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Stick-slip Whirl Interaction
in Drillstring Dynamics
This paper attempts to explain the complicated behavior of oilwell drillstring mo
when both torsional stick-slip and lateral whirl vibration are involved. It is demonstra
that the observed phenomena in experimental drillstring data could be due to the
forces of the drilling mud. A Stick-slip Whirl Model is presented which consists
submodel for the whirling motion and a submodel for the stick-slip motion, both as si
as possible. The Stick-slip Whirl Model is a simplification of a drillstring confined i
borehole wall with drilling mud. The model is as simple as possible to expose onl
basic phenomena but is discontinuous. Bifurcation diagrams of this discontinuous m
for varying rotation speeds reveal discontinuous bifurcations. The disappearance of
slip vibration when whirl vibration appears is explained by bifurcation theory. The
merical results are compared with the experimental data from a full-scale dril
rig. @DOI: 10.1115/1.1452745#
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1 Introduction

Deep wells for the exploration and production of oil and gas
drilled with a rock-cutting tool driven from the surface by a sle
der structure of pipes, called the drillstring~Fig. 1!. Drillstring
vibrations are an important cause of premature failure of d
string components and drilling inefficiency. Stick-slip vibratio
causes violent torsional vibration of the drillstring and whirl lea
to lateral vibrations with large amplitudes. Extensive research
this subject has been conducted for the last four decades,
theoretically@1–7# and experimentally@8–12#. Whirling motion
of a drill collar section has been studied by@1,2,7#. Models for
torsional stick-slip motion of a drillstring were presented in@2#
and extensively analyzed by@3,6#. Most of the experimental in-
vestigations were only based on field measurements recorde
the surface@8–11#. Stick-slip vibrations can indeed be detect
from the surface, at least in a straight well, but detailed inform
tion about the mechanism downhole cannot be obtained. Do
hole measurements, briefly presented in this paper, reveal s
slip vibration coexisting with whirl vibration. Uncertainty exist
on the downhole mechanism which determines whether stick-
or whirl will be prevalent. This paper presents a low-dimensio
dynamical model, describing stick-slip and whirl in its most e
ementary form. This model aims at explaining the basic nonlin
dynamics phenomena observed in downhole experiments.
model system is analyzed with the methods presented in@13–16#
which are shortly summarized in Appendix A. It is demonstra
that the model system exhibits several types of discontinuous
furcations. We will discuss in Section 10 the possible merits
this paper to the insight into drillstring vibration.

Dynamical problems of drillstrings are analyzed in industry u
ing linear models for critical rotary speeds and buckling loads
large finite element models@2#, which give quantitative informa-
tion and can help to give practical recommendations to circu
vent drilling problems. The finite element models are however
complex ~nonlinear large displacement, finite rotation, many d
grees of freedom! that it is very difficult to obtain insight why
certain vibrational phenomena occur. Small low degree of fr
dom models, which can be analyzed with analytical methods,
provide~to some degree! qualitative insight in a specific comple
phenomenon occurring in reality. The aim of the Stick-slip Wh
Model, proposed in this paper, is to explain qualitatively the o
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served phenomenon of stick-slip to whirl transitions in a real dr
string. The model is kept as simple as possible and does not
tend to give any quantitative information.

The principles of oilwell drilling are first briefly explained in
Section 2. Downhole measurements, which reveal stick-slip m
tion and whirl in a drillstring, are presented in Section 3. A simp
mathematical model for the investigation of stick-slip and whirl
constructed and analyzed in Sections 4 to 9. The theoretical
numerical results will be compared with results obtained fro
measurements in Section 10.

2 Principles of Oilwell Drilling
Oil and gas wells are predominantly drilled using rotary dri

ing. The basic elements of a rotary drilling system are shown
Fig. 1. A rotary drilling system creates a borehole by means o
rock-cutting tool, called a bit. The oldest type of rotary bit is t
roller-cone bit which essentially comprises three metal roll
covered with hard steel teeth that crush the rock. An alterna
type of bit is the PDC~Polycrystalline Diamond Compact! bit
consisting of a steel body with inserts made of artificial diamo
and tungsten carbide. The energy to drive the bit is generate
the surface by a motor with a mechanical transmission box.
the transmission the motor drives the rotary table: a large disc
acts as kinetic energy storage. The medium to transport the en
from the surface to the bit is formed by a drillstring, mainly co
sisting of drill pipes: slender tubes, about 9 m~30 ft.! long,
coupled with threaded connections, having a typical outside di
eter of 127 mm~5 in.! and a wall thickness of 9 mm. Howeve
smaller~e.g. 3.5 in.! and larger~6.5 in.! drill pipe diameters are
also used.

The lowest part of the drillstring, the Bottom-Hole-Assemb
~BHA!, consists of thick-walled tubulars, called drill collars. D
pendent on the diameter of the hole, these drill collars usu
have an inner diameter of 2.5–3 in.~64–76 mm! and an outer
diameter of 4.75 in.–9.5 in.~120–240 mm!. The BHA can be
several hundreds of meters long, and often contains dedic
downhole tools. The drill collars in the BHA are kept in positio
by a number of stabilizers, which are short sections with nea
the same diameter as the bit.

The drilling process requires a compressive force on the bi
some 104– 106 N. This dynamic force is commonly denoted a
Weight On Bit ~WOB!, although force-on-bit would be a mor
appropriate name. The entire drillstring is suspended by a hois
system, consisting of a travelling block with hook, drilling lin
and winch. The drillstring rests with the bit on the bottom of t
hole and is pulled at the hook by a force called the hookload. T

ion
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Fig. 1 Drilling rig
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hookload ensures that the drill pipe is kept in tension to av
buckling. The graph at the left of Fig. 1 shows the axial force a
function of the position along the borehole. While the drill pip
run in tension, the BHA is partly loaded in compression. T
combined loading of the BHA in axial and torsional direction c
cause buckling of the BHA. Buckling of the BHA is prevented b
the large wall thickness of the drill collars and the placement
stabilizers. An ideal stabilizer would provide a ‘‘hinge’’ bounda
condition for the lateral movements of the drillstring. The critic
buckling load rises due to the additional supports of the stab
ers.

Torque is transmitted from the rotary table to the drillstrin
The torque required to drive the bit is referred to as the Torque
Bit ~TOB!.

A fluid called mud is pumped down through the hollow dri
string, through nozzles in the bit and returns to the surface thro
the annulus between the drillstring and the borehole wall. T
mud compensates the pressure in the rock, lubricates and rem
the rock cuttings from the hole.

