I3, I1). The gravitational acceleration is g in the negative eI
z direction. We define a para-

metrisation of the disk (x, y, α, β, γ ), as illustrated in Fig. 1a, which is a minimal set of coordinates with
respect to the geometric constraint at the contact point C . In this section, we derive the equations of motion
using the coordinates (x, y, α, β, γ ) and the angular velocity vector K � = [

K ωx K ωy K ωz
]T expressed in

frame K . We will often write the components K ωx , K ωy and K ωz as ωx , ωy and ωz and omit the subscript K
unless confusion exists.

(a) (b)

Fig. 1 Rolling disk model: a parameterisation and b dimensions
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First, we derive the angular velocity K � and relate it to the derivatives of the rotational coordinates
(α, β, γ ):

K � = α̇ K eR
z + β̇ K eK

x + γ̇ K eK
y =

⎡

⎣
β̇

α̇ sin β + γ̇

α̇ cos β

⎤

⎦. (2)

Equating the components of K � gives the expressions β̇ = ωx , α̇ = ωz sec β and γ̇ = ωy − ωz tan β. The
rotational velocity of frame K with respect to the inertial frame I can therefore be expressed in frame K as

K ωI K = α̇ K eR
z + β̇ K eK

x =
⎡

⎣
ωx

ωz tan β

ωz

⎤

⎦. (3)

Similarly, we obtain the rotational velocity of frame R with respect to frame I expressed in frame R as
RωI R = α̇ ReR

z = ωz sec β ReR
z . The angular acceleration � is obtained from � by using Euler’s differentia-

tion rule

K � = K �̇ + K ωI K ×K � =
⎡

⎢
⎣

ω̇x − ωyωz + ω2
z tan β

ω̇y

ω̇z − ωxωz tan β + ωxωy

⎤

⎥
⎦. (4)

The point A is a body-fixed point which is momentarily located at the contact point C and, therefore,
momentarily has the coordinates R rO A = R rOC = [

x y 0
]T. The velocity of the body-fixed point A, denoted

by vA, momentarily vanishes if pure rolling is assumed. However, the vanishing of the velocity vA = 0 does
not imply a vanishing of the acceleration of point A, i.e. aA �= 0. The point A is therefore not a fixed point
with respect to the inertial frame I . Using the distance vector K rAS = [

0 h r
]T, the position of the centre of

mass S can be found to be

K rO S = K rO A + K rAS =
⎡

⎣
x

h + y cos β

r − y sin β

⎤

⎦ , R rO S =
⎡

⎣
x

y + h cos β − r sin β

h sin β + r cos β

⎤

⎦, (5)

expressed in frame K and R, respectively. We calculate the velocity vS of the centre of mass from (5) using
Euler’s differentiation rule:

RvS = R ṙ O S + RωI R × R rO S =
⎡

⎣
ẋ − ωz sec β(y + h cos β − r sin β)

ẏ − hωx sin β − rωx cos β + ωz sec β x

hωx cos β − rωx sin β

⎤

⎦. (6)

Subsequently, we calculate the velocity of the point A by using the rigid-body equation vA = vS + � × rS A.
The velocity of the point A has the form vA = γT x eR

x + γT y eR
y with

γT x = ẋ − ωz sec β(y − r sin β) − ωyr, (7)

γT y = ẏ + ωz sec β x, (8)

being the relative sliding velocities of the contact point in eR
x and eR

y direction respectively. The pure rolling
condition leads to the two velocity constraints γT x = 0 and γT y = 0. With these constraints the velocity vS
becomes

K vS = K � × K rAS =
⎡

⎣
rωy − hωz

−rωx

hωx

⎤

⎦ , (9)

from which we obtain the acceleration aS of the centre of mass S

K aS = K v̇S + K ωI K × K vS =
⎡

⎣
r ω̇y − hω̇z + ωxωz(r + tan β)

−r ω̇x + ωz(rωy − hωz) − hω2
x

hω̇x − ωz tan β(rωy − hωz) − rω2
x

⎤

⎦. (10)



Experimental and theoretical investigation of the energy dissipation of a rolling disk 1067

The velocity of the contact point C over the table equals RvC = R ṙOC + RωI R × R rOC = r(ωy −
ωz tan β) ReR

x . The velocity of the point C over the rim of the disk equals (under the assumption of pure
rolling) the velocity in eR

x direction of the point C over the table, i.e.

γcont = r(ωy − ωz tan β). (11)

2.2 Equations of motion

Let p = maS denote the linear momentum of the system. The only fixed point in the system, which can be
used to set up the angular momentum, is the origin O . The angular momentum with respect to O , denoted by
LO , can be expressed as

LO = rO S × p + �S�

= rO A × p + rAS × p + �S�.
(12)

The dynamics of the system is governed by the balance of linear and angular momentum

ṗ = F,

L̇O = MO ,
(13)

where F is the applied force and MO is the applied moment with respect to the origin O . The unknown
contact forces, which impose the constraints, contribute to F and MO . These constraint forces do not con-
tribute to the applied moment MA with respect to the contact point A = C . The latter can be decomposed
into a gravitational moment Mgrav

A = mgr sin β eK
x and a moment Mdiss due to some kind of dissipation, i.e.

MA = Mgrav
A + Mdiss. In order to free the equations from the unknown contact forces we set up the applied

moment around the contact point A

MA = MO + rAO × F = L̇O + rAO × ṗ. (14)

Differentiation of (12) gives

L̇O = ṙO A × p + rO A × ṗ + ṙAS × p + rAS × ṗ + �S� + � × �S�

= mvA × vS + rO A × ṗ + m(vS − vA) × vS + mrAS × aS + �S� + � × �S�

= rO A × ṗ + mrAS × aS + �S� + � × �S�. (15)

Substitution of (15) into (14) gives the equation

mrAS × aS + �S� + � × �S� = MA, (16)

from which we obtain three equations of motion for the three components of the angular velocity vector K �

(
k1 + 1 + ε2) ω̇x −(k2 + 1 + ε tan β) ωyωz +

(
(k1 + ε2) tan β + ε

)
ω2

z = g̃(sin β − ε cos β)+ f diss
x , (17)

(k2 + 1)ω̇y − εω̇z + (1 + ε tan β)ωxωz = f diss
y , (18)

(k1 + ε2)ω̇z − εω̇y − (
(k1 + ε2) tan β + ε

)
ωxωz + k2ωxωy = f diss

z , (19)

with the constants

k1 = I1

mr2 , k2 = I3

mr2 , ε = h

r
, g̃ = g

r
, (20)

and the generalised forces

f diss
x = 1

mr2 K Mdiss
x , f diss

y = 1

mr2 K Mdiss
y , f diss

z = 1

mr2 K Mdiss
z . (21)

These equations agree for the dissipation-free case (Mdiss = 0) with those of [1,2] and for an infinitely thin
disk (ε = 0) with those of [20,22].
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The kinetic energy in the system is given by

Ekin = 1

2
mK vT

S K vS + 1

2
K �T

K �S K �

= 1

2

(
m(rωy − hωz)

2 + m(r2 + h2)ω2
x + I1ω

2
x + I3ω

2
y + I1ω

2
z

)
(22)

= 1

2
mr2

(
(ωy − εωz)

2 + (1 + ε2)ω2
x + k1ω

2
x + k2ω

2
y + k1ω

2
z

)
.

