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1 Introduction served phenomenon of stick-slip to whirl transitions in a real drill-

Decp wels for the exploraton and producton of o and gas afg g, T® 100! s kept as simple as possible and does not pre-

drilled with a rock-cutting tool driven from the surface by a slen- The principles of oilwell drilling are first briefly explained in

der structure of pipes, called the drillstringig. 1). Drillstring  section 2. Downhole measurements, which reveal stick-slip mo-
vibrations are an important cause of premature failure of drillisn and whirl in a drillstring, are presented in Section 3. A simple
string components and drilling inefficiency. Stick-slip vibrationyathematical model for the investigation of stick-slip and whirl is
causes violent torsional vibration of the drillstring and whirl leadggnstructed and analyzed in Sections 4 to 9. The theoretical and
to lateral vibrations with large amplitudes. Extensive research @umerical results will be compared with results obtained from
this subject has been conducted for the last four decades, batbasurements in Section 10.

theoretically[1-7] and experimentally8—12]. Whirling motion
of a drill collar section has been studied f,2,7]. Models for S . -
torsional stick-slip motion of a drillstring were presented[#} 2 Principles of Oilwell Drilling

and extensively analyzed H8,6]. Most of the experimental in-  Oil and gas wells are predominantly drilled using rotary drill-
vestigations were only based on field measurements recorded@ The basic elements of a rotary drilling system are shown in
the surfacg8—11]. Stick-slip vibrations can indeed be detectedri9- 1. A rotary drilling system creates a borehole by means of a
from the surface, at least in a straight well, but detailed inform&QCk-cutting tool, called a bit. The oldest type of rotary bit is the

tion about the mechanism downhole cannot be obtained. DOV\nq_ller-cone bit which essentially comprises three metal rollers
hole measurements, briefly presented in this paper, reveal sti pvered with hard steel teeth that crush the rock. An alternative

slip vibration coexisting with whirl vibration. Uncertainty exists ype of bit is the PDC(Polycrystalline Diamond Compacbit

on the downhole mechanism which determines whether stick-s onsisting of a steel body with inserts made of artificial diamond
S . A <-Sid tungsten carbide. The energy to drive the bit is generated at
or whirl will be prevalent. This paper presents a low-dimension

d ical del. d bi ick-sli 4 whirl in i I e surface by a motor with a mechanical transmission box. Via
ynamical model, describing stick-slip and whirl in its most ely,q yransmission the motor drives the rotary table: a large disc that

ementary form. This model aims at explaining the basic nonlineggis as kinetic energy storage. The medium to transport the energy
dynamics phenomena observed in downhole experiments. Tfgm the surface to the bit is formed by a drillstring, mainly con-
model system is analyzed with the methods present¢tidn16 sisting of drill pipes: slender tubes, about 9 (80 ft) long,
which are shortly summarized in Appendix A. It is demonstrategbupled with threaded connections, having a typical outside diam-
that the model system exhibits several types of discontinuous bter of 127 mm(5 in.) and a wall thickness of 9 mm. However,
furcations. We will discuss in Section 10 the possible merits @&maller(e.g. 3.5 in) and larger(6.5 in,) drill pipe diameters are

this paper to the insight into drillstring vibration. also used.

Dynamical problems of drillstrings are analyzed in industry us- The lowest part of the drillstring, the Bottom-Hole-Assembly
ing linear models for critical rotary speeds and buckling loads atBHA), consists of thick-walled tubulars, called drill collars. De-
large finite element mode[®], which give quantitative informa- pendent on the diameter of the hole, these drill collars usually
tion and can help to give practical recommendations to circurhave an inner diameter of 2.5-3 i(64—76 mm and an outer
vent drilling problems. The finite element models are however sameter of 4.75 in.—9.5 in(120-240 mm The BHA can be
complex (nonlinear large displacement, finite rotation, many deseveral hundreds of meters long, and often contains dedicated
grees of freedomthat it is very difficult to obtain insight why downhole tools. The _dflll coIIarg in the BHA are Kept in position
certain vibrational phenomena occur. Small low degree of freBY @ number of stabilizers, which are short sections with nearly
dom models, which can be analyzed with analytical methods, ci}g Same diameter as the bit. . .
provide (to some degreequalitative insight in a specific complex The drilling process requires a compressive force on the bit of
phenomenon occurring in reality. The aim of the Stick-slip WhirfoMe 16-10°N. This dynamic force is commonly denoted as

