Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

INTERNATIONAL JOURNAL OF

NON-LINEAR
MECHANICS

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

International Journal of Non-Linear Mechanics 47 (2012) 1020-1032

journal homepage: www.elsevier.com/locate/nlm

Contents lists available at SciVerse ScienceDirect

International Journal of Non-Linear Mechanics

Non-smooth stability analysis of the parametrically excited impact oscillator

R.I. Leine

Institute of Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland

ARTICLE INFO ABSTRACT

Article history:

Received 29 September 2011
Accepted 24 June 2012
Available online 30 June 2012

Keywords:

Parametric excitation
Non-smooth dynamics
Impulsive dynamics
Hill's equation

The aim of this paper is to give a Lyapunov stability analysis of a parametrically excited impact
oscillator, i.e. a vertically driven pendulum which can collide with a support. The impact oscillator with
parametric excitation is described by Hill’s equation with a unilateral constraint. The unilaterally
constrained Hill’s equation is an archetype of a parametrically excited non-smooth dynamical system
with state jumps. The exact stability criteria of the unilaterally constrained Hill’s equation are
rigorously derived using Lyapunov techniques and are expressed in the properties of the fundamental
solutions of the unconstrained Hill’s equation. Furthermore, an asymptotic approximation method for
the critical restitution coefficient is presented based on Hill’s infinite determinant and this approxima-
tion can be made arbitrarily accurate. A comparison of numerical and theoretical results is presented

for the unilaterally constrained Mathieu equation.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of the paper is to give more insight into the
stability properties of non-smooth dynamical systems with para-
metric excitation. The impact oscillator with parametric excitation
is studied which is described by Hill's equation with a unilateral
constraint.

The theory of parametrically excited systems has applications
in a wide range of disciplines, e.g. the quadrupole ion trap [19],
the exact plane wave solutions in general relativity [3], para-
metric amplifiers [1], rotor dynamical instabilities [23,24,28],
parametric resonance in power transmission belts [20] and
celestial mechanics [25]. The importance of parametric excitation
has led to a wealth of literature on the theoretical and experi-
mental analysis of parametrically excited systems, see [8,28] and
references therein. The attention in the literature is mainly
focussed on the dynamics of the planar vertically driven pendu-
lum and on its linearization which is described by Hill’s equation.
The vertically driven pendulum, of which the suspension point is
driven periodically up and down (see Fig. 1a), is one of the
simplest mechanical systems with parametric excitation. The
system is also known as the parametrically excited pendulum,
the vertically forced pendulum or the Kapitza pendulum. The
dynamics of the vertically driven pendulum can (after some
scaling) be expressed by

96+ (‘%—@) sin 9(t) =0, 1)

where 9 is the angle of the pendulum with the downward vertical
and a(t) =1(t) is the vertical acceleration of the suspension point.

E-mail address: remco.leine@imes.mavt.ethz.ch

0020-7462/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijnonlinmec.2012.06.010

Extensive studies of the non-linear dynamics of the vertically
driven pendulum can be found in [2,4,5,8,26]. The dynamics of
the pendulum system in the vicinity of its equilibrium positions
9 =0 and 9 == is described by Hill’s equation [6,17,30]

yO+gy®) =0, 2

where g(t)=g(t+m) is a real piece-wise continuous function.
Harmonic excitation leads to the so-called Mathieu equation

V() +(a+2p cos 2t)y(t) =0, A3)

being a special case of Hill’s equation with g(t) = o+ 2 cos 2t.

Systems with some degree of non-smoothness or switching
behavior are often referred to as non-smooth dynamical systems
[7,10,15]. Mechanical systems with impact and/or friction form
an important subclass of non-smooth dynamical systems. The
stability properties of non-smooth (mechanical) systems are
currently receiving much attention, see [16] and references
therein. However, the stability of equilibria of parametrically
excited non-smooth systems has hardly been addressed.

Following [22], various contributions study the dynamics of
the planar pendulum with impact but with a horizontally driven
suspension point and the system is therefore not parametrically
excited. Moreover, the existence of an equilibrium is lost under
horizontal excitation.

Ivanov [11] studies the dynamics of Hill’s equation with an
impulsive parametric excitation in which the function g(t) con-
tains Dirac functions. Although impulsive action is added to Hill’s
equation, the linearity of the system is maintained.

Quinn [21] gives an in-depth study of two parametrically excited
pendula under vertical harmonic excitation which can collide with
each other. A symmetric response of the pendula agrees with the
dynamics of a single vertically driven pendulum (1) with a unilateral
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Fig. 1. Vertically driven pendulum. (a) Unconstrained and (b) with unilateral
constraints.

constraint at 9 =0 and the impact law 3 " — _&9". The method of
averaging in amplitude and phase coordinates (Lagrange standard
form) is used to describe the dynamics in the vicinity of the
equilibrium and near a resonance frequency under the assumption
of a small amplitude of the excitation a(t). The analysis takes the
non-linearity of the pendulum into account using the approximation
sin9%9—%93, that is to say, the ‘nonlinear Mathieu equation’
V() +(a+2p cos 2t)(y(t)—%y(t)3):0 is considered. The averaged
equations of motion in amplitude and phase coordinates are used
to derive an approximate impact event map which maps the state of
the system at a collision time instant to the state at the following
collision time instant. The results in [21] can be used to derive an
approximate stability criterion for the equilibrium point of the
(linear or non-linear) Mathieu equation with unilateral constraint.
The drawback of the approach taken in [21] is that the approxima-
tion is only valid for small values of the excitation parameter $ and
near a chosen resonance frequency vo=1,2,3....

In this paper, a detailed Lyapunov stability analysis is pre-
sented of the equilibrium of Hill’s equation in the presence of a
unilateral constraint with restitution, hereafter called the (uni-
laterally) constrained Hill's equation. The aim of this paper is
twofold. Firstly, the exact stability criteria of the unilaterally
constrained Hill’s equation are rigorously derived using Lyapunov
techniques and are expressed in the properties of the fundamen-
tal solutions of the unconstrained Hill’s equation (2). Secondly, an
asymptotic approximation method for the critical restitution
coefficient is presented based on Hill’s infinite determinant and
this approximation can be made arbitrarily accurate.

Hill’s equation in the presence of a unilateral constraint with
restitution is described by

X(t)+gx(t)=0,

X(t)=0: X" (t;)=—ex"(ty, 4)

where ¢ is the restitution coefficient. The unilateral constraint limits
the dynamics to x(t) >0 and imposes a Newtonian impact law
xT = —&x~. More physically correct would be to formulate the
unilaterally constrained system (4) in the framework of non-
smooth dynamics [7,10,15,16] and to let a contact force 4 and an
impulsive contact force A (both per unit mass) appear in the

equation of motion and impact equation as Lagrange multipliers, i.e.

X(t)+g(t)x(t) =4 for almost all t,

X(t)=0: X ()X "(t)=4, (5)
together with the set-valued contact law (Signorini’s law)

0<ilx>0 (6)

and the generalized Newtonian impact law
Xx(tH)=0: 0<ALxT(t)+ex (t)=0, 7

where 0 <a L b> 0 denotes the inequality complementarity con-
ditiona>0,b > 0,ab=0]7,10,16]. Such a (mechanical) system with
impulsive effects due to unilateral constraints may be conveniently
cast in terms of a measure differential inclusion, e.g. see [7,16].
However, the contact force 4 is for this system always zero since the
external force g(t)x(t) and inertial force X vanish during persistent
contact for which x(t) = x(t) = X(t) = 0. Furthermore, the constraint
is always actively participating in the impact process as there is
only one constraint in the system which implies that the equality
x T (t;)+¢ex~(t;) =0 holds at a collision time instant t;, Moreover, it
will be shown in this paper that accumulation points of impact
events (Zeno behaviour) cannot occur in this particular system.
Hence, the system (5) with set-valued force laws (6) and (7)
simplifies to the unilaterally constrained Hill's equation in the form
of (4). The simpler form (4) has been chosen in this paper to
describe the dynamics of the unilaterally constrained Hill’s equation
instead of the more general framework of non-smooth dynamics
(involving measure differential inclusions) in order to improve the
readability for a heterogenous audience.