The potential energy of the system is only due to gravity:

Epot = mg(h sin β + r cos β − h) = mr2 g̃(ε sin β + cos β − ε). (23)

In the absence of dissipation it holds that E = Ekin + Epot = const.

2.3 Contact forces

In the derivation of the equations of motion (17)–(19) the disk is assumed to fulfill the geometric constraint
gN = zS − r cos β = 0, i.e. the disk is in contact with the table, as well as the pure rolling conditions γT x = 0
and γT y = 0. These constraints are induced by the normal contact force λN and tangential forces λT x and λT y

in eR
x and eR

y direction respectively. The constraint forces can be found from the balance of linear momentum

m R aS =
⎡

⎣
λT x

λT y

λN − mg

⎤

⎦ . (24)

The tangential constraint forces λT x and λT y are due to Coulomb friction between the disk and the table.
Hence, if the pure rolling conditions are assumed to hold, then the constraint forces λT x and λT y have to fulfill
the Coulomb sticking condition

√
λ2

T x + λ2
T y < µλN , (25)

where µ is the sliding friction coefficient.

3 Theoretical analysis for the dissipation-free case

The dynamics of the disk in the absence of dissipation is not only of importance in its own right, but also
largely determines the dynamics when the dissipation is small. The three equations of motion (17)–(19) with
Mdiss = 0 form together with β̇ = ωx a four-dimensional autonomous set of differential equations:

β̇ = ωx , (26)
(
k1 + 1 + ε2) ω̇x − (k2 + 1 + ε tan β) ωyωz + (

(k1 + ε2) tan β + ε
)
ω2

z = g̃(sin β − ε cos β), (27)

(k2 + 1)ω̇y − εω̇z + (1 + ε tan β)ωxωz = 0, (28)

(k1 + ε2)ω̇z − εω̇y − (
(k1 + ε2) tan β + ε

)
ωxωz + k2ωxωy = 0. (29)

The equilibria of these differential equations are studied in Sect. 3.1 and their stability is addressed in Sect. 3.2.
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Fig. 2 Circular rolling motion

3.1 Circular rolling motion

In this section, we analyse a particular type of rolling motion in the absence of dissipation. We consider the type
of motion (x0(t), y0(t), α0(t), β0(t), γ0(t)) for which x0 = 0 and β0 = const. in time (0 < β0 < π

2 ). It follows
that ωx0 = 0 and from (28) and (29) that ωy0 = const. and ωz0 = const. Furthermore, the sticking constraint
γT y = 0 with (8) yields ẏ0 + ωz0 sec β0 x0 = 0 from which follows with x0 = 0 that ẏ0 = 0 and therefore
y0 = R = const. Similarly, the constraint γT x = 0 with (7) gives ẋ0 − ωz0 sec β(y0 − r sin β0) − ωy0r = 0,
or, using ẋ0 = 0 and y0 = R,

ωy0 = ωz0 sec β0

(
sin β0 − R

r

)
. (30)

Equation (30) is the condition for pure rolling, which means that, for a given time-interval of motion, the arc
lengths covered by the contact point C on both the perimeter of the circle (O, R) and the perimeter of the disk
are equal. During such a motion, the inclination of the disk β0 with respect to the vertical eI

z and the height of
the centre of mass are constant in time. As the contact point C moves on the contour of the disk, it describes
on the table a circular trajectory (O, R) of radius R around the origin O of the inertial frame (Fig. 2). In the
following we refer to such a type of motion as circular rolling motion. A kind of gyroscopic balancing occurs
during circular rolling motion. Substitution of ω̇x0 = 0 in (27) gives

− (k2 + 1 + ε tan β0) ωy0ωz0 + (
(k1 + ε2) tan β0 + ε

)
ω2

z0 = g̃(sin β0 − ε cos β0), (31)

or by using (30)

ω2
z0 = g̃(sin β0 − ε cos β0)

(k1 + ε2) tan β0 + ε − (k2 + 1 + ε tan β0) sec β0
(
sin β0 − R

r

) , (32)

which is the balance between the gyroscopic moment and the gravitational moment. We see from (32) that
gyroscopic balancing can only occur if the denominator in (32) is positive and if ε = h

r < tan β0. Furthermore,
the friction forces λT x and λT y , introduced in Sect. 2.3, have to fulfill the Coulomb sticking condition (25).
The friction forces for circular rolling motion are λT x = 0 and λT y = mrωz0(ωy0 − εωz0)/ cos2 β0. The
four-dimensional system (26)-(29) has embedded in its four-dimensional state-space a two-dimensional man-
ifold q = (β, ωx , ωy, ωz) ∈ M with boundary, where

M =
{

q ∈ R
4 | ωx = 0, ω2

z = (k2 + 1 + ε tan β)ωyωz + g̃(sin β − ε cos β)

(k1 + ε2) tan β + ε
, |λT y | < µmg

}
. (33)

Each point (β0, ωx0, ωy0, ωz0) ∈ M is, in the absence of dissipation, an equilibrium of the four-dimensional
system (26)–(29) and is what we named a circular rolling motion. As M consists of equilibria, it is (in the
absence of dissipation) an invariant manifold.
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Subsequently, we study a particular type of circular rolling motion for which, as the disk is rolling on the
table, the centre of mass S remains on the axis (O, eI

z ) and is therefore immobile with respect to the inertial
frame. We call this type of motion stationary rolling motion, being characterised by (see (9))

K vS = 0 ⇒ rωy0 − hωz0 = 0 ⇒ ωy0 = εωz0. (34)

The gyroscopic balance equation (32) can be written for stationary rolling motion as

ω2
z0 = g̃(sin β0 − ε cos β0)

k1 tan β0 − εk2
. (35)

The velocity of the contact point γcont = r(ωy0 −ωz0 tan β0), given by (11), yields for stationary rolling motion
γcont = r(ε − tan β0)ωz0. In the limit of β0 ↑ π

2 it holds that ω2
z0 → 0 and γ 2

cont → ∞. The contact point
C therefore moves infinitely fast on the circle (O, R) with radius R → r , and moves infinitely fast on the
contour of the disk, while the disk does practically not rotate. Stationary rolling motion is a one-dimensional
invariant sub-manifold S ⊂ M:

S =
{
(β, ωx , ωy, ωz) ∈ R

4 | ωx = 0, ωy = εωz, ω
2
z = g̃(sin β − ε cos β)

k1 tan β − εk2

}
. (36)

The friction forces λT x and λT y , introduced in Section 2.3, vanish for stationary rolling motion because the
centre of mass S does not accelerate for this kind of motion (vS = aS = 0).