The drilling process is steered by the hookload, the rotary ta
speed at the surface~the angular velocity of the top end of th
drillstring! and the flow rate of the mud. The downward speed
the drillstring gives an accurate measure of the rate of penetra
~ROP!. The standpipe pressure~the pressure in the flowline at th
top of the drillstring! indicates the total pressure drop in the dri
string and annulus. The ROP and standpipe pressure indicat
progress and state of the drilling process which are interprete
drilling engineers to adjust the steering parameters.

The drillstring undergoes various types of vibration duri
drilling @6#

• Axial ~longitudinal! vibrations, mostly due to the interactio
between drilling bit and the hole bottom. In its extreme for
when the bit can lose contact with the hole bottom, this vibrat
is called ‘‘bitbounce’’.

• Bending~lateral! vibrations, often caused by pipe eccentri
ity, leading to centripetal forces during rotation, named as d
string whirl:
210 Õ Vol. 124, APRIL 2002
id
s a
s

he
n
y
of
y
al
liz-

g.
On

l-
ugh
he
oves

ble

of
tion

l-
the
by

g

,
on

-
ill-

- forward whirl : the rotation of a deflected drill collar sectio
around the borehole axis in the same direction as it rotates aro
its axis.

- backward whirl : a rolling motion of the drill collar or the
stabilizer over the borehole wall in opposite direction as it rota
around its axis.

• Torsional~rotational! vibrations, caused by nonlinear intera
tion between the bit and the rock or the drillstring with the bo
hole wall, named as

- stick-slip vibration : the torsional vibration of the drillstring
characterized by alternating stops~during which the BHA sticks to
the borehole! and intervals of large angular velocity of the BHA

• Hydraulic vibrations in the circulation system, stemmin
from pump pulsations.

These vibrations are to some degree coupled: e.g. the intera
between TOB and WOB will link the axial vibrations to the to
sional vibrations.

3 Downhole Measurements
In the late 1980s the Institut Franc¸ais du Pe´trole designed the

Trafor system, a research tool to measure downhole and sur
data to improve knowledge about drillstring dynamics. The Tra
system consists of a downhole measurement device, called
Télévigile, and a surface measurement device known as the
vigile. The signals of the Te´lévigile and Survigile are gathered b
a computer and synchronized. The great merit of the Trafor s
tem is the ability to measure both downhole and surface dat
real-time. Pavone and Desplans@12# give a description of the
Trafor system. The Te´lévigile is basically a tube much like a nor
mal drill collar, but equipped with sensors that measure Wei
On Bit, downhole torque, downhole accelerations in three
thogonal directions and downhole bending moments in two dir
tions. Three magnetic field sensors, known as magnetome
measure a projection of the earth magnetic field in three ortho
nal directions co-rotating with the Te´lévigile.

The measurements reported in this section were recor
at a full-scale research rig. The well is nearly vertical and ab
Transactions of the ASME
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1080 m deep. Various tests with different WOB and angular
locity of the rotary table were conducted. A few tests are used
this paper, all conducted with the same drillstring setup. The d
string consisted of 5 in. drill pipe, 8 in. drill collars and a 12 1
in. roller-cone bit.

Figure 2 shows a time history of the downhole angular veloc
calculated from the magnetometer signals. The angular veloci
the surfacev, WOB and other parameters were almost kept c
stant during the experiment. The drillstring clearly performs sti
slip motion for t,35 s. At t535 s the stick-slip motion suddenl
disappears and backward whirl is prevalent fort.35 s. Backward
whirl can be recognized by studying the bending moments~see
Fig. 4!. The stick-slip motion is caused by the dry friction betwe
the BHA and the rock. The friction is due to the drilling bit, whic
cuts the rock, but also due to the stabilizers, which have con
with the borehole wall. The friction curve of the part of the BH
beneath the Te´lévigile, relating the torque to the downhole angul
velocity, could be reconstructed from the measurements~Fig. 3!.
The torque on the Te´lévigile consists of the friction torque of the
bit, the torque created by contact~if present! of the drill collar
beneath the Te´lévigile with the borehole wall and by the viscou
torque of the drilling mud. During the stick-slip motion the part
the friction curve is traversed with the negative slope. The ne
tive slope of the friction curve causes steady rotation of the d
string to be unstable, which induces the stick-slip motion. At

Fig. 2 Measured downhole angular velocity versus time

Fig. 3 Measured downhole friction curve
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transition to whirl, a switch is made to another part of the fricti
curve with a higher value of friction and a slightly positive slop
The drillstring is not deflected in lateral direction during stick-s
motion. Consequently, the torque on the Te´lévigile is during stick-
slip motion mainly due to the friction torque on the bit. The wh
motion has been identified as being backward whirl caused
rolling of a drill collar section over the borehole wall~with a small
amount of slip!. The drillstring must consequently be deflecte
during whirl motion. The torque on the Te´lévigile will be higher
during whirl motion due to the additional torque created by t
contact between drill collar and borehole wall and increased d
forces of the mud on the whirling drill collar. This additiona
torque increases with increasing angular velocity. This would
count for the higher torque and slightly positive slope of the fr
tion curve during whirl motion. The slightly positive slope caus
the constant rotation to be stable which prevents stick-slip mo
as is observed in Fig. 2.

Figure 4 shows the mean bending moment measured by
strain gauges in the Te´lévigile versus the prescribed angular v
locity at the surfacev. During this experiment, the value ofv was
varied with a sweep-up followed by a sweep-down~300 s each!.
The mean bending moment is to some extent a measure fo
radial displacement of the drillstring~assumed that the drill colla
section with the Te´lévigile is bent in its first bending mode!. The
system was first in stick-slip motion with a low value of the me
bending moment~consistent with an undeflected drillstring! at low
v. As v is increased the mean bending moment increases slig
but atv511.5@rad/s# the motion switches from stick-slip to whir
and the mean bending moment jumps to a higher value, indica
a large radial deflection of the drillstring. The sweep-up t
reaches its maximum atv512.5 @rad/s# after which v is de-
creased. The drillstring remains in whirl motion down tov52
@rad/s#. The bending moment during whirl motion is not consta
for varying v. The part with positive slope for 2,v,7 @rad/s# is
consistent with an increasing radial deflection for increasingv. At
v57 @rad/s# the Télévigile probably touches the borehole wall an
for increasing values ofv, a larger part of the drillstring will
become in contact with the borehole wall which decreases
bending moment. We conclude from Fig. 4 that stick-slip a
whirl can coexist for an interval of rotary table speedv. Com-
bined stick-slip whirl motion, however, in which the drillstrin
performs stick-slip motion with a large radial deflection, is n
observed.