The unilaterally constrained Hill's equation (4) describes the
dynamics in the vicinity of the equilibrium positions of a
vertically driven pendulum with a vertical wall limiting the angle
9 to 0 < 9(t) <, see Fig. 1b. Similarly, (4) can be considered to be
the linearization of a unilaterally constrained Euler column under
dynamic axial loading which can only deflect in the uncon-
strained direction and of which only the first bending mode is
considered. The case with linear damping X (t) +ax(t)+ Z(t)X(t) = 0
can easily be transformed to the standard form (4) by using the
transformation x(t) =e(1/2%x(t) such that g(t)= g(t)—Lia® [17].
The unilaterally constrained Hill’s equation (4) is therefore an
archetype of a parametrically excited non-smooth dynamical
system with state jumps.

The paper is organized in the following way. First, basic
properties of Hill’s equation (2) are reviewed in Section 2 and
some novel results on the number of zeros of fundamental
solutions are derived. Subsequently, the stability properties of the
unilaterally constrained Hill's equation are studied in Section 3
using Lyapunov stability techniques and are expressed in the
properties of the fundamental solutions of the unconstrained
Hill's equation. This theoretical result opens the way to use
standard approximation methods for the stability analysis of the
unilaterally constrained Hill’s equation. An approximation tech-
nique for the critical restitution coefficient based on Hill’s infinite
determinant is presented in Section 4. Finally, numerical results
are given for the unilaterally constrained Mathieu equation in
Section 5 and the numerically obtained Ince-Strutt diagram is
compared with the approximations using Hill’s infinite determi-
nant and the averaging method. The paper closes with conclu-
sions and discussion in Section 6.

2. Properties of Hill’s equation

In this section some properties of the unconstrained Hill’s
equation (2) are derived or reviewed, which will be useful when
analyzing the unilaterally constrained Hill’s equation in Section 3.
Hill’s equation (2)

yO+gtyt)=0, gt)y=gt+mn)

has two continuously differentiable solutions y;(t) and y,(t) with
the initial conditions

y1(0)=1, 31(0)=0, y,(0)=0, y,0)=1,
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which are usually referred to as normalized solutions or funda-
mental solutions. The following proposition (see [17]) proves that
the fundamental solutions can conveniently be described in polar
coordinates.

Proposition 1 (Magnus & Winkler [17]). The fundamental solu-
tions of (2) can be expressed in polar coordinates by

Y1(©) = 0(t) cos Y(t),  y,(t) = o(t) sin y(t), 3)
with o(t) > 0 for all t and the differential equations
" tode

- =0, . 9
B0~ s +E0AO =0, Y10 / e ©)

with initial conditions 0(0)=1, ¢(0)=0, y(0) =0 and v(0) = 1.

Proof. Substitution of the fundamental solutions y;(t) and y,(t)
expressed in polar coordinates (8) in Hill’s equation (2) gives two
differential equations

(@—0i” +8(He) cos Y— o+ sin =0,

(-0 +&(t)0) sin v+ 20y +oy) cos y =0.

It can therefore be deduced that both the terms @—Ql/)z +g(te=0
and 20y +Q¢:0 vanish. If the latter expression is multiplied
with o(t) > 0, then the equality d(¢%})/dt=0 is obtained. The
product Qzl/./ is therefore constant. Using the initial condition
0(0)=1, Y(0)=0 and /(0)=1 gives y(t)= [y o(t) > dt and sub-
stitution of y =¢=2 in the former equation yields ¢—o—3+
ge=0. O

Hill’s equation can be put in first-order form as

) 0 1
YO =AWYO. AD= <_g(t) 0). (10)

with the state vector y(t)= (y(t) y(t))" and the time-dependent
system matrix A(t). The fundamental solutions constitute the
fundamental solution matrix

Y1(®) J’z(t)>

U (y&(t) V(0

which is therefore the solution of the matrix differential equation
@ (t,0) = A(t)®(t,0) with initial condition @(0,0)=1I. The system
(10) has a unit Wronskian [12]

det((D(t,O)) — Ef(; trace(A(t)) dt — l,

because trace(A(t)) =0. The fundamental solution matrix ®(t,0)
maps the initial condition y(0) to the state y(t)

¥y = 0(t,0y(0). an

More generally, the fundamental solution matrix ®(t1,tg) is
defined as the mapping

Y(t1) = ®(t1,t0)y(to),

which fulfills the matrix differential equation d(t,to) = A(t)D(t, to)
with ®(ty,tp) = I. Furthermore, the transition property

D(t3,t0) = ®(t2,t1)P(t1,t0) (12)
holds from which one can deduce the inverse of the fundamental
solution matrix to be ®(ty,to)=D(ty,t;)~'. The fundamental

solution matrix ®r =®d(7,0) is referred to as the monodromy
matrix. The trace of the monodromy matrix

4 = trace(®@r) =y () +y, (1) (13)

is known as the discriminant of Hill’s equation [17]. The mono-
dromy matrix @7 has the characteristic equation

2—Al+1=0, (14)

because det(®7) =1, and the eigenvalues
21,2 :%A i%\/ A2—4, (15)

which are called characteristic multipliers (or Floquet multi-
pliers). The characteristic multipliers are reciprocal in the sense
that /1 = 1/4,. The discriminant 4 = 4; + 1, plays an essential role
in the analysis of Hill's equation and it is useful to distinguish
between three cases:

e If it holds that |4| <2, then the characteristic multipliers
/1 = 2 are complex conjugated and located on the unit circle
because |11,| =1.

e If it holds that |4| > 2, then the characteristic multipliers 2
and /J, are real and distinct and we define the order by
|21] = |22|. There exist two linearly independent real eigen-
vectors v; and v,. If y,(m) # 0, then the eigenvectors are given
by

sign(y,(n))

v < Ya(m) >
1= ,
\/ Yo (T + (A1 =y (1) 21=y1(m)

_ sign(y,(m)) < V,(T) > o
\/J’z(ﬂ)er(izfyl(n))z A2=y1(m)

The normalization of the eigenvectors v, and v, is chosen such
that v;, lie in the first or fourth quadrant and lv;,lIl=1. If
¥(m)=0 then either 1;,—y;(m)=0 or A,—y;(m)=0 and the
expression (16) for v; or v, degenerates. In this case there
still exist two linearly independent real eigenvectors of which
either v; or v, is equal to (0 1)".

e If it holds that |4| =2, then the characteristic multipliers are
equal 1 =4, =4/2= +1.

V2

Hill’s equation has two (complex) eigensolutions
f1®O)=e%py(t),  f2(t) =e "'py(0), a7)

where p;(t) = p;(t+ ), i=1,2, are complex periodic functions and ¢
is the characteristic exponent defined by e*™ =41;,, ie.
A =21+ 73 =2 cosh(no).

In Section 3 on the stability analysis of the unilaterally
constrained Hill's equation, it will be of interest to know the
number of zeros of the fundamental solution y,(t) on the half-
open interval (0,7]. The floor function [-] and fractional part {-}
will be used to count the zeros. The definition and properties of
the floor function and fractional part are given in Appendix A.

Proposition 2. Let n denote the number of zeros of y,(t) on the
interval (0,7). It holds that

1 /™ dt
== [ 18
" Lr/o yl(t>2+y2<t)2J %

Proof. According to Proposition 1, one may write y,(t)=
o(t) sin y(t) with g(t) > 0 for all t. The zeros of y,(t) are therefore
given by the condition sin ¥/(t) =0, i.e. Y/(t) = m,27,3m, ... and using
(90) it therefore holds that

i)
n= {T (19)
with y(m) = [J o)™ dt. O
Consider a solution y(t) of (2) with initial condition
y(0)=rgcostp>0 and yO0)=rgsinfy>0, where 719>0

and 60y e (—m/2,7m/2]. With m(t) e No we will denote the right-
continuous monotonically increasing step function which counts
the number of reflections in the interval (0,t] such that
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(=1)™Dy(t) = |y(t)|. It can easily be verified that m(0) = 0 and m(t)
equals the number of zeros of y(t) on the interval (0,t]. In the
following, we will be interested in the number m(w) and use the
short-hand notation m = m(mn). By definition, it holds that m=n for
0o = 1/2, because n is defined as the number of zeros of y,(t) on
the interval (0,7] and y(t) = roy,(t) for 6y = m/2. The calculation of
m is given by the following proposition.