3.2 Lyapunov stability analysis of circular rolling motion

The four-dimensional state space, described by (26)–(29), has an integrable structure. The integrability of the
equations of motion of a disk rolling without slip on a rough horizontal surface (no dissipation) was first studied
by Chaplygin [7], Appell [1] and Korteweg [12], see [20] for a short overview. The closed form solutions for a
rolling disk without dissipation has been used by [2,4,20] to study the bifurcations of the stationary motions.
Here, we will use the integrability result to study the stability of the stationary motions of the disk using a
Lyapunov function.

We will use the notation (·)′ = d(·)/dβ. The prime derivatives are related to the time-derivatives through

ω′
y = dωy

dβ
= ω̇y

ωx
, ω′

z = dωz

dβ
= ω̇z

ωx
. (37)

Following [20], the differential equations (28) and (29) are divided by ωx and yield a set of differential equations
in β for ωy and ωz :

(k2 + 1)ω′
y − εω′

z + (1 + ε tan β)ωz = 0, (38)

(k1 + ε2)ω′
z − εω′

y − (
(k1 + ε2) tan β + ε

)
ωz + k2ωy = 0. (39)

Equations (38) and (39) can be combined in a second-order differential equation for ωz(β):

ω′′
z − tan β ω′

z −
(

1

cos2 β
+ k2(1 + ε tan β)

k1(k2 + 1) + k2ε2

)
ωz = 0. (40)

The parameters ωy(t0) and ωz(t0) define the initial conditions ωy(β(t0)) and ωz(β(t0)) and the values of ωy
and ωz are therefore completely determined by the value of β. Consequently, we can write ωy = ωy(β) and
ωz = ωz(β) as they are functions of β. The four-dimensional state space therefore reduces to a two-parameter
family of second-order systems for β(t) [20] and the equation of motion (27) for ω̇x = β̈ yields

(
k1 + 1 + ε2) β̈ − (k2 + 1 + ε tan β)ωyωz + (

(k1 + ε2) tan β + ε
)
ω2

z = g̃(sin β − ε cos β), (41)

with ωy = ωy(β) and ωz = ωz(β). We rewrite this autonomous second-order differential equation for β as

(
k1 + 1 + ε2) β̈ + ∂U

∂β
= 0, (42)
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using the potential function

U (β) = 1

2

(
(ωy − εωz)

2 + k2ω
2
y + k1ω

2
z

)
+ g̃(ε sin β + cos β − ε). (43)

The second-order system (41) has equilibria β = β0 which have to fulfill U ′(β0) = ∂U/∂β|β=β0 = 0, and
which are circular rolling motions of the four-dimensional system (26)–(29). The stability of these equilibria
can be studied with a Lyapunov function

V (β̄, ˙̄β) = 1

2

(
k1 + 1 + ε2) ˙̄β2 + U (β0 + β̄) − U (β0), (44)

with β̄ = β − β0 being the difference between β and the equilibrium position β0. The Lyapunov function V
equals the scaled total energy E = Ekin + Epot, given by (22) and (23), shifted with the constant value U (β0),
i.e. V = 1

mr2 E − U (β0). Hence, the value of V does not change along solution curves of the system because

V̇ = 0. The potential U (β0 + β̄) allows for a Taylor series expansion around β0

U (β0 + β̄) = U (β0) + U ′(β0)β̄ + 1

2
U ′′(β0)β̄

2 + O(β̄3), (45)

in which the first-order term vanishes due to the equilibrium condition U ′(β0) = 0. The Lyapunov function V
can therefore be approximated around the origin by

V = 1

2

(
k1 + 1 + ε2) ˙̄β2 + 1

2
U ′′(β0)β̄

2 + O(β̄3). (46)

Hence, the Lyapunov function V is locally positive definite if U ′′(β0) > 0 and the equilibrium position β0 is
therefore Lyapunov stable if U ′′(β0) > 0 is fulfilled. For small β̄ it holds that

(
k1 + 1 + ε2) ¨̄β + U ′′(β0)β̄ = 0, (47)

from which we see that the disk swings for small amplitudes with a nutational frequency

ω2
nutation = U ′′(β0)

k1 + 1 + ε2 . (48)

The second derivative of the potential U can tediously be obtained by solving ω′
y and ω′

z from (38) and (39)
and substitution into

U ′′(β0) = −
(
ω′

z(ωy − εωz) + ωz(ω
′
y − εω′

z)
)

(1 + ε tan β) + 2k1ωzω
′
z tan β

+ (
k1ω

2
z − εωz(ωy − εωz)

)
sec2 β − k2(ωyω

′
z + ω′

yωz) − g̃(ε sin β + cos β),
(49)

where β = β0, ωy = ωy0 and ωz = ωz0. The derivation greatly simplifies for ε = 0, i.e. if the disk is infinitely
thin, and the result is

U ′′(β0) = (
k1(1 + 3 tan2 β0) + 1

)
ω2

z0 − (3k2 + 1) tan β0ωy0ωz0 + k2

k1
(k2 + 1)ω2

y0 − g̃ cos β0. (50)

If in addition stationary rolling motion is assumed, then we obtain using (35) with ε = 0 and ωy0 = 0

U ′′(β0) = (
k1(1 + 3 tan2 β0) + 1

)
ω2

z0 − g̃ cos β0 =
(

3 tan2 β0 + 1

k1

)
g̃ cos β0, (51)

which is positive (0 < β < π/2). Consequently, stationary rolling motion is stable for an infinitely thin disk
and has a nutational frequency (48) given by

ω2
nutation =

(
3k1 tan2 β0 + 1

)
g̃ cos β0

k1(k1 + 1)
. (52)
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4 Dissipation mechanisms

In this section, we discuss a number of dissipation mechanisms of a rolling disk. First, we discuss two types of
rolling friction and pivoting friction (drilling friction). Subsequently, we pay some attention to sliding friction
of the disk over the table. Finally, viscous air drag models are addressed. For the formulation of dry friction
laws as set-valued force-laws (i.e. inclusions) we refer to [9,16].