The mechanism downhole, which causes the transition fr
stick-slip to whirl and vise-versa, is not satisfactorily understo

Fig. 4 Measured downhole bending moment versus surface
angular velocity; sweep-up followed by sweep-down
APRIL 2002, Vol. 124 Õ 211
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The transition from stick-slip to whirl is presumably caused by
interaction between bending and torsion which destabilizes
concentric position of the drillstring for high values ofv. Possible
ways of interaction can be caused by

• Drillstring eccentricity. This causes the drillstring to whi
violently only in the neighborhood of the bending critic
eigenfrequency. The drillstring would not whirl for very hig
values ofv, contrary to what has been observed from t
measurements.

• Gyroscopic effects. They are negligible because the cleara
between drillstring and borehole is much smaller than
length of the drillstring.

• Anisotropic bending stiffness of the drillstring. This caus
the drillstring to whirl in a small interval ofv which is in-
consistent with the measurements.

• Fluid mud forces. They destabilize the concentric position
the drillstring for v-values higher than a critical value con
sistent with measurements.

Insight into the mechanism downhole and the possible interac
between bending and torsion can be obtained by studying a
plified model of the drillstring. In the next sections we will stud
whether fluid forces of the drilling mud can explain the observ
phenomena. A low-dimensional model will be analyzed with bo
torsional and lateral degrees of freedom in a fluid. This sm
model will be discontinuous of Filippov-type and shows a co
plicated dynamical behavior. Bifurcations in Filippov system
were investigated in@15,16#. The results of@15,16# will be of use
to partly explain the complicated dynamical behavior of t
model.

4 Modeling of Stick-slip Whirl Interaction
A simple model for the whirling motion of a drill collar sectio

has been developed by Jansen@1,2# and has been further analyze
by Van der Heijden@7#. A simple model to describe the torsion
stick-slip motion of a drillstring was presented in@2# and exten-
sively analyzed by Van den Steen@6# and in @3#.

In the following sections we will develop a model which ca
describe the combined whirl and stick-slip motions in their m
elementary form, under influence of fluid forces. The model c
sists of a submodel for the whirling motion, called theWhirl
Model, and a submodel for the stick-slip motion, called theStick-
slip Model. The full model will be named theStick-slip Whirl
Model. Elementary whirling can be described by at least 2 late
212 Õ Vol. 124, APRIL 2002
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degrees of freedom and stick-slip motion by one torsional deg
of freedom. The Stick-slip Whirl Model has therefore 3 degrees
freedom. The Stick-slip Whirl Model is a simplification of a drill
string confined in a borehole wall with mud.

The interaction between torsional vibration and whirl of a ro
was already studied in@17,18# but a dry friction torque on the
rotor and fluid forces were not considered.

We consider a rigid disk~which models the BHA! at the end of
a massless flexible shaft~the drill pipe! as is depicted in Fig. 5~a!.
The shaft and disk are confined in a stator~the borehole! filled
with fluid ~drilling mud!. The upper end of the shaft is driven wit
constant rotation speedv ~constant speed of the rotary table!. The
shaft is subjected to bending and torsion with bending stiffnesk
and torsion stiffnesskw . The disk with massm and inertiaJ is
attached to the lower end of the shaft. The displacement of
geometric center of the disk is denoted byx andy in the stationary
coordinate system or by the polar coordinatesr anda ~see Appen-
dix B!. The disk is twisted with an anglew with respect to the
upper end of the shaft and with an anglef with respect to the
fixed world

f5vt1w. (4.1)

On the disk orrotor acts a friction torqueTf ~the Torque On Bit!.
The lateral motion of the disk is constrained by thestator. The
rotor has a radiusR and the stator a radiusRb . Contact is made
when the radial~lateral! displacement of the rotorr equalsRc ,
whereRc5Rb2R is the clearance.

5 Fluid Forces
The fluid forces on the drillstring are extremely complicated

the fluid motion is nonstationary and possibly turbulent. Howev
analytical results are available for a constantly rotating rotor i
stator for small clearance and small lateral displacement~Rc!R
and r !R! @19,20#. As a first approximation we will use thes
analytical results for nonstationary motion of a rotor which
confined in a large stator for arbitrary lateral displacements. T
fluid force equations given in@19,20# are
Fig. 5 Stick-slip Whirl Model
Transactions of the ASME
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G F ẋẏG1F 2

v2

4
mf

v

2
D

2
v

2
D 2

v2

4
mf

G FxyG

1F c1~r !
v

2
c2~r !

2
v

2
c2~r ! c1~r !

G FxyG , (5.1)

wheremf is the added fluid mass andD the fluid friction coeffi-
cient.

The fluid forces, depicted in Fig. 5~b!, can be transformed to
polar coordinates

F f r52mf S r̈ 2ȧ2r 2
v2

4
r 1vȧr D2~D1c2~r !! ṙ 2c1~r !r

(5.2)

F f a52mf~ är 12ṙ ȧ2v ṙ !2S ȧ2
v

2 D ~D1c2~r !!r .

The nonlinear functionsc1 and c2 depend on the radial dis
placementr. It is assumed~following @20#! that these functions
are analytic~with c1(0)5c2(0)50!. As a first approximation,
only the following symmetric terms will be taken into account

c1~r !5B1r 2, c2~r !5B2r 2, (5.3)

whereB1 andB2 are constants.

6 Contact Forces
The stator wall will induce normal and tangential forces~Fig.

5~b!! on the rotor if the radial displacement becomes larger t
the clearance,r .Rc . The normal contact force can be model
~in its most simple form! to stem from a linear spring with sprin
stiffnesskb ,

FbN5H kb~r 2Rc! r .Rc

0 r<Rc.
(6.1)

The normal contact force induces a tangential contact force du
dry friction between the rotor and the wall. We assume a cons
friction coefficientmb . If the relative velocity between the roto
and the stator wall is nonzero, then the tangential contact forc

FbT52mb sign~v rel!FbN , v relÞ0, (6.2)

with the relative velocity being given byv rel5ȧr 1vR ~for con-
stant rotation of the rotor!. During pure rolling (v rel50) the tan-
gential contact force must be between

2mbFbN<FbT<mbFbN . (6.3)

The contact forces can be expressed in stationary coordinate

Fbx5~2FbTy2FbNx!/r , Fby5~FbTx2FbNy!/r . (6.4)

The friction due to rotor-stator contact can be treated numeric
by making use of theswitch model@21#.