Proposition 3. Consider a solution y(t) of (2) with initial condition
¥(0)=r1¢ cos 0p = 0 and y(0) =rq sin Oy, where 1o >0 and —t/2 <
0o < m/2. Let m denote the number of zeros of y(t) on the interval
(0,7]. It holds that

n if 0y > 0, 20
M=\ 41 if 0o <0, (20)
with
0. = —arctan @1 (n)) (1)
2(70)

Proof. From (11) follows that the solution y(t) is given by the
linear combination y(t) = y;(t)y(0)+y,(t)y(0) which we write in
polar coordinates using Proposition 1 as

Y(t) = o(tH)ro(cos Og cos Y (t)+sin Oy sin y(t)) = o(t)ro cosy(t)—0p)
with g(t) > 0. The zeros of y(t) are therefore determined by the
condition cos(y/(t)—6p) = 0 or equivalently sin(y/(t)—0p+7m/2) = 0.
Using (91), the number of zeros of y(t) therefore amounts to

T
,904,,

_ Y(m)—0bo +g 5

m - - p- (22)

, —g<00S

N3

Property (88) gives together with (19) the inequality n<m
<n+1, i.e. m=n or m=n+1. From property (92) follows that
m=n if and only if

cot(y/(m))+cot (—90 + g) >0 23)

which we write as cot(y/(m)) > —tan(0p), i.e.

0¢ > 0. = —arctan(cot (y(7)))

where cot(y(m)) =y,(m)/y,(m). If the inequality does not hold,
then m # n and m must therefore be equal to n+1. O

Remark. Some care needs to be taken for the case when
Yo(m)=0, ie. Yy(m)=nm, neNp. In this case it holds that
cot(y/(m))= +oo and the inequality (23) is therefore fulfilled
which implies that m=n. Moreover, if /() =nn, then it can
immediately be verified from (22) that m=n.

3. The unilaterally constrained Hill’s equation

In this section the unilaterally constrained Hill’s equation is
analyzed which consists of Hill’s differential equation

X()+g(tx(t) =0, (24

which holds for almost all ¢t and x(t) >0, and the Newtonian
impact law

X (t) =—ex"(t) (25)
at time-instants for which x(t;) = 0. With the notation

R PR R T

X (t) = lrlTrrrll x(t), xT(t)= ltlirt? x(t),

we denote the pre- and post-impact velocity and with ¢ € [0, 1] the
restitution coefficient. The velocity x(t) of the unilaterally con-

strained Hill’s equation is considered to be right-continuous by
convention, i.e. X(t) =x " (t), and the initial condition (x(0),%(0)) is

likewise considered to be a post-impact state. Hence, if the initial
condition is written in polar coordinates

x(0)=r1g cos 6y, x(0)=rq sin b,

then it necessarily holds that ro>0 and 6y e (—n/2,7/2]. The
solution x(t) of the unilaterally constrained Hill's equation is
therefore confined to the domain

D:{x:(x X)TeRZx:rcos().fc:rsin().rzo,—g <05g}.
(26)

The impact law (25) becomes active when x(t;) = 0 and induces
a jump x T (t;) = —ex~(t;) in the velocity whereas the position x(t)
remains continuous at the collision time-instant, i.e. x*(t;) =
X~ (t;) = x(t;) = 0. The impact law can therefore formally be written
for position and velocity as a homogeneous map

xt(ty)=—ex"(tp), xT(t)=—ex"(t, (27)

because x* (t;) = x~(t;) = 0. The homogeneity of the impact condi-
tions (27) is due to the fact that the unilateral constraint is located
at x=0. A non-zero location of the unilateral constraint would
give a completely different type of dynamics and is not studied in
this paper but some remarks are given at the end of Section 6.

The homogeneity of the linear differential equation (24) and
the homogeneity of the impact conditions (27) have important
consequences for the solution x(t) of the unilaterally constrained
Hill's equation. Consider a solution curve x(t) of the unilaterally
constrained Hill’s equation as well as the solution curve y(t) of the
unconstrained Hill's equation, see Fig. 2, both with the same initial
condition x(0)=y(0) and %(0)=y(0) such that (x(0) x(0)TeD. It
holds that x(t) = y(t) during the interval t € [0,t;], where t; is the
time-instant for which x(t;) = y(t;) = 0. At t = t; an impact occurs
in the unilaterally constrained Hill’s equation. The solution x(t) after
t = t; is reflected and scaled with ¢, i.e.

x(t) = —ey(t) (28

for te(t1,tz] due to the linearity and homogeneity of (24). The
second impact occurs when x(t) becomes again zero, which is the
next zero of y(t). The number of zeros of y(t) in the interval (0,t] is
given by m(t), see Proposition 3. The solution x(t) is therefore
directly related to y(t) and m(t) through

X(t) = (=" () (29)
and, using m = m(m), we obtain the relationship
x(m) = (—&)"y(m). (30)

In non-smooth dynamical systems, the so-called ‘Zeno-beha-
viour’ can be present which is characterized by the occurrence of
infinitely many non-smooth events in a finite time interval.
For instance, in the bouncing ball system, the equilibrium may
be reached through an infinite number of impacts in a finite
time [14]. In non-smooth dynamics, this is referred to as an
accumulation point of impact events. The occurrence of an
accumulation point implies that uniqueness of the solution in
backward time is lost [16].

Fig. 2. Solution x(t) of the unilaterally constrained Hill's equation and y(t) of Hill’s
equation.
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Theorem 1. Accumulation points of impact events do not occur in
dynamics of the unilaterally constrained Hill's equation (4).

Proof. The presence of an accumulation point would imply that
there exists an initial condition (x(0),x(0)) such that m is infinite.
However, the angle y/(n)= f; o2 dt is finite because o(t) is
continuous and strictly positive for all t, see Proposition 1. The
number n= [{(n)/nt] is therefore finite and the proof follows
fromn<m<n+1. O

The absence of accumulation points of impact events implies
that the solution of (4) is unique in forward and backward time.
Moreover, if the equilibrium is attractive, then the attraction is
asymptotic in the sense that attraction cannot occur in finite
time [16].

The direct relationship between the solutions of the unilater-
ally constrained and unconstrained Hill’s equation can be
expressed in first-order form and be related to the fundamental
solution matrix. Using x(t) = (x(t) x(t))", the system is written in
first-order form as

x(t) = A(DX(D)

n'x (t)=0: x*(t;)=Gx (t;) (31)

with the system matrix A(t) and impact map G given by

0 1 1
AO={ o4 o) C=—¢ n=<0>. (32)

The homogeneity of the impact conditions (27) allows us to write
the impact map G as —el and the matrix G therefore commutes
with any arbitrary matrix. The solution of the unilaterally con-
strained Hill’s equation can be obtained by concatenation of non-
impulsive motion given by Hill’s differential equation and the
impact equations. The non-impulsive motion between two con-
secutive collision time-instants ¢; and t;,; is described by the
linear homogeneous differential equation x(t) = A(t)x(t). The fun-
damental solution matrix ®(t;,q,t;) therefore maps the post-
impact state x* (t;) to the pre-impact state X~ (t; 1),

X (ti 1) =D(ti1,6)X " (L), (33)

and it necessarily holds that n'x* (t))=nTx*(t;,;)=0. The
impulsive motion at each collision time-instant t; is described
by the impact map G. Concatenation of non-impulsive and
impulsive motion gives

X(1) = (7, t0)GP(Em, tn_1)G . .. P(t7,t1)GP(t1,0)x(0). 34)

The impact map G = —&l commutes with all the fundamental
solution matrices ®(.,-) in (34) and Eq. (34) therefore simplifies to

X(10) = G"D(T, t)P(tm, tm_1) . . . D(to,t1)DP(t1,0)%(0)
= G"d(7,0)x(0)
= (—&)" Drx(0) (35)

in which the transition property (12) of the fundamental solution
matrix and the notation ® = ®(7,0) for the monodromy matrix
has been used. Let y(t) denote the solution of Hill’'s equation with
¥(0) =x(0). From (35) it becomes apparent that one can relate the
solution x(m) of the unilaterally constrained Hill’s equation to y(r)
and m

x(n) = (—&)"®1y(0) = (—&)"y(m), (36)

which is the same result as (30) but now in first-order form. The
number m depends on the angle 6, of the initial condition x(0) and
m=n if 0y > 0. and m=n+1 else, see Proposition 3. The domain D,
defined in (26), is therefore split into two cones D; and D,

D] :{XE’D‘0>95}.