4.1 Classical rolling friction

Bodies in contact can experience a resistance against rolling over each other. At this point we have to ask
ourselves what we exactly mean when we say that bodies ‘roll’ over each other [16]. We may call ‘rolling’
the movement of the contact point over the surface of one of the bodies (here already lies some ambiguity).
A resistance against such a type of movement will be called contour friction and is discussed in Sect. 4.2.
Usually, the term rolling is associated with resistance against a difference in angular velocity components
of the contacting bodies which are tangential to the contact plane [10]. This will be called classical rolling
friction. Contour friction and classical rolling friction may be identical to each other or be essentially different,
depending on the type of system. For instance, if a planar wheel rolling over a flat table is considered, then the
two types of rolling friction yield the same kind of dissipation mechanism, because the velocity of the contact
point over the contour of the wheel is directly proportional to the angular velocity of the wheel. However, the
two types of rolling friction are essentially different if we consider a three-dimensional disk rolling on a table.

The classical rolling friction law, applied to the rolling disk, describes a frictional moment in the horizontal
plane of the table as a function of the projection of the angular velocity on the horizontal plane. The angular
velocity � of the disk has the components Rωx = ωx and Rωy = ωy cos β − ωz sin β around the eR

x and eR
y

axes. For the motion of a rolling disk we can assume that the frictional moment is much smaller around the
eR

x axis than around the eR
y axis. A dry classical rolling friction law (for the eR

y axis) therefore reads as

Mroll ∈ −µrollλN r Sign(ωroll), (53)

with the friction coefficient µroll and the rolling angular velocity ωroll = � · eR
y = Rωy = ωy cos β −ωz sin β.

Similarly, we can consider a viscous classical rolling friction model, described by Mroll = −crollωroll. The
classical rolling friction moment Mroll induces a generalised moment Mdiss = MrolleR

y in the equations of
motion (17)–(19).

4.2 Contour friction

Contour friction is a resisting moment against the movement of the contact point C over the rim of the
disk [13,16]. We prefer to consider a contour angular velocity ωcont = γcont

r . A dry contour friction law
therefore reads as

Mcont ∈ −µcontλN r Sign(ωcont), (54)

where µcont is a dimensionless friction coefficient. Similarly, we can consider a viscous contour friction model,
described by

Mcont = −ccontωcont. (55)

The contour friction moment Mcont induces a virtual power δωcont Mcont = (δωy − δωz tan β)Mcont which
equals the virtual power δωx K Mdiss

x + δωy K Mdiss
y + δωz K Mdiss

z of the generalised forces. Considering arbi-
trary variations δωx , δωy and δωz we conclude that the generalised moment due to contour friction reads as
Mdiss = MconteK

y − Mcont tan βeK
z , i.e.

K Mdiss =
⎡

⎣
0

Mcont
−Mcont tan β

⎤

⎦. (56)
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4.3 Pivoting friction

Pivoting friction [14] is a frictional moment which resists a pivoting angular velocity ωpivot of the disk around
the contact point C . Pivoting friction for the rolling disk has been studied in [13]. If the pivoting angular velocity
is large, then a coupling with sliding friction can exist. This coupling is modelled by the Coulomb-Contensou
friction law [16], which is not of importance in this context and will not be considered here. A dry pivoting
friction law reads as

Mpivot ∈ −µpivotλN r Sign(ωpivot), (57)

with the pivoting velocity ωpivot = I ωz = sin βωy + cos βωz . Similarly, we can consider a viscous pivoting
friction model Mpivot = −cpivotωpivot. The pivoting friction moment Mpivot induces a generalised moment
Mdiss = MpivoteI

z = Mpivot sin β eK
y + Mpivot cos β eK

z .

4.4 Sliding friction

The equations of motion (17)–(19) have been derived under the assumption that the disk purely rolls over the
table (γT x = γT y = 0), i.e. there is no sliding in the eR

x and eR
y direction of the contact point. The dissipation

due to a resistance against sliding of the contact point over the table, which is called radial slippage in [17], can
therefore not be studied with the equations of motion (17)–(19). A detailed numerical model of a rolling disk
which also includes sliding friction has been presented in [13]. In order to study the effect of sliding friction
analytically one would have to consider the equations of motion of a ‘sliding disk’, as have been discussed
in [20], together with friction forces λT x and λT y [2] and a Coulomb or viscous friction law. However, the
friction forces λT x and λT y vanish for stationary rolling motion. It is therefore concluded in [17] that sliding
friction is not able to dissipate energy if the disk is in a state of stationary rolling motion.

4.5 Viscous air drag

Moffatt [18] proposes a dissipation mechanism due to viscous drag of the layer of air between the disk and the
table. During the final stage of motion the inclination θ(t) = π/2 − β(t) is very small and the air is squeezed
between the almost parallel surfaces of the disk and table. The maximal gap between the disk and the table
has a height being proportional to sin θ ≈ θ . Moffatt assumes that the horizontal velocity of the air u H is
proportional to the precession speed α̇. Furthermore, assuming a no-slip condition for the layer of air on the
table and disk, he deduces that the layer of air has a shear proportional to ∂u H

∂z ∝ α̇/θ . Hence, assuming linear
viscosity of the air, the disk experiences a moment Mdrag = −cdragα̇/θ around the eI

z axis. The coefficient cdrag
depends on the viscosity of the air and the radius of the disk. The viscous air drag model induces a generalised
moment Mdiss = MdrageI

z .
The viscous air drag model of Moffatt has been extended by Bildsten [3] to account for boundary layer

effects which occur for larger values of the inclination angle. Bildsten [3] argues that the viscous dissipation
does not extend over the whole gap for larger values of the inclination θ but only occurs in boundary layers on

the disk and table. The width of these boundary layers is proportional to δ ∝ α̇− 1
2 and the shear is therefore

proportional to Mdrag ∝ ∂u H
∂z ∝ α̇/δ ∝ α̇

3
2 .

5 The finite-time singularity

The dissipation mechanisms presented in Sect. 4 lead to a monotonous decay of the energy and therefore
ultimately to a decay of the inclination angle θ(t). The question of interest now is: which of these dissipation
mechanisms predicts a finite-time singularity, or, in other words, an abrupt halt of the motion in a finite time?
Furthermore, we would like to know how the time-history of θ(t) looks like for each of these dissipation
mechanisms, e.g. the power-law relationship (1) with a certain exponent n. The most natural approach perhaps
is to study the equations of motion for each of these dissipation mechanisms. This approach is followed in
Sect. 5.1 for dry contour friction. A quicker approach, although less insightful, is to study the dissipative power
of the dissipation mechanism as a function of the energy. The latter approach is followed in Sect. 5.2.
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5.1 Analysis of the equations of motion with dry contour friction

In this section we study the equations of motion (17)–(19) for dry contour friction, i.e. the generalised moment
Mdiss is given by (56) with Mcont = µcontλN for ωcont < 0. The normal contact force λN is during the final
stage of motion approximately equal to the weight mg (at least on a time-scale of several seconds). For small
angles of θ = π