6.1 Torques on the Disk. We assume that a dry friction
torqueTf is acting on the rotor, which only depends on the ang
lar velocity ḟ,

Tf52sgnḟ
T0

11duḟu
. (6.5)
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This relation between dry friction torque and angular velocity
motivated by Fig. 3. Contact between the rotor and stator indu
the contact forcesFbN andFbT . The tangential contact force in
duces a torque on the rotor,

Tb5FbTR. (6.6)

The fluid forcesF f r andF f a of Eq. ~5.2! are derived for stationary
motion of the rotorḟ5v. We will assume that they also hold fo
nonstationary motion,ḟÞv, and we replacev by ḟ in Eq. ~5.2!,

F f r52mf S r̈ 2ȧ2r 2
ḟ2

4
r 1ḟȧr D 2~D1c2~r !! ṙ 2c1~r !r

(6.7)

F f a52mf~ är 12ṙ ȧ2ḟ ṙ !2S ȧ2
ḟ

2 D ~D1c2~r !!r .

The fluid forcesF f r and F f a act on the rotor but their working
lines are through the origin. The forceF f a has therefore an arm
2r and gives the torque

Td52F f ar . (6.8)

7 Whirl Model
In this section we study only the Whirl Model. We assume t

rotor to rotate constantly~no torsional vibration!. This allows us to
find analytical results for the pure whirling motion, which a
equilibria of the Whirl Model in polar coordinates and period
harmonic solutions in stationary coordinates. Polar coordinates
therefore more convenient for the Whirl Model. The equilibria
the Whirl Model are also equilibria of the total Stick-slip Whi
Model but the eigenvalues of the Stick-slip Model may change
stability.

7.1 Equations of Motion. The equations of motion for a
whirling rotor with fluid and contact forces in stationary coord
nates are

mẍ1cẋ1kx5F f x1Fbx (7.1)
mÿ1cẏ1ky5F f y1Fby ,

wherem is the rotor mass,k the lateral bending stiffness andc the
lateral bending damping constant. In polar coordinates these e
tions become

m~ r̈ 2ȧ2r !1cṙ1kr5F f r2FbN (7.2)
m~ är 12ṙ ȧ !1cȧr 5F f a1FbT .

Substitution of the fluid forces of Eq.~5.2! gives

ma~ r̈ 2ȧ2r !1~c1D1B2r 2! ṙ 1S k2
v2

4
mf1mfvȧ1B1r 2D r

52FbN (7.3)
ma~ är 12ṙ ȧ !1~c1D1B2r 2!ȧr

5mfv ṙ 1~D1B2r 2!
v

2
r 1FbT ,

with ma5m1mf . This fourth-order system can be transform
into a third-order system with the whirl velocityV5ȧ,

ma~ r̈ 2V2r !1~c1D1B2r 2! ṙ 1S k2
v2

4
mf1mfvV1B1r 2D r

52FbN (7.4)

ma~V̇r 12ṙV!1~c1D1B2r 2!Vr

5mfv ṙ 1~D1B2r 2!
v

2
r 1FbT .
APRIL 2002, Vol. 124 Õ 213
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7.2 Equilibrium Without Contact. The equilibrium with-
out contact (r e ,Ve) of Eq. ~7.4! has to obeyṙ 5 r̈ 5V̇50 and
r ,Rc . The whirl velocity can be derived from the second equ
tion of Eq. ~7.4!,

Ve5
D1B2r e

2

c1D1B2r e
2

v

2
. (7.5)

Consequently, the rotor is whirling forward in the equilibriu
without contact. The first equation of Eq.~7.4! gives

S k2
v2

4
mf1mfvVe2maVe

21B1r e
2D r e50. (7.6)

Solving the latter equation gives two equilibrium branches of
system without contact. The first branch is the trivial solution

r e50, (7.7)

and the second branch can be derived from

k2
v2

4
mf1mfvVe2maVe

21B1r e
250. (7.8)

The trivial branch becomes unstable when it meets the sec
branch. We denote the frequency at which the trivial branch
comes unstable byvc . Substitution of Eqs.~7.5! and ~7.7! into
Eq. ~7.8! givesvc

vc
254k

~c1D !2

c2mf1D2m
. (7.9)

Two limiting cases are of special interest: a! c.0 and D5B2
50, b! c50 andD.0, B2.0.

Case „a… implies that we consider the system to rotate in
frictionless fluid. The rotor will not whirl due to the absence
fluid friction,

Ve,a50. (7.10)

The quasi-static motion of the rotor gives

cṙe,a5S v2

4
mf2kD r e,a2B1r e,a

3 . (7.11)

The two stationary solutions~for r e,a>0! are

r e,a50, r e,a5
Av2

4
mf2k

B1
(7.12)

We conclude that case a! gives a supercritical pitchfork bifurca
tion (B1.0) at

vc,a52A k

mf
(7.13)

Case„b… implies that we consider the system to have no structu
damping but only fluid damping. The rotor will whirl with half th
rotation speed~1/2v-whirl!,

Ve,b5
1

2
v. (7.14)

The quasi-static motion of rotor gives~with ma5m1mf!

~D1B2r e,b
2 ! ṙ e,b5S v2

4
m2kD r e,b2B1r e,b

3 . (7.15)

The two stationary solutions~for r e,b>0! are

r e,b50, r e,b5
Av2

4
m2k

B1
. (7.16)
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We conclude that case~b! also gives a supercritical pitchfork bi
furcation at twice the natural frequency,

vc,b52Ak

m
. (7.17)

For mf /m,1 it can be shown thatvc,b,vc,vc,a . The pitch-
fork bifurcation is shown in Fig. 6 for the parameter values giv
in Appendix C. The trivial branche1a is stable and meets th
bifurcation~denoted by c! after which it is unstable and continue
as e1b . From the bifurcation point starts a branch of stable f
ward whirl solutionse2 .

7.3 Equilibrium With Pure Rolling. The rotor rolls over
the stator wall without slipping under three conditions:

1. the relative velocity is zero,v rel5Vr 1vR50,
2. positive normal contact force,FbN.0,
3. the tangential contact force does not exceed the maxi

friction force, 2mbFbN<FbT<mbFbN .

The pure rolling equilibrium~r 5r p , V5Vp! has to obeyṙ 5 r̈
5V̇50.

The whirl velocity can be derived from condition 1,

Vp52
R

r p
v. (7.18)

Consequently, the rotor rolls backward over the stator wall. T
equilibrium conditions give

2maVp
2r p1S k2

v2

4
mf1mfvVp1B1r p

2D r p

52FbN52kb~r p2Rc! (7.19)

and

~c1D1B2r p
2!Vpr p5~D1B2r p

2!
v

2
r p1FbT . (7.20)

Substitution ofVp in Eq. ~7.19! gives a third-order polynomial in
r p . If we neglect the nonlinear fluid termB1 , Eq. ~7.19! reduces
to a second-order polynomial

S k1kb2
v2

4
mf D r p

22~kbRc1mfv
2R!r p2mav2R250.