PR ; ; o Meight On Bit (WOB), although force-on-bit would be a more
Model, proposed in this paper, is to explain qualitatively the Oez;\gpropriate name. The entire drillstring is suspended by a hoisting
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Fig. 1 Drilling rig

hookload ensures that the drill pipe is kept in tension to avoid - forward whirl : the rotation of a deflected drill collar section
buckling. The graph at the left of Fig. 1 shows the axial force asaound the borehole axis in the same direction as it rotates around
function of the position along the borehole. While the drill pipe#ts axis.
run in tension, the BHA is partly loaded in compression. The - backward whirl : a rolling motion of the drill collar or the
combined loading of the BHA in axial and torsional direction castabilizer over the borehole wall in opposite direction as it rotates
cause buckling of the BHA. Buckling of the BHA is prevented byaround its axis.
the large wall thickness of the drill collars and the placement of * Torsional(rotationa) vibrations, caused by nonlinear interac-
stabilizers. An ideal stabilizer would provide a “hinge” boundantion between the bit and the rock or the drillstring with the bore-
condition for the lateral movements of the drillstring. The criticahole wall, named as
buckling load rises due to the additional supports of the stabiliz- - stick-slip vibration : the torsional vibration of the drillstring
ers. characterized by alternating stofgiiring which the BHA sticks to
Torque is transmitted from the rotary table to the drillstringthe boreholgand intervals of large angular velocity of the BHA.
The torque required to drive the bit is referred to as the Torque On* Hydraulic vibrations in the circulation system, stemming
Bit (TOB). from pump pulsations.

A fluid called mud is pumped down through the hollow drill-These vibrations are to some degree coupled: e.g. the interaction

string, through nozzles in the bit and returns to the surface througBhyeen TOB and WOB will link the axial vibrations to the tor-
the annulus between the drillstring and the borehole wall. Thg§onal vibrations.

mud compensates the pressure in the rock, lubricates and removes

the rock cuttings from the hole. 3 Downhole Measurements
The drilling process is steered by the hookload, the rotary table . . .
speed at the surfacghe angular velocity of the top end of the In the late 1980s the Institut Framis du P&ole designed the
rafor system, a research tool to measure downhole and surface

drillstring) and the flow rate of the mud. The downward speed Ffa to improve knowledge about drillstring dynamics. The Trafor

the drillstring gives an accurate measure of the rate of penetrat . ;
(ROP). The standpipe pressufthe pressure in the flowline at the SyStem consists of a downhole measurement device, called the
top of the drillstring indicates the total pressure drop in the driII-T.eIeV'g”e’ and a surface measurement device known as the Sur-

string and annulus. The ROP and standpipe pressure indicate figd€- The signgls of t':‘e ‘IT_evigiI?rﬁnd Survigile ar$ %ath_lc_ere}d by
progress and state of the drilling process which are interpreted"[’) omputer and synchronized. The great merit of the Trafor sys-
drilling engineers to adjust the steering parameters. tem is the ability to measure both downhole and surface data at

The drillstring undergoes various types of vibration durin eal-time. Pavone ar]d_l?es_plaﬁ]sz_] give a descrlptlo_n of the

drilling [6] rafor system. The ‘Ilewglle is bgsmally a tube much like a nor-
mal drill collar, but equipped with sensors that measure Weight

 Axial (longitudina) vibrations, mostly due to the interactionOn Bit, downhole torque, downhole accelerations in three or-
between drilling bit and the hole bottom. In its extreme formthogonal directions and downhole bending moments in two direc-
when the bit can lose contact with the hole bottom, this vibratidions. Three magnetic field sensors, known as magnetometers,
is called “bitbounce”. measure a projection of the earth magnetic field in three orthogo-

« Bending(latera) vibrations, often caused by pipe eccentrichal directions co-rotating with the Tewigile.
ity, leading to centripetal forces during rotation, named as drill- The measurements reported in this section were recorded
string whirl: at a full-scale research rig. The well is nearly vertical and about
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Fig. 2 Measured downhole angular velocity versus time

Fig. 4 Measured downhole bending moment versus surface
angular velocity; sweep-up followed by sweep-down