2 − β it holds that θ ≈ sin θ = cos β, sin β = cos θ ≈ 1 and tan β = tan−1 θ ≈ θ−1.
Neglecting terms of order O(θ2), the equations of motion (17)–(19) can be written as

− (
k1 + 1 + ε2) θ̈ − (

k2 + 1 + εθ−1)ωyωz + (
(k1 + ε2)θ−1 + ε

)
ω2

z = g̃(1 − εθ), (58)

(k2 + 1)ω̇y − εω̇z − (1 + εθ−1)θ̇ωz = µcont g̃, (59)

(k1 + ε2)ω̇z − εω̇y + (
k1θ

−1 + ε(1 + εθ−1)
)
θ̇ωz − k2θ̇ωy = −µcont g̃θ−1. (60)

Furthermore, we assume that ωy is of order O(εωz), which holds if the disk is approximately in a state of
stationary rolling motion. Multiplying with θ and neglecting terms of order O(θ2), O(εθ) and O(ε2) we can
write the equations of motion (58) and (60) as

−(k1 + 1)θ̈θ + k1ω
2
z = g̃θ, (61)

k1ω̇zθ + k1θ̇ωz = −µcont g̃, (62)

whereas Eq. (59), which describes the ωy dynamics, becomes obsolete. Using the chain rule d
dt (ωzθ) =

ω̇zθ + θ̇ωz , Eq. (62) can be written as

d

dt
(ωzθ) = − 1

k1
µcont g̃. (63)

Under the above assumptions, it therefore holds that

ωz(t) θ(t) = ωz(t0) θ(t0) − 1

k1
µcont g̃ (t − t0), (64)

which reveals that there exists a final time t f such that ω(t f ) θ(t f ) = 0 with

t f = t0 + k1ωz(t0) θ(t0)

µcont g̃
. (65)

It is convenient to define an inverse time τ = t f − t for which ωzθ = 1
k1

µcont g̃τ , i.e. the finite-time singularity

occurs at τ = 0 while τ > 0 denote time instants t prior to t = t f . Using d
dτ

(·) = − d
dt (·) we arrive at a

nonlinear non-autonomous second-order differential equation for θ(τ ):

(k1 + 1)
d2θ

dτ 2 θ3 = µ2
cont g̃

2

k1
τ 2 − g̃θ3. (66)

The right-hand side in (66) vanishes if θ(τ ) = θbalance(τ ) with

θbalance(τ ) =
(

µ2
cont g̃

k1

) 1
3

τ
2
3 . (67)

The quasi-stationary state θbalance(τ ) is not a solution of the differential equation (66), but if |d2θbalance(τ )/dτ 2|
is small compared to g̃/(k1 + 1), then it is a good approximative solution. It holds that

d2θbalance(τ )

dτ 2 = −2

9

(
µ2

cont g̃

k1

) 1
3

τ− 4
3 . (68)

Hence, the motion θ(τ ) is well approximated by θbalance(τ ) if

τ � τc =
(

2

9
(k1 + 1)

) 3
4

k
− 1

4
1

(
µcont

g̃

) 1
2

. (69)
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The ratio µcont/g̃ is usually much smaller than unity (τc � 1). If τ < τc, then the disk can no longer keep up
the gyroscopic balancing and the disk will ‘fall’. The assumption λN ≈ mg does no longer hold for τ < τc.

We conclude that the dry contour friction dissipation mechanism predicts the power law θ(t) ∝ (t f − t)n

with n = 2
3 . This approximation is valid during the final stage of motion (stationary rolling motion) but only

if we do not consider the very last fraction of a second before the motion stops. That is to say, for dry contour
friction, the power law (1) with n = 2

3 is valid during the final stage of motion on the time-scale of several
seconds.

5.2 Energy decay for various dissipation mechanisms

In this section, we give analytical approximations for the energy decay of a rolling disk for the dissipation
mechanisms presented in Sect. 4. The energy decay is studied during the final stage of motion which motivates
the following standing assumptions for the type of motion

A.1 The centre of mass is assumed to be almost immobile, i.e. stationary rolling motion holds and ωy = εωz .
A.2 We assume that the kinetic energy associated with ωx is small compared to the potential energy, i.e.

1
2 (1 + k1)ω̇

2
x � g̃θ .

A.3 We assume θ = π/2 −β to be close to 0 and neglect terms of order O(θ2) with respect to terms of order
O(1).

A.4 We neglect terms of order O(ε2) and O(εθ) with respect to terms of order O(1).

Once an approximation for the energy decay is found, one has to check whether the above assumptions are
met. Using the assumptions A.1—A.4, we approximate the total energy E = Ekin + Epot, see (22) and (23),
by the expression

E = 1

2
mr2 (

k1ω
2
z + 2g̃θ

)
, (70)

in which only the major terms have been taken into account. Using the assumptions A.1, A.2 and A.4 we
approximate ωz with the gyroscopic balance equation (35) and only retain leading terms

ω2
z = g̃(sin β − ε cos β)

k1 tan β − εk2
≈ g̃(1 − εθ)

k1θ−1 − εk2
≈ g̃

k1
θ. (71)

The assumption of gyroscopic balancing for quasi-stationary motion is called the ‘adiabatic approximation’
in [18]. By substitution of (71) in (70), the total energy of the system can be approximated with

E = 3

2
mr2 g̃θ, (72)

from which we see that the energy E is proportional to the inclination θ . In the following, we express for the
various kinds of dissipation mechanisms the dissipative power Ė as a function of energy, i.e. Ė = f (E) for
E > 0. The power–energy relation gives a scalar differential equation which approximates the time-evolution
of the system during the final stage of motion.

If we choose a dry contour friction law, as introduced in Sect. 4.2, then the dissipation rate reads as

Ė = −µcontλN r |ωcont|. (73)

The assumptions A.2 and A.3 allow us to approximate the normal contact force with λN = mg. We now have
to express ωcont as a function of E . Using (11), (71) and (72) it holds that

ω2
cont = (

ωy − ωz tan β
)2 ≈

(
ε − 1

θ

)2

ω2
z ≈ g̃

k1

1

θ
≈ 3mr2g̃2

2k1

1

E
. (74)

The dissipation rate Ė for dry contour friction, see (73), can therefore be expressed as

Ė = − a√
E

, with a = µcont

(
3g̃

2k1

) 1
2 (

mr2 g̃
) 3

2 . (75)



1076 R. I. Leine

(a) (b)

Fig. 3 Energy decay for a n < 1 and b n > 1

For an arbitrary initial condition E(t0) = E0 > 0, the differential equation (75) obeys the solution

E(t) =
(

E
3
2
0 − 3

2
a(t − t0)

) 2
3

for t0 ≤ t ≤ t f , (76)

which shows a decrease to zero in a finite time t f − t0 = 2E
3
2
0 /(3a) similar to Fig. 3a. From the energy E(t)

we can calculate θ(t) using (72) which gives

θ(t) =
⎛

⎝θ
3
2

0 −
√

g̃

k1
µcont(t − t0)

⎞

⎠

2
3

, (77)

which agrees with (67) using the inverse time τ = t f − t . Now that the solution θ(t) is known, we can check
the validity of the assumption A.2. Evaluation of the condition 1

2 (1 + k1)ω̇
2
x � g̃θ by substitution of (77)

gives, again, the critical inverse time τc (69). Hence, the assumption A.2 fulfills the same role as the assumption
|d2θbalance(τ )/dτ 2| � g̃/(k1 + 1) in Sect. 5.1.