(7.21)

Solving for r p gives two roots of which only one fulfills con
dition 1,

Fig. 6 Whirl Model, equilibrium branches
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kbRc1mfv
2R1A~kbRc1mfv

2R!214mav2R2S k1kb2
v2

4
mf D

2S k1kb2
v2

4
mf D . (7.22)
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The limit of kb to infinity gives of course lim
kb→`

r p5Rc .

If we assume directly an infinitely stiff wall of the stator with
out neglectingB1 , then we can solve for the contact forces,

FbN5mav2
R2

Rc
2S k2

v2

4
mf1B1Rc

2DRc1v2Rmf , (7.23)

FbT52~c1D1B2Rc
2!vR2~D1B2Rc

2!
v

2
Rc . (7.24)

Equation~7.23! should fulfill condition 2,

v2.vb
25

~k1B1Rc
2!Rc

ma

R2

Rc
1mf

1

4
Rc1mfR

. (7.25)

If B1 is not too large, thenvb,vc,b .
However, pure rolling nearv5vb is not possible because Eq

~7.24! has to fulfill condition 3. We define that condition 3
violated atv5vd . Substitution of Eqs.~7.23! and ~7.24! into
2mbFbN5FbT gives a second-order polynomial invd ,

2mbS ma

R2

Rc
1mf S Rc

4
1RD Dvd

2

1S cR1~D1B2Rc
2!S R1

Rc

2 D Dvd1mbRc~k1B1Rc
2!50.

(7.26)

If the fluid damping (D, B2) and structural damping~c! are small
compared to the dry friction caused bymb , then we can make the
following approximation

vd
2'vb

21

cR1~D1B2Rc
2!S R1

Rc

2 D
mbS ma

R2

Rc
1mf S Rc

4
1RD D vb . (7.27)

Fluid damping and structural damping cause thatvd.vb .
The pure rolling branch for the parameter values of Appendi

is depicted in Fig. 6 as branche4 . The point at which the branch
stops (v5vd) is denoted by d. The valueRc is taken as unity. A
larger value for the borehole stiffnesskb will cause the pure roll-
ing branch to come closer tor 5Rc .

Branche2 , with stableforward whirling solutions without con-
tact, is connected to branche4 , with stablebackwardwhirling
pure rolling solutions, by the unstable branche3 . Branche3 con-
sists of equilibria with slipping contact.

7.4 Equilibrium With Slipping Contact. The relative ve-
locity v rel between rotor and stator is positive for forward whirlin
solutions without contact~branche2!, whereas it is zero for pure
rolling solutions~branche4!. The relative velocity during slipping
contact~branche3! should be in between. There are two cond
tions for slipping:

1. the relative velocity is positive,v rel5Vr 1vR.0,
2. positive normal contact force,FbN.0.

The slipping equilibrium~r 5r s , V5Vs! has to obeyṙ 5 r̈ 5V̇
50. The equilibrium conditions give
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2maVs
2r s1S k2

v2

4
mf1mfvVs1B1r s

2D r s52FbN ,

(7.28)

~c1D1B2r s
2!Vsr s5~D1B2r s

2!
v

2
r s2mbFbN , (7.29)

whereFbN5kb(r s2Rc). This system of equations can be solve
to give r s , which will not be done in this section. The insight ca
be gained from other considerations. The limit ofkb to infinity
gives of course

lim
kb→`

r s5Rc .

The branch of slipping equilibrium begins at the point where
equilibrium without contact touches the stator wallr e5Rc ~de-
noted by f in Fig. 6! and the branch ends at the point where t
pure rolling branch begins~point d!. Consequently, the slipping
branch connects the stable no-contact branch to the stable
rolling branch. Of much interest is to knowhow the slipping
branch is located between the two end-points, which is clos
related to its stability. We therefore try to find an expression
]r /]v at the point where the slipping branch and the no-cont
branche2 connect. To simplify the results we will assumeB2
50. At the connection point to the no-contact branch we have
r s5r e5Rc . The following equations hold at this point

Vs5Ve5
D

c1D

v

2
, (7.30)

S k2
v2

4
mf1mfvVe2maVe

21B1Rc
2DRc50. (7.31)

We now differentiate Eq.~7.28! with respect tov. This gives

22maVs

]Vs

]v
r s2maVs

2
]r s

]v
1S k2

v2

4
mf1mfvVs1B1r s

2D ]r s

]v

1S 2
v

2
mf1mfVs1mfv

]Vs

]v
12B1r s

]r s

]v D r s52kb

]r s

]v

(7.32)

and when we substitute Eqs.~7.30! and ~7.31!,

2ma

D

c1D
v

]Vs

]v
Rc1S 2

1

2
1

1

2

D

c1D
1

]Vs

]v DmfvRc

52~2B1Rc
21kb!

]r s

]v
. (7.33)

Differentiating Eq.~7.29! gives

]Vs

]v
r s1Vs

]r s

]v
5

1

2

D

c1D S r s1v
]r s

]v D2
mbkb

c1D

]r s

]v

or

]Vs

]v
5

1

2

D

c1D
2

mbkb

c1D

1

Rc

]r s

]v
. (7.34)

After substitution of Eq.~7.34! in Eq. ~7.33! we arrive at an ex-
pression for]r s /]v,
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Fig. 7 Stick-slip Model
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Rc

22
mbv

~c1D !2 ~mfc2mD! D ]r s

]v

5
1

2

vRc

~c1D !2 ~D2m1c2mf !. (7.35)

The limit of kb to infinity gives of course lim
kb→`

]r s /]v50. Two

limiting cases are of special interest:
Case„a… c.0, D50 andkb@B1Rc

2

After substitution in Eq.~7.35! we obtain

kbS 12
mbvmf

c D ]r s

]v
5

1

2
vRcmf . (7.36)

Consequently, when

mbvmf

c
.1⇒ ]r

]v
,0,

mbvmf

c
,1⇒ ]r

]v
.0.

Case„b… c50, D.0 andkb@B1Rc
2

After substitution in Eq.~7.35! we obtain

kbS 11
mbvm

D D ]r s

]v
5

1

2
vRcm. (7.37)

Consequently, it must hold that]r /]v.0.

