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Discontinuous fold bifurcations in mechanical systems

R. I. Leine, D. H. van Campen

Summary This paper treats discontinuous fold bifurcations of periodic solutions of dis-
continuous systems. It is shown how jumps in the fundamental solution matrix lead to jumps of
the Floquet multipliers of periodic solutions. A Floquet multiplier of a discontinuous system
can jump through the unit circle, causing a discontinuous bifurcation. Numerical examples are
treated, which show discontinuous fold bifurcations. A discontinuous fold bifurcation can
connect stable branches to branches with infinitely unstable solutions.
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1

Introduction

The objective of this paper is to explain how discontinuous fold bifurcations arise in systems
with a discontinuous vector field.

Physical systems often operate in different modes. When the switching times between dif-
ferent modes are very short compared to the global time, and when one is interested in the
global dynamics of the system then it might be advantageous to model the physical system by a
discontinuous model as is often done.

During the last two decades, many textbooks about bifurcation theory for smooth systems
appeared, and bifurcations of smooth vector fields are well understood now, [11, 12, 17, 27, 30].
However, little is known about bifurcations of discontinuous vector fields. Discontinuous
dynamical systems arise due to physical discontinuities such as dry friction, impact and
backlash in mechanical systems or diode elements in electrical circuits. Many papers deal with
discontinuous systems, [2, 4, 6-8, 10, 13-16, 20, 26, 28, 29, 31-33]. Published bifurcation
diagrams, constructed from data obtained by brute force techniques, only show stable branches
of periodic solutions, whereas those made by path-following techniques do show bifurcations
to unstable branches, although the bifurcations behave smoothly and are not discontinuous.

Andronov et al. [3], treated periodic solutions of discontinuous systems. They revealed
many aspects of discontinuous systems but did not treat discontinuous bifurcations with
regard to Floquet theory.

The current paper shows two examples of discontinuous fold bifurcations and explains how
they come into being through Floquet theory. The first example is a trilinear spring system
which shows a discontinuous fold bifurcation connecting a stable branch to an unstable
branch. A stick-slip system is treated in the second example. The discontinuous fold bi-
furcation connects a stable branch to an infinitely unstable branch.

2
Trilinear spring system
In this section, we will treat a discontinuous fold bifurcation arising in a trilinear spring system,
Fig. 1.

Forced oscillation of a damped mass on a spring with a cubic term leads to the Duffing
equation, [11, 12, 24, 25]. The Duffing equation is the classical example where the backbone
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Fig. 1. Trilinear system

curve of the harmonic peak is bended and two folds (also called turning-point bifurcations)
are born. In our example, we will consider a similar mass-spring-damper system, where the
cubic spring is replaced by a trilinear spring. Additionally, trilinear damping is added to
the model. The trilinear damping will turn out to be essential for the existence of a dis-
continuous fold bifurcation.

The model is very similar to the model of Natsiavas, [22, 23], but the transitions from contact
with the support to no contact are different. The model [22, 23] switches, as the position of
the mass passes the contact distance (in both transition directions). In our model, contact is
made when the position of the mass passes the contact distance, and contact is lost when
the contact force becomes zero.

We consider the system depicted in Fig. 1. The model has two supports at equal contact
distances x.. The supports are first-order systems which relax to their original state if there is
no contact with the mass. If we assume that the relaxation time of the supports is much
smaller than the time interval between two impacts, we can neglect the free motion of the
supports. It is thus assumed that the supports are at rest at the moment of impact. This is
not an essential assumption but it simplifies our treatment as the system reduces to a second-
order equation.

The second-order differential equation of this system is

mx + C(x) + K(x) = fo sin(wt) , (1)
where

kx [x,x]"e V_,
K(x) =S kx +k(x —x)  [x,4]" € Vi, (2)

kx 4 ke(x 4+ x.)  [x, Ne vy, ,
is the trilinear restoring force and

cx [x,%]' € V_,
(c+ep)x [xi"e VipuVe,,

C(x) = (3)

is the trilinear damping force. The state space is divided into three subspaces V_, V; and V,,
Fig. 2.

If the mass is in contact with the lower support, then the state is in space V,,
Vi ={[xx"e R?|x> Xe, kp(x — xc) +¢px > 0}

whereas if the mass is in contact with the upper support, then the state is in space V.,,

Vi, = {[x79'c]T € R|x< —X¢, k(x4 xc) + ¢px < 0} .
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Fig. 2. Subspaces of the trilinear system

If the mass is not in contact with any of the supports, then the state is in space V_ defined by
T

Vo ={[x,4] € R [x¢ (Vi UV} .