1080 m deep. Various tests with different WOB and angular ve-
locity of the rotary table were conducted. A few tests are used for

this paper, all conducted with the same drillstring setup. The drilransition to whirl, a switch is made to another part of the friction
string consisted of 5 in. drill pipe, 8 in. drill collars and a 12 1/4yrve with a higher value of friction and a slightly positive slope.
in. roller-cone bit. _The drillstring is not deflected in lateral direction during stick-slip
Figure 2 shows a time history of the downhole angular velocityyotion. Consequently, the torque on theéWgile is during stick-
calculated from the magnetometer signals. The angular velocitysi motion mainly due to the friction torque on the bit. The whirl
the surfacew, WOB and other parameters were almost kept cofinotion has been identified as being backward whirl caused by
stant during the experiment. The drillstring clearly performs stickplling of a drill collar section over the borehole waliith a small
slip motion fort<35s. Att=35s the stick-slip motion suddenly amount of slip. The drillstring must consequently be deflected
disappears and backward whirl is prevalenttfor35 s. Backward during whirl motion. The torque on the Téeigile will be higher
whirl can be recognized by studying the bending momésé® during whirl motion due to the additional torque created by the
Fig. 4). The stick-slip motion is caused by the dry friction betwee@ontact between drill collar and borehole wall and increased drag
the BHA and the rock. The friction is due to the drilling bit, whichforces of the mud on the whirling drill collar. This additional
cuts the rock, but also due to the stabilizers, which have contagtque increases with increasing angular velocity. This would ac-
with the borehole wall. The friction curve of the part of the BHAcount for the higher torque and slightly positive slope of the fric-
beneath the Tevigile, relating the torque to the downhole angulafion curve during whirl motion. The slightly positive slope causes
velocity, could be reconstructed from the measureméfits 3).  the constant rotation to be stable which prevents stick-slip motion
The torque on the Tevigile consists of the friction torque of the a5 is observed in Fig. 2.
bit, the torque created by conta@t presen} of the drill collar  Figure 4 shows the mean bending moment measured by the
beneath the L"eVigile with the borehole wall and by the ViSCOUSStrain gauges in the 'T'@”g”e versus the prescribed angular ve-
torque of the drilling mud. During the stick-slip motion the part ofocity at the surfaces. During this experiment, the value afwas
the friction curve is traversed with the negative slope. The negggried with a sweep-up followed by a sweep-do(@00 s each
tive Slope of the friction curve causes Steady rotation of the drlHFhe mean bending moment is to some extent a measure for the
string to be unstable, which induces the stick-slip motion. At thedial displacement of the drillstringissumed that the drill collar
section with the Tlevigile is bent in its first bending modeThe
system was first in stick-slip motion with a low value of the mean
' ' : ! bending momentconsistent with an undeflected drillstrinat low
. As w is increased the mean bending moment increases slightly
s A Backward whirl .. 2o e . but atw=11.5[rad/d the motion switches from stick-slip to whirl
: : p and the mean bending moment jumps to a higher value, indicating
: : a large radial deflection of the drillstring. The sweep-up test
reaches its maximum ab=12.5 [rad/g after which w is de-
creased. The drillstring remains in whirl motion down d¢o-2
[rad/d. The bending moment during whirl motion is not constant
for varying w. The part with positive slope for2w<7 [rad/d is
consistent with an increasing radial deflection for increagsingt
< w=7 [rad/d the Tdévigile probably touches the borehole wall and
- for increasing values ofv, a larger part of the drillstring will
become in contact with the borehole wall which decreases the
bending moment. We conclude from Fig. 4 that stick-slip and
whirl can coexist for an interval of rotary table speed Com-
bined stick-slip whirl motion, however, in which the drillstring

7000

downhole friction torque [Nm]

0 i : i : performs stick-slip motion with a large radial deflection, is not
) 5 10 15 20 25
downhole rotation speed {rad/s] observed.
The mechanism downhole, which causes the transition from
Fig. 3 Measured downhole friction curve stick-slip to whirl and vise-versa, is not satisfactorily understood.
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The transition from stick-slip to whirl is presumably caused by adegrees of freedom and stick-slip motion by one torsional degree
interaction between bending and torsion which destabilizes tbéfreedom. The Stick-slip Whirl Model has therefore 3 degrees of
concentric position of the drillstring for high values ©f Possible freedom. The Stick-slip Whirl Model is a simplification of a drill-
ways of interaction can be caused by string confined in a borehole wall with mud.
I - . I . The interaction between torsional vibration and whirl of a rotor
« Drillstring eccentricity. This causes the drillstring to wh|r|Was already studied ifl7,1§ but a dry friction torque on the
violently only in the neighborhood of the bending criticalrotor and fluid forces weré not considered
eigenfrequency. The drillstring would not whirl for very high We consider a rigid diskwhich models the BHAat the end of
values ofw, contrary to what has been observed from thg naqgjess flexible shdthe drill pipe as is depicted in Fig.(8).
geasuremen]tc?. - icible b he dl The shaft and disk are confined in a stattire boreholg filled
* 5 yroscopg: .ﬁ ects. Sybare Eelg Igible er(]:ause”t e chearar\wﬁh fluid (drilling mud). The upper end of the shaft is driven with
I etw;:;enf h” ?jtr.'ng and borehole is much smaller than the,qant rotation speed (constant speed of the rotary tablehe
ength of the drillstring. - . shaft is subjected to bending and torsion with bending stiffiess
Anlsot_roplp bendlng s.tlf'fness of Fhe drillstring. .Th's. CaUS€3nd torsion stiffnes&, . The disk with massn and inertiaJ is
the drillstring ;0 '\:Vh'” in a small interval of» which is in- 4itached to the lower end of the shaft. The displacement of the
consistent with the measurements. . - eometric center of the disk is denoted>bgndy in the stationary
Fluid r_nud_forces. They dest_ablllze the concentric position Qi) dinate system or by the polar coordinatesida (see Appen-
the drillstring for w-values higher than a critical value con-g;, B). The disk is twisted with an angle with respect to the
sistent with measurements. upper end of the shaft and with an angewith respect to the