The parameter values of the structural damping and fluid da
ing are c50.3 N/~ms) and D50.1 N/~ms). The numerical ex-
ample is similar to case~a! with mbvmf /c.1. The derivative
]r /]v at point f is therefore negative which causes the branche3
to be unstable and to connect point d with point f directly. If t
parameter values would be different, such thatmbvmf /c,1, then
branche3 would start at point f with a positive slope as a stab
branch. It will at some point turn around and continue as an
stable branch in the direction of point d.

Bifurcation points d and f are discontinuous saddle-node bi
cations of the equilibrium branche22e32e4 . An eigenvalue
jumps over the imaginary axis through the origin at those bif
cation points. At bifurcation point d, being the transition fro
contact to no-contact, this is caused by the non-smoothness o
normal contact force Eq.~6.1!. At bifurcation point f, being the
transition from slip to stick, this is caused by the non-smoothn
of the tangential contact force, Eq.~6.2!. Remark the angle be
tween the branches at a discontinuous bifurcation point.
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8 Stick-Slip Model
In this section we study only the Stick-slip Model. We assum

the rotor to rotate concentricly in the stator~no lateral vibration,
r 50!. As there is no radial displacement, the torques due to fl
forces and contact forces vanish~Td50, Tb50!. The equation of
motion for pure torsional motion is

Jẅ52kww1Tf . (8.1)

The Stick-slip Model has an unstable equilibrium branch~w
5Tf(v)/k, ẇ50!, which corresponds to the trivial equilibrium
branch ~r 50, w5Tf(v)/k! of the full Stick-slip Whirl Model.
The trivial equilibrium branch was denoted in the Whirl Model
branche1 ~Fig. 6!.

8.1 Periodic Stick-Slip Vibrations. The periodic solutions
of the Stick-slip Model are also periodic solutions of the Stick-s
Whirl Model ~compare Eq.~8.1! with Eq. ~9.1! for r 5Tb5Td
50!. The periodic stick-slip vibration is depicted in Fig. 7~a!. The
twist w is on the horizontal axis and the angular velocityḟ5ẇ
1v on the vertical axis. The limit cycle is traversed clock-wis
The slip part of the motion takes place atḟ.0. When the velocity
is decreasing during the slip part, it arrives atḟ50 and continues
with backward rotation (ḟ,0). This backward slip motion is
followed by the stick partḟ50, which completes the limit cycle

The branch of periodic stick-slip solutions (p1) is numerically
determined for varying values ofv and depicted in Fig. 7~b!. The
minimal value of ḟ is set on the vertical axis. For the trivia
equilibrium branch holds minḟ5v and this branch is unstable a
the friction torqueTf decreases with increasing angular veloc
ḟ. The periodic stick-slip branch has a minimal value ofḟ, being
smaller or equal than zero depending on the backward slip p
As can be seen from Fig. 7~b!, backward rotation becomes mor
pronounced at higher values ofv.

9 Stick-Slip Whirl Model
The Stick-slip Model and the Whirl Model will be combined i

this section which gives the Stick-slip Whirl Model.

9.1 Equations of Motion. Combining the lateral and the
torsional model and taking into account the nonstationary fl
forces, fluid torque and contact torque~Section 6.1! gives the
following set of equations of motion
Transactions of the ASME
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mf1mfḟV1B1r 2D r

52FbN

ma~V̇r 12ṙV!1~c1D1B2r 2!Vr

5mfḟ ṙ 1~D1B2r 2!
ḟ

2
r 1FbT (9.1)

Jẅ52kww1Tf1Tb1Td .

9.2 Equilibrium Branches. Equilibrium positions of sub-
models are in general not equilibrium positions of the total mod
The torsional and lateral degrees of freedom of the Stick-
Whirl Model however, are to some extent uncoupled. From
~9.1! it follows that for an equilibrium position must hold thatṙ
50, V̇50 andẇ50. The angular velocity of the rotor is therefor
constant,ḟ5v, which means that the Whirl Model is not influ
enced by the Stick-slip Model. The equilibrium branchese1 to e4
of the Whirl Model are also equilibrium branches of the Stick-s
Whirl Model, denoted byE1 to E4 ~Fig. 8!. The twist angleweq in
an equilibrium position can be found from substitution of an eq
librium position of the Whirl Modelr eq andVeq in

Fig. 9 Stick-slip Whirl Model, periodic branches „bold …

Fig. 8 Stick-slip Whirl Model, equilibrium branches
Journal of Vibration and Acoustics
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kwweq5Tf~v!1Tb~Veq,v,r eq!1Td~Veq,v,r eq!. (9.2)

Some stable branches may become unstable due to an adde
genvalue of the Stick-slip Model. The trivial branchE1 of the
Stick-slip Whirl Model is totally unstable whereas it was part
stable for the Whirl Model. At the bifurcation point of branchE1 ,
a second eigenvalue enters the right half-plane, which expl
why the branch does not exchange stability at the bifurcat
point. The branchE2 contains a Hopf bifurcation which splits th
branch in a stable and an unstable part.

9.3 Periodic Branches. The periodic branches of the Stick
slip Whirl Model are depicted in Fig. 9 and partly enlarged
Figures 10, 11, and 12.

As for equilibrium positions, periodic solutions of submode
are in general not periodic solutions of the total model. The t
sional and lateral degrees of freedom of the Stick-slip Wh
Model are however uncoupled forr 50 ~becauseTd andTb van-
ish!. The Whirl Model has an equilibrium positionr 50. Branch
p1 of the Stick-slip Model~Section 8! therefore also exists for the
Stick-slip Whirl Model as branchP1 with r 50. Whereas branch
p1 is stable, branchP1 is partly stable due to the added eigenva
ues of the Whirl Model.

BranchP1 consist of pure stick-slip vibrations withx50 and
y50. The radial deflection is thereforer 5Ax21y250 but the
angular positiona5arctan(y/x) is not defined. BranchP1 can

Fig. 10 Stick-slip Whirl Model, zoom of Fig. 9

Fig. 11 Stick-slip Whirl Model, zoom of Fig. 10
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therefore only be described in the stationary coordinate sys
(x,y,w) and not in the polar coordinate system (r ,a,w), which
was used for the Whirl Model.

BranchP1 , described in the stationary coordinate system, c
tains a Neimark-Sacker~or secondary Hopf! bifurcation after
which the branch is unstable.