The hyperplane X; between V_ and V., consists of two parts %,, and X;;. The part %, is
defined by the indicator equation

hy=x—x=0, (4)

which defines the transition from V_ to V; because contact is made when x becomes larger
than x.. The part X, is defined by the indicator equation

hip = kf(x — xc) + Cf.‘fC =0, (5)

which defines the transition from V,; back to V_ as contact is lost when the support-force
becomes zero (the support can only push, not pull on the mass). Similarly, the hyperplane
>, between V_ and V., consists of two parts X,, and X,, defined by the indicator
equations

hyy=x+x.=0, (6)
hyp = kf(x +xc) + Cf.‘fC =0 . (7)

Discontinuous systems exhibit discontinuities (or ‘saltations’ i.e. jumps’) in the time evolution
of the fundamental solution matrix.

The jumps occur when the flow crosses a hyperplane of discontinuity and can be described
by a saltation matrix S

D(tpe,tg) =S D(ty—, to) (8)

where ®(t,_, 1) is the fundamental solution matrix before the jump and ®(t,, 1) after the
jump, which occurs at t = ¢,. The saltation matrix S can be expressed as

(f =L

ﬂTJ:, + 2 (ty, x(15))

S=1+

where n is the normal vector to the hyperplane

n = n(t, x(t)) = grad(h(t, x(1))) . (10)



The construction of saltation matrices is due to Aizerman and Gantmakher [1] and treated in
[5, 19, 21]. The saltation matrices for each hyperplane are

sa=| e 1] ()

Sw=1, (12)
1 0

sa=| e ] (13)
m

Spp =1 . (14)

The hyperplanes X; and X, are non-smooth. The saltation matrices are not each others inverse,

S #Sy, and S, #S;) .

This will turn out to be essential for the existence of a discontinuous bifurcation. Note that the
saltation matrices are independent of the stiffness k, and reduce to the identity matrix if ¢; = 0.

The response diagram of the trilinear system is shown in Fig. 3 for varying forcing
frequencies with the amplitude A of x on the vertical axis. Stable branches are indicated by
solid lines and unstable branches by dashed-dotted lines. The parameter values used here are
m = 1kg, c=0.05N/(m s), k =1 N/m, x, = 1 m, kf =4 N/m, ¢f = 0.5 N/(m s) and
fr=02N.

There is no contact with the support for amplitudes smaller than x,, and the response curve
is just the linear harmonic peak. For amplitudes above x, there will be contact with the support
which will cause a hardening behaviour of the response curve. The backbone curve of the peak
bends to the right like the Duffing system with a hardening spring. The amplitude becomes
equal to x. twice, at ® = w4 and w = wg, on both sides of the peak, and corners of the response
curve can be seen at these points. The orbit touches the corners of Z; and %, for A = x..

The eigenvalues of the fundamental solution matrix are known as the Floquet multipliers.
The magnitude of the Floquet multipliers is shown in Fig. 4. The two Floquet multipliers are
complex conjugate (with the same magnitude) for A < x.. The orbit touches the two hyper-
planes at A < x, and the fundamental solution matrix will jump as follows from the saltation
matrices. The jump is indicated by dotted lines in Fig. 4. The Floquet multipliers are not
singular-valued at the bifurcation point (as is the case for smooth systems) but rather set-
valued.

The pair of Floquet multipliers jumps at w,, but it does not jump through the unit circle.
The set-valued Floquet multiplier remains within the unit circle. The stable branch thus
remains stable. However, at @ = wp the complex pair jumps to two distinct real multipliers,
one with a magnitude exceeding one. A Floquet multiplier thus jumps through the unit circle.

Fig. 3. Response diagram of trilinear
spring system
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This set-valued Floquet multiplier passes the unit circle through +1, causing a discontinuous
fold bifurcation.

Damping of the support is essential for the existence of this discontinuous fold
bifurcation. For =0, all saltation matrices would be equal to the identity matrix, and the
corner between X, and X;;, would disappear (as well as the one between X, and X,;); thus no
discontinuous bifurcation could take place, and the fold bifurcation would be smooth. The
model in [22, 23] did not contain a discontinuous fold bifurcation because the transitions
were modeled such that S, = §be and S,, = §2’b1. The saltation matrices will cancel each
other out if they are each other inverse. A corner of hyperplanes, with saltation matrices
which are not each others inverse, is therefore essential (but not sufficient) for the existence
of a discontinuous bifurcation.

3
Stick-slip system
In the preceding section we studied a discontinuous fold bifurcation, where a Floquet multi-
plier jumped over the unit circle to a finite value. In this section we will study a discontinuous
fold bifurcation where the Floquet multiplier jumps to infinity. This results in an infinitely
unstable periodic solution.

