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DISCONTINUOUS FOLD BIFURCATIONS

REMCO I. LEINE* and DICK H. VAN CAMPEN
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P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 22 May 2000)

This article treats discontinuous fold bifurcations of periodic solutions of discontinuous system. It is shown
how jumps in the fundamental solution matrix lead to jumps of the Floquet multipliers of periodic solutions.
A Floquet multiplier of a discontinuous system can jump through the unit circle causing a discontinuous
bifurcation. Numerical examples are treated which show discontinuous fold bifurcations. The discontinuous
fold bifurcation can connect stable branches to branches with infinitely unstable solutions.
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1. INTRODUCTION

The objective of this article is to explain how discontinuous fold bifurcations arise in
systems with a discontinuous vector field.
During the last two decades many textbooks about bifurcation theory for smooth

systems appeared and bifurcations of smooth vector fields are well understood
[6,7,10,18,21]. However, little is known about bifurcations of discontinuous vector
fields. Discontinuous dynamical systems arise due to physical discontinuities such as
dry friction, impact and backlash in mechanical systems or diode elements in electrical
circuits. Many papers deal with discontinuous systems [5,8,9,19,20,22–24]. Published
bifurcation diagrams constructed from data obtained by brute force techniques
only show stable branches of periodic solutions, whereas those made by path-following
techniques do show bifurcations to unstable branches but the bifurcations behave
smoothly and are not discontinuous.
Andronov et al. [2] treat periodic solutions of discontinuous systems. They revealed

many aspects of discontinuous systems but did not treat discontinuous bifurcations with
regard to Floquet theory.
The current article shows two examples of discontinuous fold bifurcations and

explains how they come into being through Floquet theory. The first example is a
trilinear spring system which shows a discontinuous fold bifurcation connecting a
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stable branch to an unstable branch. A stick–slip system is treated in the second
example. The discontinuous fold bifurcation connects a stable branch to an infinitely
unstable branch.

2. TRILINEAR SPRING SYSTEM

In this section we will treat a discontinuous fold bifurcation arising in a trilinear spring
system (Fig. 1).
The forced oscillation of a damped mass on a spring with cubic term leads to the

Duffing equation [6,7,16,17]. The Duffing equation is the classical example where
the backbone curve of the harmonic peak is bended and two folds (also called turning
point bifurcations) are born. In our example, we will consider a similar mass–
spring–damper system, where the cubic spring is replaced by a trilinear spring.
Additionally, trilinear damping is added to the model. The trilinear damping will
turn out to be essential for the existence of a discontinuous fold bifurcation.
The model is very similar to the model of Natsiavas [14,15], but the transitions

from contact with the support to no contact are different from Natsiavas. The model
of Natsiavas switches as the position of the mass passes the contact distance (in both
transition directions). In our model, contact is made when the position of the mass
passes the contact distance, and contact is lost when the contact force becomes zero.
We consider the system depicted in Fig. 1. The model has two supports on equal

contact distances xc. The supports are first-order systems which relax to their original
state if there is no contact with the mass. If we assume that the relaxation time of the
supports is much smaller than the time interval between two impacts, we can neglect
the free motion of the supports. It is thus assumed that the supports are at rest at
the moment of impact. This is not an essential assumption but simplifies our treatment

FIGURE 1 Trilinear system.
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as the system reduces to a second-order equation. The second-order differential equa-
tion of this system is

m €xxþ Cð _xxÞ þ KðxÞ ¼ f0 sinð!tÞ, ð1Þ

where

KðxÞ ¼
kx ½x, _xx�T 2 V�

kxþ kf ðx� xcÞ ½x, _xx�T 2 Vþ1

kxþ kf ðxþ xcÞ ½x, _xx�T 2 Vþ2

8<
: ð2Þ

is the trilinear restoring force and

Cð _xxÞ ¼
c _xx ½x, _xx�T 2 V�

ðcþ cf Þ _xx ½x, _xx�T 2 Vþ1 [ Vþ2

�
ð3Þ

is the trilinear damping force. The state space is divided into three subspaces V�, Vþ1

and Vþ2 (Fig. 2).
If the mass is in contact with the lower support, then the state is in space Vþ1