If we consider a viscous contour friction model Mcont = −ccontωcont (55), then the dissipation rate reads
as Ė = −ccontω

2
cont. Using the approximation (74), similar to the above analysis, we deduce that

Ė = − a

E
, with a = 3

2

mg̃2r2

k1
ccont. (78)

For an arbitrary initial condition E(t0) = E0, the differential equation (78) obeys the solution

E(t) = (
E2

0 − 2a(t − t0)
) 1

2 for t0 ≤ t ≤ t f , (79)

which shows a decrease to zero in a finite time t f − t0 = E2
0/(2a). The critical inverse time τc for viscous

contour friction yields

τc =
(

ccont

4k1mr2

) 1
3
(

k1 + 1

g̃

) 2
3

. (80)

The power–energy relations can be deduced for all other dissipation mechanisms presented in Sect. 4:
dry/viscous classical rolling friction, dry/viscous pivoting friction, sliding friction and the viscous air drag
models of Moffatt [18] and Bildsten [3]. The results are summarised in Table 1 and the exponent n is given
in the last column. A sketch of the energy profiles depending on n are shown in Fig. 3. Viscous classical
rolling friction and viscous pivoting friction have an exponent n = ∞ as can be seen from the property
ex = limn→∞(1 + x

n )n of the exponential function. In Sect. 4.4, we concluded that sliding friction is not able
to dissipate energy if the disk is in a state of stationary rolling motion and it therefore holds that Ė = 0 under
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Table 1 Power–energy relations for various friction models

Friction type Differential equation Energy profile Exponent

Contour friction

Dry Ė = −aE− 1
2 E(t) =

(
E

3
2
0 − 3

2 a(t − t0)

) 2
3

n = 2
3

Viscous Ė = −aE−1 E(t) = (
E2

0 − 2a(t − t0)
) 1

2 n = 1
2

Class. rolling friction

Dry Ė = −aE
1
2 E(t) = (√

E0 − a
2 (t − t0)

)2
n = 2

Viscous Ė = −aE E(t) = E0e−a(t−t0) n = ∞
Pivoting friction

Dry Ė = −aE
1
2 E(t) = (√

E0 − a
2 (t − t0)

)2
n = 2

Viscous Ė = −aE E(t) = E0e−a(t−t0) n = ∞
Sliding friction Ė = 0 E(t) = E0 n = 1
Viscous air drag

Moffatt Ė = −aE−2 E(t) = (
E3

0 − 3a(t − t0)
) 1

3 n = 1
3

Bildsten Ė = −aE− 5
4 E(t) =

(
E

9
4
0 − 9

4 a(t − t0)

) 4
9

n = 4
9

assumption A.1. The dissipation for sliding friction can be put in the form Ė = −aE0 with a = 0 and sliding
friction therefore has a (theoretical) exponent n = 1.

We conclude that viscous classical rolling friction and viscous pivoting friction predict an asymptotic
behaviour of the energy profile whereas sliding friction predicts no energy dissipation at all. All other dissi-
pation mechanisms, discussed here, lead to a decrease of the energy in finite time. However, dry classical
rolling friction and dry pivoting friction predict a parabolic decay of the energy (n = 2) and therefore
not an abrupt halt of the motion. The viscous air drag model of Moffatt predicts the smallest value of the
exponent n.

6 Experimental analysis

Experiments have been conducted on the ‘Euler disk’ (a scientific toy of Tangent Toy) using a high-speed
video camera. The experimental setup and measurement technique are presented in Sect. 6.1. The experimen-
tal results are discussed in Sect. 6.2 and a comparison is given with the theoretical results of the previous
sections. The geometric data and inertia properties of the ‘Euler disk’ are listed below:

D0 = 2r0 = 75.5 mm outer diameter of the disk

D = 2r = 70.0 mm diameter of the tread

H = 2h = 13 mm height of the disk

m = 0.4499 kg measured mass

I1 = 1
4 mr2

0 + 1
12 mh2 principle moment of inertia

I3 = 1
2 mr2

0 principle moment of inertia

g = 9.81 m/s2 gravitation

ε = h
r = 0.1857 relative thickness

k1 = I1

mr2 = 0.2937 relative inertia

k2 = I3
mr2 = 0.5817 relative inertia

g̃ = g
r = 280.28 s−2 relative gravitation
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6.1 Experimental setup and measurement method

The experimental setup (Fig. 4) consists the disk which is spun on a glass (or aluminium) base-plate being fixed
to the supporting table. A high-speed camera is positioned such that it records the side-view of the spinning
disk. Two lamps with softboxes provide diffuse light in order to avoid shadows. The top and side of the disk
have been painted white for better reflection. The high-speed video camera (NAC, Hi-Dcam II) has been used
at a framerate of 1,000 fps with a shutter time of 1/1000 s and a resolution of 1,060 × 348 pixels. The disk is
put in motion by hand and the measurement is stopped manually when the motion of the disk has ceased. The
last 10,000 frames, which corresponds to 10 s recording time, are stored on the computer board.

The data is analysed frame-by-frame in a post-processing phase using a dedicated MatLab program writ-
ten by the author. First, the frame is converted to a black-and-white image using an edge-detection algorithm
(Image Processing Toolbox). The rim of the top surface of the disk is in this image visible as an ellipse if the
surface is in view of the camera, or as the upper segment of an ellipse if the surface is not in view of the camera.
Figure 5 shows a frame before and after post-processing. In a second step, a number of points on the rim of
the disk are located. An ellipse is fitted on these points, which is a linear least-square problem. This leads
to a first estimate for the semi-major and semi-minor axes of the top surface of the disk and for the position
of its geometric centre. This first estimation for the parameters of the ellipse is already very good if the top
surface is in view of the camera and the whole ellipse is visible. However, if the top surface is not in view of
the camera, then only the upper part of the rim is visible and the fitted ellipse can be poor. The semi-major axis
should be equal to the diameter of the disk of which the size in pixels is known at forehand. A second fitting
procedure is carried out with a pre-specified semi-major axis. This leads to a nonlinear least-square problem,
which is solved using the first estimation as initial guess. This final estimation of the ellipse is satisfactory for

Fig. 4 Experimental setup

Fig. 5 Frame before processing (a) and after processing (b)
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all frames. The parameters of the ellipse provide two pieces of information: the inclination angle θ of the disk
and the precession angle α. No information is obtained about the angle γ .