D, ={xeD|0<0, (37)

by a half-hyperplane = = {x € D|0 = 0.}, where 0. is defined by (21),
such that D= D; U D, and D; N D, = {0}, see Fig. 3. If y,(m) = 0 then
it holds that 6. = —7/2 and D; = D. The switching of the number m
on the half-hyperplane X leads together with (36) to a piece-wise
linear, or, more precisely, a cone-wise linear Poincaré map.

Proposition 4 (Poincaré map). Let x; denote the solution X(rmj),
jeNog, of the unilaterally constrained Hill's equation with
Xo =Xx(0)e D. The discrete time-evolution of x; is given by the
cone-wise linear Poincaré map

A1Xj
X 1=
j+1 A2Xj

where Ay = (—&)"®7 and Ay = —cA; = (—&)" "1 Dy

if XDy,

if Xj € Do, (38)

Proof. From (35) it is clear that x;,; =(—&)"®(7,0)x; where m
depends on .. Write x; in polar coordinates as x;=
(rj cos 0; rjsin 0)'. If x;e Dy, then it holds that 0;> 0. which
implies that m=n. Similarly, if X%;eD,, then it holds that
m=n+1. O

The cone-wise linearity of the Poincaré map introduced in
Proposition 4 suggests to analyze the map by using polar
coordinates x; = (rj cos 0; rjsin 0)", i.e.

X)L g 2
tan 0; = )’ = X(1)” +x(m)”.
Evaluation of the Poincaré map for & > 0 yields
_XAG+1) _ ()" (X + Y2 (X ()
X@(G+1)  (—&)" 1 (DX +Y2(TOX(T)))

_ Y1(m)+y,(mtan 0;
Y1(m)+y,(mytan 0;’

tan 0,4

(39)

where as 0;, 1 is not defined if ;. ; =0 for ¢ = 0. The map 0;—0; ;4
is therefore autonomous as it does not depend on r; which
expresses the cone-wise linearity of the Poincaré map. The map
0;—0;1 can be simplified even further by using a non-linear
transformation.

Proposition 5. Let q; = y;(m)+Y,(m)tan 0; and y,(w) # 0. It holds that

1
dj+1 ZQ(Qj)ZA—ay (40)
j

where A = trace(®r) =y (1) +Y5(7).

A
Wi

Dy

Fig. 3. Domain D being in the cones D; and D, by .
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Proof. Substitution of (39) in g; = y;(m)+y, (%) tan 0; gives

Y2 (1) +y‘qz(n)(qj—y1 L
J i

Gj+1=y1(M+

where

trace(®r) = y;(m)+Yy,(m) and
det(®@r) =y, (MY, (M) -y, (My(m)=1. O

The fixed points of the map ¢;, ; = Q(q;) are those values of q
which are mapped to themselves, i.e. ¢*=Q(g*), and the fixed
points therefore satisfy

¢ —Agq*+1=0

in which we recognize the characteristic equation (14) of the
monodromy matrix ®r. Hence, the fixed points g* agree with the
real characteristic multipliers 4; > of the monodromy matrix, see (15).
The map ¢;,; =Q(qg;) is known as the Riccati difference equation
(or first-order rational difference equation) and has been studied
in detail in [9]. The dynamics can be considered for thee different
cases [9]:

® |4]>2: The map g;,; = Q(g)) has two distinct fixed points
qio =" 12 =%A i%V A*-4

and we define |q¥| > |q3| and equivalently || > |;|. Further-
more, because A/, =1, it holds that |gi|>1>|q3|. The
stability of the fixed points g%, is determined by the derivative
of the map Q’(q) = 1/g? from which we see that q*% is asympto-
tically stable (|Q'(q%)| < 1) whereas g3 is unstable (Q'(g%) > 1).
The map g, ; = Q(q;) with initial condition go has a closed form
solution given by

(/yfrl _‘)“jz+ Do ‘—(/111 f;bjé)
(A=2)a0—( =2
as we can simply verify or derive with the z-transformation [9].

Ifqe#q3 = ),]’1 = /2, then the solution g; is attracted to g% which
follows from

j

e 4| =2: The map has a single fixed point g*= 14 = +1. The
map with initial condition qo has the closed form solution
_ GoA(1+))-2j
1 2q9j+4(1-))

and limit

H QOA_Z *
limg; = =
M= 5g,—4 =1

The fixed point g* is therefore unstable but globally attractive.
Furthermore, if g;q* <0 then it holds that g;, 1g* > 0.

e |4| <2: The map has no fixed points and the solution is quasi-
periodic, wandering between R, and R™ (see [9]). The number of
iterations that the solution g; remains in Ry or R* is bounded.

The above results on the map q;,; =Q(q;) for |4|>2 can be
understood by noting that the values of g5, define for y,(m) # 0
the angles 07 and 0 of the eigenvectors v; and v, (see (16)) of the
monodromy matrix ®r:

£d
tane*:m:tan(?-i— 1
! Ya(m) T ya(m)
5 p
tan@*:m:tan6+ 2 41
2=y, m “tym “h

If %; is chosen in the direction of an eigenvector, say X; =r;v;, then
the next iteration point ¥;; will be again in the direction of that
eigenvector, i.e. Xj 1 =Tj,1V1. In other words, if 0; = 07 then also
01 = 67 which implies that 07 is a fixed point of the map 0;— 6, 1,
or, equivalently, that g3 is a fixed point of the map g;,; = Q(g;)).

The fixed points qi, = 412 are either both positive if 4 >2 or
both negative if 4 <2 and the sign of y,(n) is given by (—1)".
Hence, if |4]| >2 and y,(m) 0, then it holds that vi, e D; for
(-1)"4>2 and vy, €D, for (-1)"4<2.If |4] >2 and y,(m)=0
then it holds that y;(m)y,(m)=1 and |y;(m)+y,(m)| >2 from
which we deduce that y,(m)#0 and sign(y,(n)) =sign(4). If
Y,(m) =0 then it holds that n> 0 and n is even for y,(m) >0 and
n is odd for y,(m) <0. Consequently, the condition |4|>2 and
Y,(m) =0 implies that (—-1)"4 > 2. Moreover, it holds that D; =D
for y,(m) = 0. We conclude that, if | 4| > 2, then the location of the
eigenvectors is determined by the condition

D (=1)'4>2,
V]’z € Dz

-1)"4 < -2.
for all values of y,(m).

The attractivity of the fixed point g% implies that the solution x;
will be drawn towards the eigenvector v; when j— oo, because v,
belongs to the characteristic multiplier which is largest in magnitude.
The long-term behaviour of the dynamics is therefore determined by
the matrix A; = (—&)"®7 if v; € D; or by the matrix A, = (—g)" " '@y
if vy e D,. This insight leads directly to a stability condition. In the
following, a more rigorous stability proof is given by using a discrete
quadratic Lyapunov function. First a number of propositions are
presented which discuss the various cases of the discriminant A.
Proposition 6 discusses the real case v;; € D; and Proposition 7 the
real case vy, e D, using a slightly different Lyapunov function.
Proposition 8 deals with the complex conjugated case |4|<2
whereas the cases 4 = + 2 are discussed in Propositions 9-11.