Vþ1 ¼ f½x, _xx�T 2 R
2
jx > xc, kf ðx� xcÞ þ cf _xx � 0g,

whereas if the mass is in contact with the upper support, then the state is in space Vþ2

Vþ2 ¼ f½x, _xx�T 2 R
2
jx < �xc, kf ðxþ xcÞ þ cf _xx � 0g:

FIGURE 2 Subspaces of the trilinear system.
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If the mass is not in contact with one of the supports, then the state is in space V�

defined by

V� ¼ f½x, _xx�T 2 R
2
jx =2 ðVþ1 [ Vþ2Þg:

The hyperplane �1 between V� and Vþ1 consists of two parts �1a and �1b. The part
�1n is defined by the indicator equation

h1a ¼ x� xc ¼ 0, ð4Þ

which defines the transition from V� to Vþ1 because contact is made when x becomes
larger than xc. The part �1a is defined by the indicator equation

h1b ¼ kf ðx� xcÞ þ cf _xx ¼ 0, ð5Þ

which defines the transition from Vþ1 back to V� as contact is lost when the support-
force becomes zero (the support can only push, not pull on the mass). Similarly, the
hyperplane �2 between V� and Vþ2 consists of two parts �2a and �2b defined by
the indicator equations

h2a ¼ xþ xc ¼ 0, ð6Þ

h2b ¼ kf ðxþ xcÞ þ cf _xx ¼ 0: ð7Þ

Discontinuous systems exhibit discontinuities (or ‘saltations’/‘jumps’) in the time
evolution of the fundamental solution matrix.
The jumps occur when the solution crosses a hyperplane of discontinuity and can be

described by a saltation matrix S

�ðtpþ, t0Þ ¼ S�ðtp�, t0Þ, ð8Þ

where �ðtp�, t0Þ is the fundamental solution matrix before the jump and �ðtpþ, t0Þ
after the jump which occurs at t¼ tp. The saltation matrix S can be expressed as

S ¼ I þ

f
� pþ

� f
� p�

� �n
�

t

n
�

T f
� p�

þ ð@h=@tÞðtp, x
�
ðtpÞÞ

, ð9Þ

where n
�
is the normal to the hyperplane

n
�
¼ n

�
ðt, x

�
Þ ¼ gradðhðt, x

�
ðtÞÞ: ð10Þ
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The construction of saltation matrices is due to Aizerman and Gantmakher [1] and
treated in [3,12,13]. The saltation matrices for each hyperplane are

S1a ¼
1 0

�
cf
m

1

� �
, ð11Þ

S1b ¼ I , ð12Þ

S2a ¼
1 0

�
cf
m

1

� �
, ð13Þ

S2b ¼ I : ð14Þ

The hyperplanes �1 and �2 are non-smooth. The saltation matrices are not each
others inverse, S1a 6¼ S�1

1b and S2a 6¼ S�1
2b . This will turn out to be essential for the exist-

ence of a discontinuous bifurcation. Note that the saltation matrices are independent of
the stiffness k and reduce to the identity matrix if cf¼ 0.
The response diagram of the trilinear system is shown in Fig. 3 for varying forcing

frequencies with the amplitude A of x on the vertical axis. Stable branches are indicated
by solid lines and unstable branches by dashed–dotted lines. The parameter values are
given in Appendix A.
There is no contact with the support for amplitudes smaller than xc and the response

curve is just the linear harmonic peak. For amplitudes above xc there will be contact
with the support which will cause a hardening behaviour of the response curve. The
backbone curve of the peak bends to the right like the Duffing system with a hardening
spring. The amplitude becomes equal to xc twice at !¼!A and !¼!B, on both sides of
the peak, and corners of the response curve can be seen at these points. The orbit
touches the corners of �1 and �2 for A¼ xc.