The equilibrium branchesE2 to E4 ~which are pure whirl solu-
tions! and the pure stick-slip branchP1 both have a bifurcation
point in the Stick-slip Whirl Model which was not existing i
Stick-slip or Whirl Model. The equilibrium branchesE2 to E4
contain equilibria in polar coordinates but are periodic solutions
stationary coordinates with period timesT52p/v. From the
Hopf bifurcation onE2 emanates a branchP6 ~Fig. 10!, which is
periodic in polar coordinates and quasi-periodic in stationary
ordinates. BranchP6 is connected through branchesP5 , P4 and
P3 with branchP2 ~Fig. 11!. BranchP2 , which contains periodic
solutions in polar coordinates and quasi-periodic solutions in
tionary coordinates, ends at the Neimark-Sacker bifurcation
P1 . The Neimark-Sacker bifurcation therefore gives rise to qua
periodic solutions which is consistent with the theory.

BranchesP2 to P6 connect the solutions found from the Whi
Model with the solutions found from the Stick-slip Mode
BranchesP2 and P3 are periodic solutions~in polar coordinates!
that perform both stick-slip and whirl motion. The periodic sol
tions on branchesP3 , P4 andP5 contains contact events betwee
the rotor and the stator wall.

BranchP4 is divided in stable and unstable partsP4a to P4d .
BranchP4a is connected toP4b by a Neimark-Sacker bifurcation
BranchesP4b , P4c and P4d are connected to each other by tw
flip bifurcations. The branches with period-doubled periodic so
tions and quasi-periodic solutions, which start at these bifur
tions, have not been calculated.

A number of discontinuous bifurcations exist on the branc
P2 to P6 . BranchP2 is connected toP3 ~Fig. 12! by a discon-
tinuous flip bifurcation~the period-doubled branch has not be
calculated!. The bifurcation occurs when the periodic solutio
touches the stator,r 5Rc . The discontinuity of the contact force
causes the discontinuous bifurcation. Similarly, branchP5 is con-
nected to branchP6 ~Fig. 12! by a discontinuous fold bifurcation
at r 5Rc . BranchP3 ~with stick events! is connected to branchP4
~without stick events! by a discontinuous fold bifurcation. Thi
bifurcation is due to the discontinuity in the dry friction force.

A remarkable bifurcation occurs on the equilibrium branch co
necting branchE2b with E3 at r 5Rc ~Fig. 12!. This bifurcation
point was already encountered in the Whirl Model as a disc
tinuous saddle-node bifurcation at which the branch turns aro
~bifurcation point f in Fig. 6!. In addition, two periodic branches

Fig. 12 Stick-slip Whirl Model, zoom of Fig. 11
218 Õ Vol. 124, APRIL 2002
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P4 andP5 , are connected to the bifurcation point in the Stick-s
Whirl Model. This bifurcation point is therefore a combined b
furcation of a saddle-node bifurcation and two Hopf bifurcation

The bifurcation diagrams certainly do not show all period
branches that exist. Period-doubled branches were not calcu
but also other branches may be missing in the bifurcation d
grams.

A note has to be made concerning the chosen numerical va
of the parameters in the Stick-slip Whirl Model. Stiffness a
mass/inertia parameters are chosen such that the torsional e
frequency of the rotor is close to the first torsional eigenfreque
of the drillstring. Similarly, the lateral eigenfrequency of the rot
is close to the lateral eigenfrequency of the lowest drill col
section. Damping and friction constants are more or less a
trarily chosen. The equilibrium and periodic branches in the bif
cation diagrams depend of course on the chosen constants. H
ever, the periodic whirl branches,P2 to P6 , seem to be close to
the equilibrium branchE2 . The equilibrium branches form a
structure to which the periodic branches are attached. A lot ab
the dynamics of this particular system can already be said o
the location of the equilibrium branches are known. The va
vc , expressed in Eqs.~7.13! and ~7.17!, gives the location of
branchE2 . The ratiombvmf /c determines whether branchE3
proceeds to the right of bifurcation point f or folds to the left~Fig.
6!. The valuevd of Eq. ~7.27! gives the starting point of branch
E4 . Consequently,vc , vd and mbvmf /c determine the main
structure of the bifurcation diagram.

10 Discussion and Conclusions
In the previous sections a simple model was constructed, ba

on the assumption that the fluid forces are the cause of the
nomena observed in the measurements. The Stick-slip W
Model was analyzed with path-following techniques and bifurc
tion theory presented in@15,16#. What can we conclude from the
Stick-slip Whirl Model with respect to the measurements?

The Stick-slip Whirl Model exhibits both stick-slip motion an
whirl motion ~which is not possible in the models of Jansen@2#!.
Stick-slip motion is prevalent at low angular velocities and ba
ward whirl ~during which the rotor rolls backward over the stato!
is prevalent for high angular velocities consistent with the m
surements. Stick-slip and whirl motion coexist for an interval ofv
both in the model and in the measurements. Combined stick-
whirl motion was not observed in the measurements but w
found in the Stick-slip Whirl Model~branchesP2 andP3!. How-
ever, this combined motion occurs only in a very small interval
v in the model. The model is therefore consistent with the m
surements in the sense that stick-slip motion occursor whirl mo-
tion ~both possible for the same value ofv!, but a combination is
rare or not existing.

The measurements show a hysteresis effect for a swee
sweep-down test~Fig. 4!. The drillstring starts in stick-slip motion
at low angular velocity of the rotary table. When the rotary tab
speed is increased with small steps, the motion remains in
stick-slip mode but at 11.5@rad/s# the drillstring suddenly stops to
operate in the stick-slip mode and starts to whirl backward. T
drillstring remains whirling for increasing rotary table speed a
after the rotary table speed is diminished in small steps during
sweep-down test. The mean-bending moment~and whirl radius?!
drop between 7 and 2@rad/s# and stick-slip recommences.

A similar hysteresis effect can be seen for the Stick-slip Wh
Model. At low values ofv the rotor is in stick-slip motion. When
v is increased quasi-statically, branchP1a is followed~Fig. 9! and
the rotor will remain in the stick-slip mode. BranchP1 becomes
unstable for increasingv due to the destabilizing fluid forces an
the motion of the rotor will rapidly change via branchesP2 and
P3 to an oscillatory whirl motion on branchP4 . Whenv is in-
creased even more the motion will jump to regular backw
whirling motion without slip on branchE4 . If v is subsequently
quasi-statically decreased, the rotor will remain to operate
Transactions of the ASME
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branch E4 until the discontinuous saddle-node bifurcation b
tweenE3 andE4 is met. The motion will then jump to the stick
slip mode and the hysteresis loop is complete.

The phenomena as described by the Stick-slip Whirl Mo
resemble to some extent the phenomena observed in the mea
ments. The transition from stick-slip motion to whirl motion
similar, but the transition from whirl to stick-slip motion seems
be more gradual in the measurements than can be explained
the model.