Figure 5b shows the post-processed frame. Eighteen points (indicated with small circles) have been found
on the rim of the top surface. The fitted ellipse is shown with a larger line-thickness. The described post-
processing technique of the images which fits an ellipse on the top surface has the advantage that it gives a
reasonably accurate result even if the contour of the disk is blurred, because the method uses a number of points,
which averages out uncertainties. The blurring in the images prohibits techniques which simply determine the
inclination angle by finding the highest point of the disk.

6.2 Experimental results

A number of measurements have been done with both glass and aluminum flat base-plates. The results were
always qualitatively similar, with the distinction that the spinning times on an aluminum plate were much
smaller. Here, we discuss only one measurement with a glass base-plate.

Figure 6a shows the time-history of the measured inclination angle θ(t). We observe that the disk comes
to an abrupt halt at t = t f = 9.61 s after which θ(t) = 0, i.e. the disk lies flat on the base-plate. We also see
that the motion of the disk consists of a ‘slow motion’ with a superimposed high-frequency oscillation. The
slow motion of the inclination θ shows a kind of ‘square-root’ behaviour, i.e. the slope tends to minus infinity
just before the motion ceases. This is often called the ‘finite-time singularity’ in literature.

Figure 6b shows log(θ) as a function of log(τ ), where τ = t f − t is the inverse time and log(x) denotes
the natural logarithm of x . The ‘finite-time singularity’ occurs for τ = 0 s. The slope of the curve in Fig. 6b
varies from 2

3 for large τ to 1
2 for small τ . We therefore read from Fig. 6b that for different time-intervals it

holds that

θ(τ ) ∝ τ n, (81)

with n = 2
3 or n = 1

2 . Furthermore, the curve in Fig. 6(b) crosses the vertical axis log τ = 0 at the value −3.5
and it therefore approximately holds that θ(τ ) = 0.0302 × τ n . Assuming dry contour friction and using (67)
and (69), we obtain the estimate µcont = 1.7 × 10−4 for the contour friction coefficient and τc = 4.2 × 10−4 s
for the critical time. Similarly, assuming viscous contour friction and using (80), we obtain the estimate
ccont = 1.1 × 10−7 Nms and τc = 1.5 × 10−3 s. Hence, according to the theoretical analysis of Sect. 5, the
assumption of gyroscopic balancing can no longer be expected to hold during the last milliseconds before the
end of motion.

The angular velocity ωz = α̇ cos β is obtained from β(t) = π
2 − θ(t) and numerical differentiation of

α(t) with a low-pass filtering (50 Hz cut-off frequency). Furthermore, a semi-analytical theoretical prediction
of ωz is obtained using Eq. (35) and the measured values of β(t). Equation (35) assumes that the disk is in a
state of stationary rolling motion. Figure 7a shows the ‘measured’ angular velocity ωz as a solid line and the
theoretical prediction with Eq. (35) by small circles. We see that the two estimations of ωz agree very well.

The high-frequency content of the signal θ(t) is analysed using a moving-window discrete fast Fourier trans-
form. At each discrete time-instant a window of 2000 samples is taken (2 s), centred around that time-instant.

Fig. 6 Measured inclination angle θ
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Fig. 7 Measured angular velocity and nutation frequency (solid lines) and semi-analytical theoretical predictions (circles)

Each window is analysed by a 212 point FFT and the frequency corresponding to the highest peak in the spectral
density curve is determined. This frequency, which is shown in Fig. 7b by a solid line, is a measured estimate
for the nutational frequency ωnutation. The described method has a resolution of 2π · 1000/212 = 1.53 rad/s,
which explains the stairs of the solid line in Fig. 7b. Only the first 5 s have been shown because the mea-
sured estimate for ωnutation becomes unreliable when the slope of θ(t) is too large and varies too much during
2 s. A semi-analytical theoretical prediction of ωnutation is obtained using Eq. (48) together with (38), (39),
ωy(t) = εωz(t), (49) and the measured values of β(t) and ωz(t). The theoretical prediction of ωnutation(t)
assumes that the disk in a state of stationary rolling motion. The theoretical prediction of ωnutation(t) is shown
in Fig. 7b as small circles. The two estimates of ωnutation(t) agree reasonably well.

From this experiment we can draw a number of conclusions about the motion and dissipation mechanism
during the final stage of motion of a rolling disk. We first discuss the conclusions about the type of motion and
then discuss the dissipation mechanism.

The good agreement between experimentally obtained values for ωz and ωnutation with theoretically esti-
mates under the assumption of stationary rolling motion indicates that the disk is approximately in a state of
stationary rolling motion. That is to say, the disk is during the final stage of motion in the neighbourhood of a
quasi-equilibrium state for which the centre of mass is almost immobile. The dissipation in the system causes
the quasi-equilibrium state to slowly change over time. Apparently, the state of the disk slides almost along
the one-dimensional sub-manifold S of stationary rolling motion equilibrium states given by (36). The motion
of the disk consists of the superposition of the slowly varying quasi-equilibrium state and a high frequency
nutational oscillation.

We now come to conclusions about the energy decay and the responsible dissipation mechanism. The
theoretical results in Sect. 5.2 have been derived under the standing assumptions A.1–A.4. The discussion in
the previous paragraph indicates that assumption A.1 is fulfilled. The measured decay of the inclination angle
θ over time shown in Fig. 6 indicates that the inclination is proportional to the fractional power of the inverse
time τ . Assumption A.2 is therefore not fulfilled for very small τ , i.e. for t close to t f , because ωx = −θ̇
tends to infinity. However, if we do not consider the last fraction of a second before the finite-time singularity
and consider the final stage of motion of the disk on a time-scale of seconds, then we can reasonable say
that assumption A.2 is fulfilled. Clearly, also assumptions A.3 and A.4 are fulfilled, because ε = 0.1875 and
θ < 0.12 rad. Hence, under the validity of these assumptions, Eq. (72) expresses the proportionality between
the total energy E and the inclination θ , which in turns leads to the proportionality

E(τ ) ∝ τ n, (82)

with n = 2
3 for large τ and n = 1

2 for small τ .