FIGURE 3 Response diagram of trilinear spring system.
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The magnitude of the Floquet multipliers is shown in Fig. 4. The two Floquet multi-
pliers are complex conjugate (with the same magnitude) for A<xc. The orbit touches
the two hyperplanes at A<xc and the fundamental solution matrix will jump as follows
from the saltation matrices. The eigenvalues of the fundamental solution matrix, which
are known as the Floquet multipliers, will therefore jump (indicated by dotted lines
in Fig. 4). The Floquet multipliers are not singular valued at the bifurcation point
(as is the case for smooth systems) but are set-valued.
The pair of Floquet multipliers jumps at !A but does not jump through the unit

circle. The set-valued Floquet multiplier remains within the unit circle. The stable
branch thus remains stable. However, at !¼!B the complex pair jumps to two distinct
real multipliers, one with a magnitude bigger than one. A Floquet multiplier thus
jumped through the unit circle. This set-valued Floquet multiplier passed the unit
circle through þ 1 causing a discontinuous fold bifurcation.
Damping of the support is essential for the existence of this discontinuous fold bifur-

cation. For cf¼ 0, all saltation matrices would be equal to the identity matrix and
the corner between �1a and �1b would disappear (and also between �2a and �2b);
thus no discontinuous bifurcation could take place and the fold bifurcation would be
smooth. The model of Natsiavas [14,15] did not contain a discontinuous fold bifurcation
because the transitions were modelled such that S1a ¼ S�1

1b and S2a ¼ S�1
2b . The saltation

matrices will cancel each other out if they are each other inverse. A corner of hyper-
planes with saltation matrices which are not each others inverse is therefore essential
(but not sufficient) for the existence of a discontinuous bifurcation.

3. STICK–SLIP SYSTEM

In the preceding subsection we studied a discontinuous fold bifurcation, where a
Floquet multiplier jumped over the unit circle to a finite value. In this subsection
we will study a discontinuous fold bifurcation where the Floquet multiplier jumps to
infinity. This results in an infinitely unstable periodic solution.

FIGURE 4 Floquet multipliers.
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We consider the block-on-belt model depicted in Fig. 5 with the parameter values
given in Appendix B. The state equation of this autonomous system reads

_xx
�
¼ f

�

ðx
�
Þ ¼

_xx
� k

m
x� c

m
_xxþ F

m

� �
, ð15Þ

where x
�
¼ ½ x _xx �T and the friction force F is given by

Fðvrel; xÞ ¼
�Fslipsgn vrel, vrel 6¼ 0 slip
minðjkxþ c _xxj,FstickÞsgn kx: vrel ¼ 0 stick

�
ð16Þ

The maximum static friction force is denoted by Fstick and vrel ¼ _xx� vdr is the relative
velocity. The constitutive relation for F is known as the signum model with static
friction point.
This model permits analytical solutions for c¼ 0 due to its simplicity but it is not

directly applicable in numerical analysis. The relative velocity will most likely not
be exactly zero in digital computation. Instead, an adjoint switch model [11] will be
studied which is discontinuous but yields a set of ordinary (and non-stiff !) differential
equations. The state equation for the switch model reads

_xx
�
¼

_xx
� k

m
x� c

m
_xx�

Fslip
m
sgn vrel

� �
jvrelj > � or
jkxþ c _xxj > Fstick

vdr

�vrel

ffiffiffi
k
m

q" #
jvrelj < � and
jkxþ c _xxj < Fstick

8>>><
>>>:

ð17Þ

A region of near-zero velocity is defined as |vrel|<� where � � vdr. Thus, the space R
2 is

divided in three subspaces V, W and D as indicated in Fig. 6. The boundaries between
the subspaces are denoted by bold lines. The small parameter � is enlarged to make D
visible.
The equilibrium solution of system 15 is given by

x
�
eq ¼

Fslip
k

0

� �
ð18Þ

FIGURE 5 1-DOF model with dry friction.
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and is stable for positive damping (c>0).
The model also exhibits stable periodic stick–slip oscillations. The saltation matrix S	

for the transition from slip to stick is given by [12]