In the following propositions, the spectral decomposition

Or=VAV! 43)

of the monodromy matrix @7 is used, where V = (v; v,) is the matrix
of eigenvectors and A = diag(/;) is the diagonal matrix of eigenvalues
of dr. Such a spectral decomposition can be made if the characteristic
multipliers /; , are distinct, implying | 4] # 2. Let ¢; = (cy; ¢;)" be the
coordinates on the basis of v; and v, such that X; = c1jv; + v, ie.

C = V71x]‘. (44)

(42)

Proposition 6 (Stability for the real case v13 € D1). If vi3 € D1 then
the equilibrium x* = 0 of the unilaterally constrained Hill's equation
is globally uniformly asymptotically stable if &"| 11| <1 and unstable
if e"|Aq1| > 1.

Proof. If v;, € D; then the characteristic multipliers are real and
distinct and the decomposition (43) exists. Consider the discrete
Lyapunov candidate function

V(X)) =V;=xPx; (45)
with P=V"TV"! being dependent on the matrix of eigenvectors
V. The positive definiteness of P=P" >0 implies that V is a

positive definite function. It holds that x;,;=(—¢)"®rx; and,
using (44), the increment of V therefore gives

Vip1-V; =X (" O PO —P)X;
=XV T(@mA> -V X,
- ch(sz'”A2 ~Ig;
= 3(&m A - 1) +cg(e2mi-1). (46)

If €"| /4| <1, then it holds that £2m27, <1 for m=n and m=n+1
which implies that V; 1 <V; for x; # 0. Hence, V is a quadratic
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time-independent Lyapunov function. The origin is therefore
globally uniformly asymptotically stable if &"|1,] < 1.

We now prove the last part of the proposition which states that
if vi, € Dy and &"| 41| > 1, then the origin is unstable. A solution x;
which starts in the direction of the eigenvector v; e Dy, i.e.
X = C19V1, Will remain along v, and therefore in D; for all j > 0.
It therefore holds that m=n during all iterations of the Poincaré
map. The solution X; = cy;v; is therefore given by

cij=(=&)"21c1j 1 =((—&)"A1Yc10

which grows unbounded for ¢"|1;| > 1. The value of c1o can be
chosen arbitrarily small and the origin is therefore unstable. [

Proposition 7 (Stability for the real case v1; € D,). If vi3 € D, then
the equilibrium x* = 0 of the unilaterally constrained Hill's equation
is globally uniformly asymptotically stable if &"*'|A1| <1 and
unstable if e +1| ;| > 1.

Proof. If v;, € D, then the eigenvalues are real and distinct such
that 22 >1 and 2% = /;* < 1. Moreover, if v;, € D, then it holds
that y,(n) #0 and therefore cos 92"2 > 0. Consider the discrete
Lyapunov candidate function

V(xj)=V; =x]Px; (47)

with P=V~"BV~! and

B <cos2 03 , 0 > 48)
0 J1cos? 65 )

where 07 and 05 are the angles of v; and v, defined by (41). The
positive definiteness of V is assured through P=P" > 0. It holds
that x;, 1 = (—¢)"®rx; and the increment of V yields

Vip1-V; =X/ (2" O PDr—P)x;

=XV (> ABA-B)V " 'x;

=] (£"A’~DB;

= c3; cos? 07(>™ 27— 1)+ c3; cos? 0315 (e2™ A5 —1). (49)
The decrease in the Lyapunov function V depends on the location

of x;:

o If x;eD,\(0} then m=n+1 and 82"1).%2 <1 which implies
Vj+ 1 —Vj <0.

e If X, D;\{0} then m=n=>0 and it holds that 0. <0; <m/2.
Hence, it holds that 07 <65 <0;, i.e. x; lies inside the cone
spanned by —v; and v,, which implies that ¢;; <0 and c; > 0.
Furthermore, from the positiveness of

Xqj = C1j €os 0F +¢y; cos 03 >0

together with cy; we conclude that |cqj/cy;| < |cos 05 /cos 607 |.
We now define d; =c%; cos? 07 +c}; cos? 05 and d, = —c3; cos?
9’{‘+c%j cos? 05. 1t holds that d; >0 and d, > 0 for x; € D;\{0}.

Using /; =4, > 1 we obtain:
Vi-V; =% (di—da)(E*™ 231 )+%(d1 +da)(E*™ 23— A7)
_ % d2e2m 721 —/12‘)+%d2(1—/1‘1‘)
= DRGS0, (50)

The expressions between the brackets are strictly negative for
all m > 0 which implies that V;, ;—-V; <0.

Hence, the quadratic positive definite function V is strictly
decreasing for x; # 0. The origin is therefore globally uniformly
asymptotically stable if &"*1|1;| < 1. Instability for &"*1|4;| > 1

can be proven by considering an initial condition in the direction
of v; (see the proof of Proposition 6). O

Proposition 8 (Stability for the complex conjugated case). If
|4| <2 and €<1 then the equilibrium x*=0 of the unilaterally
constrained Hill's equation is globally uniformly asymptotically
stable.

Proof. If |4| <2 then the eigenvalues 1, are complex conju-
gated (and distinct) with magnitude |4;,|=1 and v; =v;. The
coordinates cj; and cy; are in this case complex conjugated, i.e.
c1j=Cy and |cyj| = |cyj|, because ¥; is real. Consider the discrete
Lyapunov candidate function

with P=V 'V~ = (V-1)*V~! being a hermitian matrix. Clearly, it

holds that P=P*>0 and V is positive definite. Using
X = (—s)mCDij the increment of V yields
Vj+] —Vj = X]T(E'zm(l)-{-P(DT—P)X]

=i (" A A-I);

= |eg 2@ 24P =)+ | o 27| 22> 1)

= -1l¢;l% (52)

The increment is non-positive, V;, 1—V; <0, because m > 0 which
proves that the equilibrium is uniformly stable. It holds that m=n
for x;e D; and m=n+1 for x; € D,. If n=0 then it follows that
V;, 1=V, forx; e D;\{0} and V;_; < V; for x; € D,\{0}. However, the
dynamics of the map g; . ; = Q(q;) proves that the cones D; and D,
do not have a positively invariant subset (or sub-cone) other than
the origin if |4| <2, i.e. no limit set exists which lies exclusively
in D1\(0} or exclusively in D,\{0}. This implies that the solution x;
will wander between D; and D, and the Lyapunov function
strictly decreases whenever ¥; € D,\{0}. We can therefore invoke
LaSalle’s invariance principle for discrete-time systems [13]. The
vanishing of the increment V;,;—V;=0 holds in D; and the
largest positively invariant set in D, is the origin. Hence, it holds
that lim;_, ,,V; =0, which proves that the equilibrium is globally
uniformly attractive. O

Proposition 9. If A =-2, n=0 and ¢<1 then the equilibrium
x*=0 of the unilaterally constrained Hill's equation is globally
uniformly asymptotically stable.

Proof. The condition n=0 implies that y,(n) > 0. If 4 =-2 then
the eigenvalues of ®r are /;; = —1. The matrix A; = (—¢)"®r is
not a stable matrix for 4 = —2 and n=0. The matrix A, = —¢A; is a
stable matrix for ¢ <1. If 4 = -2 then the map g;, ; = Q(g;) has a
unique fixed point g* = —1 which is globally attractive. Further-
more, if go > 0 then g; < —1 for all j > 0. The cone D, has therefore
a globally attractive sub-cone. The long-term dynamics is there-
fore governed by the stable matrix A,. O

Proposition 10. If 4 =2 and n=0 then the equilibrium x* = 0 of the
unilaterally constrained Hill's equation is not attractive and unstable
for all €= 0.