7 Conclusions

A literature overview of experiments on the rolling disk has been given in Sect. 1. The publications which give
an experimental value for the exponent n are listed in Table 2. It can be seen that all publications, including
the results of Sect. 6, report the exponents n = 1

2 and/or n = 2
3 .
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Table 2 Experimental results on the exponent n

McDonald and McDonald [17] n = 1
2

Easwar et al. [8] n = 2
3

Caps et al. [5] n = 1
2 , 2

3

This paper n = 1
2 , 2

3

Various dissipation mechanisms for the rolling disk have been discussed in Sect. 5.2 and the corresponding
energy profiles and exponents are listed in Table 1. The dry contour friction dissipation mechanism leads to
the exponent n = 2

3 , whereas a viscous contour friction dissipation mechanism has the exponent n = 1
2 . It

is therefore tempting to make the quick conclusion that dry contour friction prevails at the beginning of the
stationary rolling phase and that viscous contour friction prevails during the last one or two seconds before the
motion stops. The contour velocity γcont tends to infinity if τ approaches zero, which can explain why viscous
contour friction prevails for small τ (large contour velocity) and dry contour friction prevails for large τ (small
contour velocity). However, we should be careful with definite statements about the nature of the dissipation
mechanism. All we can really say is that a dissipation mechanism of dry and viscous contour friction can
well explain the observed experimental results, but other dissipation mechanisms might exist which lead to
the same exponent n in the energy decay relationship.

In Sect. 1, it was mentioned that the considered time-scale is of importance when speaking about the
dominant dissipation mechanism for the rolling disk. Moffatt [19] suggests that viscous air drag has to prevail
at the very end of the motion as the associated exponent is smaller than, for instance, the exponent of contour
or classical rolling friction. However, the exponent for the various dissipation mechanisms, including viscous
air drag, have been derived under the assumption of gyroscopic balancing. This puts a lower bound τc on
the inverse time τ in the order of milliseconds, i.e. at the very end of the motion. Moreover, the effect of the
surface roughness and contamination may play a role when the inclination angle and gap between disk and
table become very small. It is therefore questionable whether viscous air drag will finally become dominant if
the surfaces are not highly polished. Furthermore, the experimental results do not have a sufficient resolution
to reveal the dynamics at extremely small inclination angles (θ < 0.01 rad). The question of the dominant
dissipation mechanism during the last fraction of a second, which is perhaps of less practical interest, therefore
remains unanswered.

Consequently, the experimental evidence and theoretical analysis presented in this paper do not prove
but strongly suggest that dry and viscous contour friction are the dominant dissipation mechanisms for the
finite-time singularity of the ‘Euler disk’ on a time-scale of several seconds, i.e. the time-scale on which the
measurements have been performed with a reasonable accuracy.

Acknowledgments The experimental work in this paper has been obtained with the help of Mathis Baur (student ETH Zurich),
who conducted a student project on this topic. The author also thanks J. Szumbarski (Warsaw University of Technology) for
interesting discussions.

References

1. Appell, P.: Sur l’intégration des équations du mouvement d’un corps pesant de révolution roulant par une arête circulaire sur
un plan horizontal; cas particulier du cerceau. Rendiconti del Circolo Matematico di Palermo 14, 1–6 (1900)

2. Batista, M.: Steady motion of a rigid disk of finite thickness on a horizontal plane. Int. J. Non-Linear Mech. 41, 605–621
(2006)

3. Bildsten, L.: Viscous dissipation for Euler’s disk. Phys. Rev. E 66, 056309 (2002)
4. Borisov, A.V., Mamaev, I.S., Kilin, A.A.: Dynamics of rolling disk. Regular Chaotic Dyn. 8(2), 201–212 (2003)
5. Caps, H., Dorbolo, S., Ponte, S., Croisier, H., Vandewalle, N.: Rolling and slipping motion of Euler’s disk. Phys. Rev.

E 69, 056610 (2004)
6. Cendra, H., Diaz, V.A.: The Lagrange–D’Alembert–Poincaré equations and integrability for the Euler’s disk. Regular Chaotic

Dyn. 12(1), 56–67 (2007)
7. Chaplygin, S.A.: On the motion of a heavy body of revolution on a horizontal plane (in Russian). Phys. Section Imperial

Soc. Friends Phys. Anthropol. Ethnogr. 9(1), 10–16 (1897)
8. Easwar, K., Rouyer, F., Menon, N.: Speeding to a stop: the finite-time singularity of a spinning disk. Phys. Rev.

E 66, 045102(R) (2002)
9. Glocker, Ch.: Set-valued force laws, dynamics of non-smooth systems, vol. 1. Lecture Notes in Applied Mechanics. Springer,

Berlin (2001)



1082 R. I. Leine

10. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)
11. Kessler, P., O’Reilly, O.M.: The ringing of Euler’s disk. Regular Chaotic Dyn. 7(1), 49–60 (2002)
12. Korteweg, D.J.: Extrait d’une lettre à M. Appell. Rendiconti del Circolo Matematico di Palermo 14, 7–8 (1900)
13. Le Saux, C., Leine, R.I., Glocker, Ch.: Dynamics of a rolling disk in the presence of dry friction. J. Nonlinear Sci. 15(1), 27–61

(2005)
14. Leine, R.I., Glocker, Ch.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A Solids 22, 193–216

(2003)
15. Leine, R.I., Le Saux, C., Glocker, Ch.: Friction models for the rolling disk. In: Proceedings of the ENOC 2005 Conference

(August 7-12 2005). Eindhoven, CD-ROM
16. Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints, vol. 36. Lecture

Notes in Applied and Computational Mechanics. Springer, Berlin (2008)
17. McDonald, A.J., McDonald, K.T.: The rolling motion of a disk on a horizontal plane. eprint: arXiv:physics/0008227v3

(2001)
18. Moffatt, H.K.: Euler’s disk and its finite-time singularity. Nature (London) 404, 833–834 (2000)
19. Moffatt, H.K.: Moffatt replies. Nature (London) 408, 540 (2000)
20. O’Reilly, O.M.: The dynamics of rolling disks and sliding disks. Nonlinear Dyn. 10(3), 287–305 (1996)
21. Petrie, D., Hunt, J.L., Gray, C.G.: Does the Euler disk slip during its motion? Am. J. Phys. 70(10), 1025–1028 (2002)
22. Stanislavsky, A.A., Weron, K.: Nonlinear oscillations in the rolling motion of Euler’s disk. Physica D 156(10), 247–259 (2001)
23. van den Engh, G., Nelson, P., Roach, J.: Numismatic gyrations. Nature (London) 408, 540 (2000)
24. Villanueva, R., Epstein, M.: Vibrations of Euler’s disk. Phys. Rev. E 71, 066609 (2005)


	Introduction
	Rolling disk model
	Theoretical analysis for the dissipation-free case
	Dissipation mechanisms
	The finite-time singularity
	Experimental analysis
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