S	 ¼
1 0
0 0

� �
, ð19Þ

which is singular. The fundamental solution matrix will thus also be singular as the
stable periodic oscillation passes the stick state. The saltation matrix S3 for the transi-
tion from stick to slip is given by

S3 ¼
1 0

� �F
mvdr

1

� �
, ð20Þ

with �F¼Fstick�Fslip.
The periodic solution has two Floquet multipliers, of which one is always equal to

unity as the system is autonomous. The singularity of the fundamental solution
matrix implies that the remaining Floquet multiplier has to be equal to zero, indepen-
dent of any system parameter. The Floquet multipliers of the stable periodic solution
of this system are thus 
stable¼ (1,0).
The stable limit cycle is sketched in the phase plane in Fig. 6 (bold line). The

equilibrium position is also stable and indicated by a dot. The space D is enlarged in
Fig. 6 to make it visible but is infinitely small in theory and is taken very small in
numerical calculations [11,12].
A trajectory outside the stable limit cycle, like trajectory I in Fig. 6, will spiral

inwards to the stable limit cycle and reach the stick–phase D. The stick–phase will
bring the trajectory exactly on the stable limit cycle as it is infinitely small. Every
point in D is thus part of the basin of attraction of the stable limit cycle.
Trajectory II starts inside the stable limit cycle and spirals around the equilibrium

position and hits D where-after it is on the stable limit cycle. But a trajectory inside

FIGURE 6 Phase plane.
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the stable limit cycle might also spiral around the equilibrium position and not reach
the stick-phase D (trajectory III). It will then be attracted to the equilibrium position.
A trajectory inside the stable limit cycle can thus spiral outwards to the stable limit

cycle, like trajectory II, or inwards to the equilibrium position (trajectory III).
Consequently, there must exist a boundary of attraction between the two attracting
limit sets. This boundary is the unstable limit cycle sketched by a dashed line in Fig.
6. Whether a flow is attracted to the stable limit cycle or to the equilibrium point
depends on the attainment of the trajectory to D. The unstable limit cycle is thus
defined by the trajectory in V which hits the border of D tangentially. Another part
of the unstable limit cycle is along the border of D as trajectories in D will attract ot
the stable limit cycle and just outside D to the equilibrium poition. This part of the
unstable limit cycle along the border of D is has a vector field which is repulsing on
both sides of the border. The theory of Filippov gives a generalized solution of systems
with a discontinuous right-hand side [4,12]. If the vector field on one side of a hyper-
plane of discontinuity is pushing to the hyperplane and on the other side from the
hyperplane, then every trajectory will intersect the hyperplane transversally. If the
vector field is pushing to the hyperplane on both sides then there exists a unique sol-
ution along the hyperplane. This is called an attraction sliding mode. If the vector
field is repulsing from both sides of the hyperplane then there exists a solution along
the hyperplane which is not unique. This is called a repulsion sliding mode.
The vector field solution on either side of the border of D is repulsing from it. It is

thus a repulsion sliding mode. The solution starting from a point on a repulsion sliding
mode is not unique as follows from the theory of Filippov. This causes the unstable
solution to be infinitely unstable. As the solution is infinitely unstable, it is not possible
to calculate it in forward time. However, calculation of the solution in backward time is
possible. The vector field in backward time is identical to forward time but opposite in
direction. The repulsion sliding mode in forward time will turn into an attraction sliding
mode in backward time. The solution starting from a point on the unstable limit cycle
will move counter-clockwise in the phase-plane in backward time and hit the border of
D. It will slide along the border of D until the vector field in V becomes parallel to D,
and will then bend off in V. Any solution starting from a point close to that starting
point will hit D and leave D at exactly the same point. Information about where the
solution came from is thus lost through the attraction sliding mode. In other words:
the saltation matrix of the transition from V to D during backward time is singular.
The fundamental solution matrix will thus be singular in backward time because it con-
tains an attraction sliding mode. The Floquet multipliers of the unstable limit cycle in
backward time are therefore 1 and 0. The Floquet multipliers in forward time must be
their reciprocal values. The second Floquet multiplier is thus infinity, 
unstable ¼ ð1,1Þ,
which of course must hold for an infinitely unstable periodic solution.
The bifurcation diagram of the system is shown in Fig. 7 with the velocity of the

belt vdr as control parameter and the amplitude A on the vertical axis. The equilibrium
branch and the stable and unstable periodic branches are depicted. The unstable branch
is of course located between the stable periodic branch and the equilibrium branch as
can be inferred from Fig. 6. The stable and unstable periodic branches are connected
through a fold bifurcation point. The second Floquet multiplier jumps from 
¼ 0 to