Proof. The condition n=0 implies that y,(n) > 0. If 4 =2 then the
eigenvalues of ®r are 41, =1 and the map ¢;,, =Q(g;) has a
unique fixed point g*=1 which is globally attractive. Further-
more, if ¢, < 0 then g; > 1 for all j > 0. The cone D; has therefore a
globally attractive sub-cone. The long-term dynamics is therefore
governed by the matrix A; = @7 which is not a stable matrix. The
initial condition xo = (g cos 0 1o sin 0p)! with tan 0y = (1—y,(1))/
Yo(m) will lead to a solution X;=x, for all ro>0. Hence the
equilibrium is not attractive. Moreover, A; is non-diagonalizable
and A, will diverge for j—oco which implies unboundedness of
solutions. O
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Proposition 11. If [4]| <2, n>0 and ¢<1 then the equilibrium
x*=0 of the unilaterally constrained Hill's equation is globally
uniformly asymptotically stable.

Proof. The spectral radius of ®r equals unity for | 4| < 2. Hence, if
in addition n > 1, then the spectral radii of A; and A, are strictly
smaller than unity, i.e. the matrices A; and A, are stable matrices.
The stability of A; implies that there exist symmetric positive
definite matrices P and Q; such that

AlPA,-P=-Q,.

Using P we define the matrix Q, such that

AlPA,-P=-Q,

and express Q, using A, = —¢A; and Q; as
Q,=-AlPA,+P=—g?AlPA, +P=(1-8)P+Q,.

With P>0, Q; >0 and ¢ <1 we infer that Q, > 0. Hence, there
exists a common quadratic Lyapunov function V(x;) :ijij which
proves that the origin is globally uniformly asymptotically stable. [

The previous propositions are summarized in the following
theorem, being the main result of the paper.

Theorem 2. Let A be the discriminant and /. be the characteristic
multiplier with largest magnitude of the unconstrained Hill's equa-
tion (2) and let n denote the number of zeros of the fundamental
solution y,(t) on the interval (0,m]. The equilibrium x*=0 of the
unilaterally constrained Hill's equation (4) is globally uniformly
asymptotically stable if 0<e¢<e., where the critical restitution
coefficient is given by

0 ifn=0and 4>2

\/11\71/" if n>0and (-1)"4> 2,
&=
) T i n=0and (—1)"4 < -2,
1 iffn>0and 2<A<2orifn=0and 2<A4<2.

(53)
If|4| > 2 and & > ¢, then the equilibrium x* = 0 is unstable.

Proof. Propositions 6 and 10 prove that, if n=0 and 4 > 2, then
the equilibrium is not attractive for all ¢ > 0. The equilibrium is
therefore in this case not globally uniformly asymptotically stable
which is expressed by & = 0. The proof of & = |1 \_1/" forn>0
and (—1)"4 > 2 follows from (42) and Proposition 6. The proof of
ge=|21]""""" for n>0 and (~1)"4 < -2 follows from (42) and
Proposition 7. The proof of ¢, =1 for n > 0 and -2 < 4 <2 follows
from Proposition 11 and for n=0 and -2<4<2 from
Propositions 8 and 9. O

For |4|>2 the results of Theorem 2 can be put in a more
tangible form by introducing the number m; as

n
™=9ns1

The number m, is the value of m, i.e. the number of zeros of y(t)
on the interval (0, 7], of a solution curve y(t) which starts in the
direction of the first eigenvector, i.e. y(0) =v;.

if (—1)"4>2,

if (—1)"4 < —2. 54

Corollary 1. If |A| > 2, then it holds that e = |1, ~"/™.

4. Approximation of the critical restitution coefficient using
Hill’s determinant

The results of the previous section, which are summarized in
Theorem 2, show that the stability properties of the unilaterally

constrained Hill’s equation are completely determined by the
properties of the fundamental solutions of the unconstrained
Hill's equation. More precisely, the critical restitution coefficient
only depends on the value of the discriminant 4 and the number
n. This insight suggests that standard approximation techniques
for the unconstrained Hill’s equation can be used to approximate
the critical restitution coefficient of the unilaterally constrained
Hill's equation. In this section the method of Hill's infinite
determinant will be explored.

The function g(t) in Hill's equation can be represented by a
complex Fourier series as

g= > ge™, (55)

k=—oc0

where g_, =g;. In this section we will assume that ,/g; #0,2,
4,8, ..., 1.e. the even parametric resonances are avoided. Similarly,
the first eigensolution f;(t) = e’tp,(t), see (17), can be written as a
complex Fourier series

fiy=e™ i e, (56)

k= —o00

where the characteristic exponent ¢ is related to the discriminant
through 4 =2 cosh(wo). Substitution of the Fourier representa-
tions (55) and (56) in Hill’s equation (2) yields the condition

eat|: Z <(G+2il€)2+ Z g562i5t> Ckezikt:| —0.

k=—o00 §=—00

Reordering terms gives the equality

> ((a+2ik)2ck+ > gscks>ez““=0. (57)

k=—-cc §=—00

The requirement that (57) has to be fulfilled for all ¢ leads to an
infinite set of homogeneous equations

(G+2ik)2Ck+ Z 8sCk—s = 0 (58)

§ = —o0

for the Fourier coefficients c,. The linear homogeneous system of
equations has only a non-trivial solution if the infinite determi-
nant

D(@) = [Huli i~ o s oo (59)
vanishes, where
+(0+2ik)? _
Hy, = gO(—z)- Hy = —51- 5 (#k). (60)
go—4k go—4k

Each row in (58) has been divided by go—4k2 to ensure conver-
gence [18,29]. In [17,29] it is shown that the infinite determinant
D(0) can be expressed as

sin? (ino)
sin® (3 7./2o)

Using the identity

D(¢) = D(0)—

. 2(1. 1 1 1,
sin (j ma) =5 (1—cos(wai)) = 5 (1—cosh(no)) = Z(2 A),

the determinant condition is written as

D(¢) = D(0)— # -0,

4 sin’ <§nJg*0)
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which agrees with [17], Theorem 2.9. The discriminant 4 can
therefore be expressed as

A = 2+4D(0) sin’ (%n\/g_o) . (61)

Furthermore, it holds that [1;| = 1[4]+ 1V 4*~4, see (15).

If [A| > 2, then the critical restitution coefficient is given by
ec=|M \’”m‘, see Corollary 1. The critical restitution coefficient
can therefore be calculated from

+ ¢ (1 +2D(0)sin? (%nJg—o) ) 271 )
(62)

under the assumption that /g5 #0,2,4,8,.... The value of D(0)
can be approximated by the determinant of a central k x k block
as will be shown in Section 5.3.

—1/m

&= (}1 +2D(0)sin? Gn@)

5. The unilaterally constrained Mathieu equation

In order to illustrate the previous results, the stability proper-
ties of the unilaterally constrained Mathieu equation are studied
in this section. First, the symmetry of the Mathieu equation is
exploited in Section 5.1. A stability diagram for the unilaterally
constrained Mathieu equation is obtained by using direct numer-
ical integration to calculate the discriminant 4 and n. Subse-
quently, the method of averaging is employed in Section 5.2 to
derive approximate expressions for the critical restitution coeffi-
cient in the vicinity of the first parametric resonance. Finally, the
method of Hill's determinant is used in Section 5.2 to obtain an
improved approximation for the critical restitution coefficient in
this parameter region.

5.1. Stability boundaries

The Mathieu equation (3)
V() +(+2f cos 2t)y(t)=0

is a Hill's equation with symmetry of the function g(t)=
a+2p cos 2t, i.e.

g =g(-b, gt)=gt+mn).

This implies that, if y,(t) and y,(t) are solutions of (3), then y;(—t)
and y,(—t) are also solutions of (3). The function y,(t) is therefore
even and y,(t) is odd. For the same reason it holds that y,(t) is odd
and y,(t) is even. Using the transition property (12) we deduce
that ®(—m,0) = ®(0,7) = ®(7,0)"'. Evaluation of

Nnm =y

—y1(m) Y, (m)

gives together with ®(—x,0) = ®(7,0)"! the identity y, () = y,(1)
(see [17]). Hence, it holds that 4 = trace(®r) = 2y, (7).