We consider the block-on-belt model depicted in Fig. 5 with parameter values k = 1 N/m,
¢=0.1Ns/m, m=1Kkg, var =1 m/s, Fgyp = 1 N, Fyjxc =2 N and 7 = 10~* m/s.

The state equation of this autonomous system reads

== x| (15)

where x = [x x]", and the friction force F is given by

_ _Fslip SgN Vrel, Vrel # 0 (Sllp),
F(¥ea, x) = { min(|kx + cx|, Fsck)sgnkx, v = 0 (stick) . (16)

<——l k
W
_E'_ZL

e S Cc

Q@ _~ O

Tdr Fig. 5. 1-DOF model with dry friction




The maximum static friction force is denoted by Fgick, and vy = X — v, is the relative velocity.
The constitutive relation for F is known as the signum model with static friction point.

This model permits analytical solutions for ¢ = 0 due to its simplicity, however it is not
directly applicable in numerical analysis. The relative velocity will most likely not be exactly
zero in digital computation. Instead, an adjoint switch model, [18], will be studied which is
discontinuous but yields a set of ordinary (and non-stiffl) differential equations. The state
equation for the switch model reads

X :
[ k c . _F_r;lp Sgnvrel] [Veel| > 1 or |kx + cx| > Fyick,

X = V4 (17)
r .
[ \/Z} [viel] < and |kx + cx| < Fgick -
—Vrel m

A region of near-zero velocity is defined as |v.g| < 1, where < vq, . Thus, the space R* is

divided in three subspaces V, W and D as indicated in Fig. 6. The boundaries between the

subspaces are denoted by bold lines. The small parameter y is enlarged to make D visible.
The equilibrium solution of system (15) is given by

Fsiip

= 5] (1)

and it is stable for positive damping (¢ > 0).
The model also exhibits stable periodic stick-slip oscillations. The saltation matrix S, for the
transition from slip to stick is given by, [19],

s.=[o o - (19)

which is singular. The fundamental solution matrix will thus also be singular as the stable
periodic oscillation passes the stick state. The saltation matrix S; for the transition from stick to
slip is given by

s=|_ae 1] (20)

mvar

with AF = Fyia — Fslip-

The periodic solution has two Floquet multipliers, of which one is always equal to unity as
the system is autonomous. The singularity of the fundamental solution matrix implies that
the remaining Floquet multiplier has to be equal to zero, independent of any system para-
meter. The Floquet multipliers of the stable periodic solution of this system are thus

;Lstable = (1; 0)-

Fig. 6. Phase plane
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The stable limit cycle is sketched in the phase plane in Fig. 6 (bold line). The equilibrium
position is also stable and indicated by a dot. The space D is enlarged in Fig. 6 to make it
visible, but is infinitely small in theory and is taken very small in numerical calculations,
[18, 19].

A flow outside the stable limit cycle, like flow I in Fig. 6, will spiral inwards to the stable limit
cycle and reach the stick-phase D. The stick-phase will bring the flow exactly on the stable
limit cycle as it is infinitely small. Every point in D is thus part of the basin of attraction of the
stable limit cycle.

Flow II starts inside the stable limit cycle and spirals around the equilibrium position. It hits
D, whereafter it is on the stable limit cycle. But a flow inside the stable limit cycle might
also spiral around the equilibrium position and not reach the stick phase D (flow III). It will
then be attracted to the equilibrium position.

A flow inside the stable limit cycle can thus spiral outwards to the stable limit cycle, like flow
II, or inwards to the equilibrium position, like flow III. Consequently, there must exist a
boundary of attraction between the two attracting limit sets. This boundary is the unstable limit
cycle sketched by the dashed line in Fig. 6. Whether a flow is attracted to the stable limit cycle
or to the equilibrium point depends on the attainment of the flow to D. The unstable limit cycle
is thus defined by the flow in V which hits the border of D tangentially. Another part of the
unstable limit cycle is along the border of D as flows in D will attract to the stable limit cycle
and just outside D to the equilibrium position. This part of the unstable limit cycle along the
border of D has a vector field which is repulsing on both sides of the border. The theory of
Filippov [9] gives a generalized solution to systems with a discontinuous right-hand side. If the
vector field on one side of a hyperplane of discontinuity is pushing to the hyperplane, and on
the other side from the hyperplane, then every flow will intersect the hyperplane transversally.
If the vector field is pushing to the hyperplane on both sides, then there exists a unique solution
along the hyperplane. This is called an attraction sliding mode. If the vector field is repulsing
from both sides of the hyperplane then there exists a solution along the hyperplane which is not
unique. This is called a repulsion sliding mode.