Insight into the mechanism downhole and the possible interactifi¥ed world

between bending and torsion can be obtained by studying a sim-

plified model of the drillstring. In the next sections we will study

whether fluid forces of the drilling mud can explain the observed d=wt+ . (4.1)

phenomena. A low-dimensional model will be analyzed with both

torsional and lateral degrees of freedom in a fluid. This small

model will be discontinuous of Filippov-type and shows a com-

plicated dynamical behavior. Bifurcations in Filippov system®n the disk orotor acts a friction torqud’; (the Torque On Bit

were investigated ifi15,16. The results of15,16 will be of use The lateral motion of the disk is constrained by ttator. The

to partly explain the complicated dynamical behavior of th&otor has a radiuR and the stator a radiuR,. Contact is made

model. when the radiallatera) displacement of the rotar equalsR.,
whereR.=Ry—R is the clearance.

4 Modeling of Stick-slip Whirl Interaction

A simple model for the whirling motion of a drill collar section
has been developed by Jan$ér?] and has been further analyzed
by Van der Heijder7]. A simple model to describe the torsional .
stick-slip motion of a drillstring was presented [if] and exten- 5 Fluid Forces
sively analyzed by Van den Ste@®] and in[3]. The fluid forces on the drillstring are extremely complicated as
In the following sections we will develop a model which carthe fluid motion is nonstationary and possibly turbulent. However,
describe the combined whirl and stick-slip motions in their mostnalytical results are available for a constantly rotating rotor in a
elementary form, under influence of fluid forces. The model costator for small clearance and small lateral displaceni@gR
sists of a submodel for the whirling motion, called ti¢hirl and r<R) [19,20. As a first approximation we will use these
Model and a submodel for the stick-slip motion, called 8teeck- analytical results for nonstationary motion of a rotor which is
slip Model The full model will be named thé&tick-slip Whirl confined in a large stator for arbitrary lateral displacements. The
Model Elementary whirling can be described by at least 2 laterfilid force equations given if19,20 are

shaft

stator

disk

Ty

(a) Shaft, stator and disk. (b} Fluid and contact forces on the disk.

Fig. 5 Stick-slip Whirl Model
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F, m;  0][x D omg][x This relation between dry friction torque and angular velocity is
ulz X} = |+ : motivated by Fig. 3. Contact between the rotor and stator induces
vl [0 ml¥l [—em; D LY the contact force§,, andF,r. The tangential contact force in-
w? o duces a torque on the rotor,
. ) ——m =D
Lm0 s 4T 2 X Ty=FuiR. (6.6)
0 a(r)|lY 95 w_zm y The fluid forcesF, andF, of Eq.(5.2) are derived for stationary
2 4" motion of the rotorg = w. We will assume that they also hold for
- ® nonstationary motiong # w, and we replace by ¢ in Eq.(5.2),
Uit S (r) 2
+ N [y} (5.1) Ffr=—mf(f—d2r—Zr+¢dr>—(D+z//2(r))'r—¢1(r)r
— 5 ¥a(r) (1) . 6.7)
- . S R
wheremy is the added fluid mass aridl the fluid friction coeffi- Fro=—Mi(ar+2ra—¢r)— ( a= 5 | (DFga(r)r.
cient. . . .
The fluid forces, depicted in Fig.(5), can be transformed to The fluid forcesF;, and Ff.a act on the rotor but their working
polar coordinates lines are through the origin. The forég , has therefore an arm
5 —r and gives the torque
. ® . .
Fe=—m; 'r'—azr—Tr+war)—(D+¢2(r))r—¢l(r)r To=—Fraf- (6.8)
(5.2) )
© 7 Whirl Model
Fra= —mf(ar+2ra—wr)—(a— 5| (D+a(r))r. In this section we study only the Whirl Model. We assume the