The stability of the unconstrained Mathieu equation (3)
depends on the value of 4, being a function of the parameters o
and f. The stability boundaries in the parameter plane (,f5) are
given by A(o,f)= +2, i.e. |y;(m)| =1. The unity of the determi-
nant, det(®r) = y;(1)*—y,(n)y, () = 1, implies that either y,(7) =
0 and/or y,(m) =0 at a stability boundary. In other words, one can
distinguish between stability boundaries for which y,(m) =0 and
stability boundaries for which y,(mw)=0. The value of the dis-
criminant 4(«,f5) and the number n(«, ), i.e. the number of zeros
of the function y,(t) on the interval (0,n], have been computed
using direct numerical integration on a grid of 1000 x 1000 points
for the intervals «=-8...32 and f=0...12. The stability
boundaries A(x,f5) = + 2 of the unconstrained Mathieu equation
are depicted in Fig. 4, which is often called the Ince-Strutt

O(—7,0)= <

diagram. The number n changes its value in the parameter plane
(o, p) if y, () changes sign. The boundary of the domains where n
is constant therefore agrees with those stability boundaries of the
unconstrained Mathieu equation for which y,(mw)=0, see Fig. 5.
Fig. 4 indicates the number m; in the instability domains of the
unconstrained Mathieu equation. Apparently, m; =k in the k-th
instability domain.

The stability of the equilibrium of the unilaterally constrained
Mathieu equation is dependent on the number n(e«,f) and the
discriminant A4(«,f3), which both depend on the system para-
meters o and S, and the restitution coefficient &. The numerical
results for the critical restitution coefficient are depicted in Fig. 6,
being the Ince-Strutt diagram for the unilaterally constrained
Mathieu equation. The level curves for ¢. =0, 0.2, 0.4, 0.6, 0.8 and
1 are shown in Fig. 6. The grey areas, being the stability domains
of the unconstrained Hill’s equation, have a critical restitution
coefficient & = 1. It can be seen that a decrease in the restitution
coefficient enlarges the stability domain in those regions of the
parameter space for which n > 0, especially when n is large. The
value of n is zero in the so-called zeroth instability domain [30]
(the lower left part of Fig. 6 labeled with & =0) and 4 > 2. As
follows from Theorem 2, the value of the restitution coefficient
has no influence in the zeroth instability domain as the long-term
behaviour is governed by non-impacting motion. The zeroth
instability domain of the unconstrained Mathieu equation is
therefore also unstable for the constrained Mathieu equation.

As the stability of the constrained Mathieu equation depends
on the number n and 4, which characterize the unconstrained
Mathieu equation, one can use common approximation methods
to investigate the stability properties of the unilaterally con-
strained Mathieu equation with ¢ =0.

5.2. Averaging

A standard averaging technique [28] can be used to give an
approximation for A(c,f3) if /o is small. The averaging technique
can be applied to the dynamics expressed in amplitude and phase
coordinates (polar coordinates), see for instance [21], but this
type of averaging results in an averaged system consisting of non-
linear differential equations. Here, the averaging is done on the

A>2 A< =2
my =4 my =5
It
A< =2
mp =3 i
Al < 2 Al <2 Al < 2
16 24 32
«

Fig. 4. Ince-Strutt diagram and discriminant 4 of the unconstrained Mathieu
equation (3). In the grey stability domains holds |4| < 2. The instability domains
are white.



RIL

—

16 24 32

o

Fig. 5. Diagram with the value of n of the Mathieu equation.

-8 0 8 16 24 32
e

Fig. 6. Ince-Strutt diagram of the unilaterally constrained Mathieu equation with
critical value & of the restitution coefficient.

dynamics in comoving coordinates [27] which yields a linear set
of differential equations allowing for a closed form solution of the
averaged equations.

Let w=1,2,3,... be a resonant frequency of the Mathieu
equation (3) and let f=ew? where ¢ is a small parameter
measuring the relative intensity of the parametric excitation.
Due to symmetry we know that A(x,—f) = 4(«,f) and it therefore
suffices to consider ¢ > 0. Furthermore, we consider the value of o
to be close to resonance and set

o= w?*(1—€d), (63)

where 6 is a detuning parameter. Following [27], comoving
coordinates z;(t) and z,(t) are introduced such that

y(t) = z1(t) cos wt+2z;(t) sin wt,

y(t) = —z1(t)w sin wt+z5(t)w cos wt. (64)
Differentiation of y(t) gives the relationship

Z1 oS wt+z, sin wt =0. (65)
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Substitution of (64) and (65) in (3) yields the Mathieu equation in
comoving coordinates:

Z1 = —€w(0—2 cos 2t)(z1 cos wt+2z; sin wt) sin wt,

Z5 = em(0—2 cos 2t)(z1 cos wt+z, sin wt) cos wt. (66)

The system (66) can be averaged over one period of oscillation,
keeping z; and z, constant, i.e.

. cw [T .
Z1 = Y / (0—2 cos 2t) cos wt sin wt dt z;
JOo

T
- %/ (6—2 cos 2t) sinwt dt z,,
0

T
Zy= « (6—2 cos 2t) cos®wt dt z;
T Jo
n
+ %/ (0—2 cos 2t) cos wt sin wt dt z;. (67)
0

Consider the first resonance at w = 1. Evaluation of the averaged
equation (67) gives

Z =*§(1+5)Zz,

Zy = —%(1 —(S)Zl. (68)

The linear planar system (68) has the general solution
z1(t) = c¢; cosh ut+c; sinh ut,

/ 2
) =— ET_;(Q sinh ut +c, cosh put). (69)
with

n=sy1-9" (70)

In order to find an approximation for y,(t) we set z;(0)=1
and z(0) =0 giving c; =1, ¢c; =0. Hence, we obtain the approx-
imation

2

1+0

for the first fundamental solution and the approximation

A=2y,(m)=—-2 cosh <%T \/ 1—52) (72)

for the discriminant. Using ¢ = and €6 = 1—« for w =1, we can
express the determinant as a function of o and f§

A, f) = —2 cosh (g\/ﬁzf(]ﬂx)z). (73)

Near the first resonance, it therefore holds that 4 < -2 if || <1,
or, correspondingly, if |1—o| < |B|. From (72) we calculate the
largest characteristic multiplier

= %A—%\/AZ— = —cosh(% \/ 1—52> —sinh (%n\/ 1—52>

— _e(m/Z)«/l—éz. (74)

¥1(t) = cosh ut cos t— sinh ut sin t 71

Similarly, we obtain an approximation for y,(t) by setting z;(0) =
0and z(0)=1,i.e.c;=0and ¢c; = —(1+39)/( 1—6%), which yields

1+6
V1-¢2

Clearly, if ¢ = 0, then it holds that y,(t) = sin t and the value of n is
on the verge of turning from zero to one. Evaluation of y,(m) gives

1+6 .
Va(m) = h*?smh(%\/l_y) (76)

V() =— sinh ut cos t+cosh ut sin t. (75)
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which is slightly larger than zero for || < 1. We therefore infer that
n=0 holds around the resonance frequency @ =1 for small values
of .

The stability criterion for n=0 and 4 < -2 reads as (see
Theorem 2)

8<86=M1‘71. 77)

Using the approximation (74) for 1,, the critical coefficient of
restitution is approximated near the first resonance by

£ = e~ (/2N 1-8 _ o=/ P ~(1-0) (78)

Inversely, for a given value of & and ¢ one can calculate the critical
value of f§ as

2
B. = ,\/(1 —a)’ + (% In 9) (79)

from which we see that a small value of the restitution
coefficient ¢ is beneficial for the stability of the unilaterally
constrained Mathieu equation in the vicinity of the first
resonance.