One could argue whether the observed phenomena in the
surements are really due to fluid forces and not to other poss
ways of interaction between torsional and lateral motion.
though the results on the Stick-slip Model look similar, they
not prove that indeed fluid forces are the cause for onset of w
in drillstrings. This paper illustrates how the techniques a
theory of@15,16# can be used to analyze low-dimensional mod
with discontinuities, in this case the Stick-slip Whirl Model. In th
same way, other low-dimensional models can be constru
which study for instance the influence of mass unbalance on
dynamic behavior of a rotor with lateral and torsional degrees
freedom. The results of the different models can be compared
the experiments which can help to gain insight into the comp
dynamic behavior of the drillstring. Knowledge about bifurcatio
in discontinuous systems is therefore relevant to dynamic p
lems in industrial applications.
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Appendix A: Discontinuous Bifurcations
Physical phenomena such as dry friction, impact and back

in mechanical systems or diode elements in electrical circuits
often studied by means of mathematical models with some kin
discontinuity. Filippov systems@22,23# form a subclass of discon
tinuous dynamical systems which can be described by a se
first-order ordinary differential equations with a discontinuo
right-hand side, e.g.

x>̇ ~ t !5 f
>
~ t,x> ~ t !!5H f

>2~ t,x> ~ t !! x>PV2

f
>1~ t,x> ~ t !! x>PV1

, (10.1)

where the right-hand sidef
>
(t,x> ) is assumed to be discontinuou

but such that it is piecewise continuous and smooth onV2 andV1

and discontinuous on the hyperplaneS, being the border betwee
V2 andV1 .

Mechanical systems with dry friction constitute an importa
example of Filippov systems@24#. The presence of dry friction-
induced self-sustained vibrations can be highly detrimental to
Journal of Vibration and Acoustics
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performance of mechanical systems, like for the drillstring pro
lem discussed in this paper. Many other practical problems
engineering are related to vibrations caused or influenced by
continuous characteristics of physical phenomena. It is there
desirable to know whether periodic solutions of a system with
friction ~or Filippov systems in general! exist for a certain param-
eter set and how these periodic solutions change for a var
parameter of the system. Such parameter studies are usually
ducted by means of path-following techniques where a branc
fixed points or periodic solutions is followed while varying a p
rameter. A branch of fixed points or periodic solutions can fold
can split into other branches at critical parameter values~Fig.
13~a!!. This qualitative change in the structural behavior of t
system is called ‘bifurcation’. Bifurcations in smooth systems a
well understood but little is known about bifurcations in no
smooth and discontinuous systems. It is shown in@16# that a bi-
furcation in a non-smooth continuous system can be discontinu
in the sense that an eigenvalue jumps over the imaginary
under the variation of a parameter~Fig. 13~b!!.

In @16# different aspects were investigated of bifurcations
fixed points in non-smooth continuous systems and of perio
solutions in Filippov systems~see also@25#!. The Poincare´ map
relates the bifurcations of fixed points in non-smooth continuo
systems to bifurcations of periodic solutions in Filippov system
Filippov systems expose nonconventional bifurcations ca
‘‘discontinuous bifurcations’’, being different from the conven
tional bifurcations occurring in smooth systems. Filippov theo
generalized derivatives and Floquet theory were combined in@16#,
which leads to new insight into bifurcations in discontinuous s
tems.

The theory of Filippov gives a solution concept for differenti
equations with discontinuous right-hand side. Differential eq
tions with discontinuous right-hand side are extended to differ
tial inclusions with Filippov’s convex method. Existence of sol
tions to differential inclusions is guaranteed under additio
conditions but no uniqueness of solutions is guaranteed. N
uniqueness plays an important role in the bifurcation behavio
Filippov systems.

The local stability of a periodic solution is governed~for the
hyperbolic case! by the fundamental solution matrixFI (T
1t0 ,t0), which can be obtained for smooth systems from t
initial value problem

Fİ ~ t,t0!5
] f
>
~ t,x> ~ t !!

]x>
FI ~ t,t0!, FI ~ t0 ,t0!5FI 05II.

The fundamental solution matrix is also essential for the und
standing of bifurcations of periodic solutions. Discontinuities
the vector field in Filippov systems cause jumps in the fundam
tal solution matrix.

The jumps in the fundamental solution matrix can be analy
by the linear approximation method which approximates a disc
Fig. 13 Saddle-node bifurcation in a smooth and non-smooth system
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tinuous system by a non-smooth continuous system. The lin
approximation method replaces a discontinuity in the vector fi
by a boundary layer with a vector field that varies linearly b
tween the left and right limit on the edges of the boundary lay
It is found that the jump of the fundamental solution matrix can
expressed as a convex combination of the fundamental solu
matrices before and after the jump

FĨ 5$~12q!FI 21qFI 1 ,;0<q<1%,

whereFI 2 andFI 1 denote the fundamental solution matrix befo
and after the jump respectively. Different definitions for the te
bifurcation exist in literature and it is shown in@16# that they can
be inconsistent with one another for Filippov systems. The d
nition of Seydel@26#, which is applicable to Filippov systems, ha
been chosen in this paper as definition for bifurcation.

Branches of periodic solutions in Filippov systems expose
continuous bifurcations similar to discontinuous bifurcations
fixed points in non-smooth continuous systems. The basic ide
that Floquet multipliers~eigenvalues of the fundamental solutio
matrix! of periodic solutions in Filippov systems can jump when
parameter of the system is varied. Such a jump can occur
periodic solution becomes tangential to the tip of a non-smo
hyper-surface on which the vector field is discontinuous. If a F
quet multiplier jumps over the unit circle in the complex plane
discontinuous bifurcation is encountered.

The model system of a drillstring describing whirl and stic
slip, which is studied in Section 9, belongs to the class of Filipp
systems and exhibits several types of discontinuous bifurcatio

Appendix B: Coordinate Systems

x5r cosa
(10.2)

y5r sina

r 5Ax21y2 a5arctanS y

xD (10.3)

ṙ 5
xẋ1yẏ

r
ȧ5

ẏx2 ẋy

r 2 (10.4)

r̈ 5
ẋ21 ẏ21 ẍx1 ÿy2 ṙ 2

r
(10.5)

Appendix C: Parameter Values

m51 kg c50.3 N/~ms) k51 N/m

mf51 kg D50.1 N/~ms) R52 m

Rb53 m Rc5Rb2R51 m kb550 N/m

cb530 N/~ms) mb50.5 B150.1 N/m3

B250 N/~m3 s) J51 kg m2 kw51 Nm

T050.2 Nm d50.3
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