The flow on either side of the border of D is repulsing from it. It is thus a repulsion sliding
mode. The flow starting from a point on a repulsion sliding mode is not unique as follows
from [9]. This causes the unstable solution to be infinitely unstable. As the flow is infinitely
unstable, it is not possible to calculate it in forward time. However, calculation of the flow in
backward time is possible. The vector field in backward time is identical to forward time
but opposite in direction. The repulsion sliding mode in forward time will turn into an
attraction sliding mode in backward time. The flow starting from a point on the unstable limit
cycle will move counter-clockwise in the phase-plane in backward time and hit the border of D.
It will slide along the border of D until the vector field in V becomes parallel to D, and will
then bend off in V. Any flow starting from a point close to that starting point will hit D and
leave D at exactly the same point. Information about where the flow came from is thus lost
through the attraction sliding mode. In other words: the saltation matrix of the transition from
V to D during backward time is singular. The fundamental solution matrix will thus be singular
in backward time because it contains an attraction sliding mode. The Floquet multipliers of
the unstable limit cycle in backward time are therefore unity and zero. The Floquet multipliers
in forward time must be their reciprocal values. The second Floquet multiplier is thus infinity,
Junstable = (1, 00), which of course must hold for an infinitely unstable periodic solution.

The bifurcation diagram of the system is shown in Fig. 7, with the velocity of the belt vg4, as
control parameter and the amplitude A on the vertical axis. The equilibrium branch and the
stable and unstable periodic branches are depicted. The unstable branch is, of course, located
between the stable periodic branch, and the equilibrium branch as can be inferred from Fig. 6.
The stable and unstable periodic branches are connected through a fold bifurcation point. The
second Floquet multiplier jumps from 4 = 0 to 1 = oo at the bifurcation point. This set-valued
Floquet multiplier thus passes the unit circle at +1. The fold bifurcation is therefore a dis-
continuous fold bifurcation. The fold bifurcation occurs when vy, is such that a flow which
leaves the stick phase D, transverses V and hits D tangentially (like the unstable periodic
solution). The stable and unstable periodic solutions coincide at this point. Note that there
exists again a corner of hyperplanes at this point, as was the case in the previous section. The
saltation matrices are not each others inverse, S,S 5 = I, which is essential for the existence of a
discontinuous bifurcation.

A similar model was studied in [33] with a very accurately smoothed friction curve. The
stable branch was followed for increasing v4, but the fold bifurcation could not be rounded to
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proceed on the unstable branch. As the unstable branch is infinitely unstable in theory, it is
extremely unstable for the smoothed system. The branch can thus not be followed in forward
time if the friction model is approximated accurately.

The stable branch in Fig. 7 was followed in forward time up to the bifurcation point. The
path-following algorithm was halted and restarted in backward time to follow the unstable
branch.

This section showed that infinitely unstable periodic solutions come into being through
repulsion sliding modes. Filippov theory turns out to be essential for the understanding of
infinitely unstable periodic solutions. Infinitely unstable periodic solutions and their branches
can be found through backward integration. Smoothing of a discontinuous model is not suf-
ficient to obtain a complete bifurcation diagram of a discontinuous system, as infinitely un-
stable branches cannot be found.

4

Conclusions

It has been shown in this paper that discontinuous vector fields lead to jumps in the funda-
mental solution matrix if a control parameter is varied. It turned out that a double intersection
of a non-smooth hyperplane is necessary to cause a jump of the fundamental solution matrix.
These jumps may lead to set-valued Floquet multipliers. A discontinuous bifurcation is
encountered if a set-valued Floquet multiplier crosses the unit circle.

An example with a trilinear spring demonstrated two jumps of the Floquet multipliers, one
causing a discontinuous fold bifurcation.

An example of a stick-slip system has shown that the Floquet multiplier can also jump to
infinity. The discontinuous fold bifurcation connects a stable branch to an infinitely unstable
branch. The unstable limit cycle can be understood on the basis of Filippov’s theory. Infinitely
unstable periodic solutions come into being through repulsion sliding modes, and can be found
through backward integration. Branches of infinitely unstable periodic solutions can be con-
tinued with pseudo-arclength continuation based on shooting with backward integration.
Bifurcations to infinitely unstable periodic solutions lead to complete failure of the classical
smoothing method to investigate discontinuous systems.

The theory of bifurcations of periodic solutions has been extended in this paper to dis-
continuous bifurcations. Only fold bifurcations were discussed. A more complete theory for the
bifurcation in discontinuous systems is presented in [19].
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