A comparison of the approximation (79) obtained with the
averaging method and the (almost exact) numerical results is
shown in Fig. 7. For a given value of ¢., which has been chosen to
be 0.4, 0.6 and 0.8, the value of f§ has been computed using (79)
and is shown as dashed lines in Fig. 7. The approximation
agrees fairly well with the numerical results for & =0.8. Signi-
ficant differences can be seen for ¢ =0.4 and ¢. =0.6 because
€= can no longer considered to be small in the upper half of
Fig. 7.

5.3. Approximation using Hill’s determinant

A much better approximation of the discriminant 4(o,f) and
the critical restitution coefficient can be obtained by using Hill's
infinite determinant as discussed in Section 4.

The function g(t) = «+2p cos 2t of the Mathieu equation can
be represented by g(t) = a+ (et +e~2) and the Fourier coeffi-
cients are therefore go=0o and g, =g_; = whereas all other
Fourier coefficients are zero. The determinant D(0), see (59),
therefore reads as

B
1 £, 0 0o o
B /]
o—22 1 o—22 0 0
DO)=|.-- 0o £ 1 £ o (80)
B B
O 0—22 1 o—22
o o 2 1

h
NN
N

The value of D(0) can be approximated by the determinant of the

central 5 x 5 block

_ 4a-32
a(oe—4)(c—16)

30-32
o(o—4)% (0—16)

D(0)~ 1 B+ B @81)
This approximation can be improved by calculating larger central
k x k blocks in (80). However, the coefficients of * and #* in (81)
slightly change if larger central blocks are considered. Using (61)

the discriminant 4 can be approximated by

Ao, B) = 2—4 sin® G nﬁ)

40-32 3032
'(1a(a—4)(a—16)ﬂ +

o(o—4)*(t—16)

5 ﬁ4>. (82)

0.7

0.6

0.5F

0.4

0.3

0.2

0.1

0
0.6 0.8 1 1.2 1.4

Fig. 7. Approximate Ince-Strutt diagram around the first resonance by using
averaging (dashed lines) and Hill's determinant (dash-dot lines).

Hence, the critical restitution coefficient is determined by the
equation

e+ g% =—2+4sin’ (%nﬁ)
’C

.<1 40-32 g 3032

o(oi—4)%(0—16)

4
" ou(0—4)(—16) ol > 83)

or equivalently by (62). Inversely, for a given value of o and ¢ one
can calculate an approximation of the critical value of £, based on
the terms in (82) up to order ﬁz, as

em —i—2+L
5 ow(oe—4)(o—16) emi
e e 1 @&
4 sin® (jn\/&>

This approximation is valid (for small ) in each of the instability
domains but the value of m; should be a priori known. For the
Mathieu equation, however, it holds that m; =k in the k-th
instability domain.

A comparison of the approximation (84) in the first instability
region (m; = 1) obtained with Hill's determinant (dash-dot lines)
and the approximation (79) obtained with the averaging method
and the (almost exact) numerical results is shown in Fig. 7.
Clearly, the approximation (84) is much better than the approx-
imation (79). However, using the averaging method one is able to
estimate the value of n (and therefore m;) as a function of & and f3,
which cannot (easily) be done by using the method of Hill's
determinant.

6. Conclusions and discussion

In this paper the stability conditions of the unilaterally con-
strained Hill’s equation have been addressed in detail using
Floquet theory and Lyapunov techniques. It has been shown that
the stability of the equilibrium of the unilaterally constrained
Hill’s equation depends on the discriminant 4 and the number n
(i.e. the number of zeros of the second fundamental solution
within one period) of the unconstrained Hill’s equation and on the
restitution coefficient ¢. The remarkable simplicity of the uni-
laterally constrained Hill’s equation stems from the fact that,
although the system can be considered to be strongly non-linear
due to the presence of the unilateral constraint, its Poincaré map
is cone-wise linear. The cone-wise linearity originates from the
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homogeneity of the linear differential equation and the homo-
geneity of the impact map.

The practical merit of the paper is that a precise estimation of
the critical restitution coefficient can be obtained by calculating
the fundamental solutions of the unconstrained Hill’'s equation
using direction numerical integration methods (ODE-solvers). In
addition, two approximation methods are proposed which give
closed form expressions for the critical restitution coefficient: the
averaging method (Section 5.2) and the method of Hill’s infinite
determinant (Sections 4 and 5.3). A comparison of the approx-
imation techniques applied to the wunilaterally constrained
Mathieu equation has been given in Section 5.

The averaging method in comoving coordinates, which is
employed in Section 5.2, gives the same approximation of the
critical restitution coefficient as obtained by the averaging
method in [21], Section 2.2.2. In [21], a two-dimensional impact
event map is constructed for the first instability domain using the
averaging method in amplitude and phase coordinates and
assuming that the time difference between consecutive impacts
equals t;, 1—t; =7+ O(¢). In Section 5.2, the averaging method in
comoving coordinates is used to obtain an approximation of the
two-dimensional Poincaré map. This approximate Poincaré map
is cone-wise linear as opposed to the approximate impact event
map of [21] which is fully non-linear. The use of higher-order
averaging methods to improve the approximation for larger
values of ¢ becomes cumbersome as it takes a much larger effort
and, in addition, an improved approximation for t; ;—t; needs to
be obtained for averaging in amplitude and phase coordinates.

The approximation of the critical restitution coefficient using
Hill’s infinite determinant, see Sections 4 and 5.3, is very accurate
and can easily be improved by considering larger central blocks for
the determinant D(0). However, the method using Hill's infinite
determinant gives no direct way to determine the number n.

The analysis has shown that the impact time instants are
defined by the zero-crossings of the solution of the unconstrained
Hill’s equation, which are always separated in time. Accumulation
points of impacts can therefore not exist in the unilaterally
constrained Hill's equation (4) as has been proven in Theorem 1.
If, however, the location of the constraint is moved to a non-
zero position, which does not agree with the equilibrium of the
unconstrained system, i.e. x(t) > x. > 0, then accumulation points
are possible. The unilaterally constrained Hill’s equation with
X: > 0 does not have an equilibrium and the contact force A in Eq.
(5) does not vanish. The framework of non-smooth dynamics is
therefore needed to describe and understand the dynamics of the
unilaterally constrained Hill's equation with non-zero constraint
position. Moreover, the non-linear dynamics becomes far more
complicated because the homogeneity of the impact conditions
(27), and also the cone-wise linearity of the Poincaré map, is lost.

The present paper gives more insight in the stability properties of
Hill's equation with unilateral constraint, being an archetype of a
parametrically excited non-smooth dynamical system with impulsive
motion. Further research will focus on the application and extension
of the obtained results to the stability analysis of multi-degree-of-
freedom autoparametric systems with unilateral constraints.

Appendix A. Floor function and fractional part

Definition 1 (Floor function and fractional part). With [x] we
denote the floor function defined by

[x] = {max ke Z|k < x} (85)

and with {x} the fractional part defined by
{x} =x—1x]. (86)

The fractional part can be expressed in trigonometric functions as

x) = %—% arctan(cot(nx)), 87)

where cot(nk) = + oo for k e Z. The floor function has the follow-
ing property:
X+ ] < [x+y] < [x]+y]+1, (88)

and the equality |x]+|y] =|x+y] holds only if {x}+{y} <1, or
using (87), if cot(mx)+ cot(my) > 0. More precisely, the relations
(88) can be formulated as

N ALIES T

The floor function can be used to count the number of zeros of
sinusoidal functions. The function f,(x) = sin(x) has the zeros kn
with k € Z and the number of zeros on the interval (0,a] therefore
amounts to

if cot(mx)+ cot(my) > 0,

if cot(mx)+ cot(my) <O0. (89)

a
m, = LEJ (90)
The function f,(x) = sin(x+b) has the number of zeros

a+b b
ma=[)-[5) @
which, using (89), can be expressed as

my if cot(a)+cot(b) >0, 92
M2=9 m,+1 if cot(a)+cot(h) <O0. ©2)
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