 ¼ 1 at the bifurcation point. This set-valued Floquet multiplier thus passes the
unit circle at þ 1. The fold bifurcation is therefore a discontinuous fold bifurcation.
The fold bifurcation occurs when vdr is such that a flow which leaves the stick-phase
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D, transverses V, and hits D tangentially (like the unstable periodic solution). The stable
and unstable periodic solutions coincide at this point. Note that there exists again a
corner of hyperplanes at this point as was the case in the previous section. The saltation
matrices are not each others inverse, S	S� 6¼ I , which is essential for the existence of a
discontinuous bifurcation.
A similar model was studied by Van de Vrande et al. [24] with a very accurately

smoothed friction curve. The stable branch was followed for increasing vdr but
the fold bifurcation could not be rounded to proceed on the unstable branch. As the
unstable branch is infinitely unstable in theory, it is extremely unstable for the
smoothed system. The branch can thus not be followed in forward time if the friction
model is approximated accurately.
The stable branch in Fig. 7 was followed in forward time up to the bifurcation point.

The path-following algorithm was halted and restarted in backward time to follow the
unstable branch.
This section showed that infinitely unstable periodic solutions come into being

through repulsion sliding modes. Filippov theory turns out to be essential for the
understanding of infinitely unstable periodic solutions. Infinitely unstable periodic solu-
tions and their branches can be found through backward integration. Smoothing of
a discontinuous model is not sufficient to obtain a complete bifurcation diagram of a
discontinuous system as infinitely unstable branches cannot be found.

CONCLUSIONS

It was shown in this article that discontinuous vector fields lead to jumps in the
fundamental solution matrix if a control parameter is varied. It turned out that a
double intersection of a non-smooth hyperplane is necessary to cause a jump of the
fundamental solution matrix. These jumps may lead to set-valued Floquet multipliers.
A discontinuous bifurcation is encountered if a set-valued Floquet multiplier crosses
the unit circle.

FIGURE 7 Bifurcation diagram of the block-on-belt model.
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An example with a trilinear spring demonstrated two jumps of the Floquet
multipliers, one causing a discontinuous fold bifurcation.
An example of a stick–slip system showed that the Floquet multiplier can also jump

to infinity. The discontinuous fold bifurcation connects a stable branch to an infinitely
unstable branch. The unstable limit cycle can be understood by Filippov’s theory.
Infinitely unstable periodic solutions come into being through repulsion sliding
modes and can be found through backward integration. Branches of infinitely unstable
periodic solutions can be continued with pseudo-arclength continuation based on
shooting with backward integration. Bifurcation to infinitely unstable periodic
solutions lead to complete failure of the classical smoothing method to investigate
discontinuous systems.
The theory of bifurcations of periodic solutions has been extended in the paper to

discontinuous bifurcation. Only fold bifurcations were discussed. A more complete
theory of the bifurcation in discontinuous systems is presented in [12].
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APPENDIX A: TRILINEAR SPRING SYSTEM

m ¼ 1 kg

k ¼ 1N/m

kf ¼ 4N/m

f0 ¼ 0.2N

c ¼ 0.5N/ms

xc ¼ 1m

cf ¼ 0.5N/ms

APPENDIX B: STICK–SLIP SYSTEM

k ¼ 1N/m

m ¼ 1 kg

Fslip ¼ 1N

� ¼ 10�4m/s

c ¼ 0.1N s/m

vdr ¼ 1m/s

Fslip ¼ 2N
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