_ ) ~ rotor to rotate constantlgno torsional vibration This allows us to
The nonlinear functionss, and ¢, depend on the radial dis- find analytical results for the pure whirling motion, which are
placementr. It is assumedfollowing [20]) that these functions equilibria of the Whirl Model in polar coordinates and periodic
are analytic(with ¢,(0)=y,(0)=0). As a first approximation, harmonic solutions in stationary coordinates. Polar coordinates are
only the following symmetric terms will be taken into account: therefore more convenient for the Whirl Model. The equilibria of
the Whirl Model are also equilibria of the total Stick-slip Whirl
— 2 — 2
Pa(r)=Bar,  io(r)=Bors, (5:3) Model but the eigenvalues of the Stick-slip Model may change the
whereB; andB, are constants. stability.

7.1 Equations of Motion. The equations of motion for a
whirling rotor with fluid and contact forces in stationary coordi-

6 Contact Forces nates are

The stator wall will induce normal and tangential ford€sg. MX+ CX+ kx=F+ Fpy 7.1)
5(b)) on the rotor if the radial displacement becomes larger than . ’
the clearancer >R,. The normal contact force can be modeled my+cy+ky=Fy+Fpy,
(in its most simple formto stem from a linear spring with spring wherem is the rotor mass the lateral bending stiffness asdhe
stiffnessk, lateral bending damping constant. In polar coordinates these equa-

Ko(r—R.) >R, tions become
N o r<R.. (6.1) m(f — a?r)+cr+kr=F;—Fpy 72)

The normal contact force induces a tangential contact force due to m(ar+2ra)+car=F,+Fyr.

dry friction between the rotor and the wall. We assume a constaé\ﬁ

friction coefficientu, . If the relative velocity between the rotor bstitution of the fluid forces of Eq5.2) gives

and the stator wall is nonzero, then the tangential contact force is . w2 )
) my(F — a?r)+(c+D+Byr?)r+ k*Tmf+mfwa+Blr2 r
For=—mpSigNve)Fon,  Ue#0, (6.2)
with the relative velocity being given by,q=ar + oR (for con- =—Fpn (7.3)

stant rotation of the rotgr During pure rolling ¢,,=0) the tan-

. .
gential contact force must be between Ma(ar +2ra)+(c+D+Byroar

— MpFponsFor=umpFon- (6.3) =mfw'r+(D+Bzr2)gr+FbT,

The contact forces can be expressed in stationary coordinates as )
with m;=m-+m;. This fourth-order system can be transformed

Fpy=(—=Fpry—FpnX)/r, Foy=(FprX— Funy)/r. (6.4) into a third-order system with the whirl velocif) = «,

The friction due to rotor-stator contact can be treated numerically 5 . w? 5
by making use of thewitch mode[21]. Ma(r = Q%)+ (c+D+Barr+| k= - mi+ mwQ +Byre|r

6.1 Torques on the Disk. We assume that a dry friction
torqueT; is acting on the rotor, which only depends on the angu-

lar velocity &, Ma(Qr +2F Q) + (c+D+B,r2)Qr

= Fon (7.4)

: . w
Ti=—sgn¢ (6.5) =mfwr+(D+Bzr2)§r+FbT.

90
1+6|¢|
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7.2 Equilibrium Without Contact.  The equilibrium with- ; T - T '

. - 2
out contact (.,Q.) of Eq. (7.4) has to obeyr=r=Q=0 and 1
r<R.. The whirl velocity can be derived from the second equa- 1 . ]
tion of Eq.(7.4), o 4 |
0.2t Borl o s Lt J
® Cc+D+Byr22° (79 o ]
Consequently, the rotor is whirling forward in the equilibrium b =T e e £ J
without contact. The first equation of E(f.4) gives e
081 4
w? 2 2

k*Tmﬁmwaef mQs+Bqrs|re=0. (7.6) osf 1
e €: 4

Solving the latter equation gives two equilibrium branches of the o ’
system without contact. The first branch is the trivial solution oz} o |

€la ' 16
re=0, (7.7) 0 . T "]
and the second branch can be derived from 0 o3 ' w [rfd/s] ? * ’
2
K— w_mf+ MiwQe— maQ§+ Blr§=0. (7.8) Fig. 6 Whirl Model, equilibrium branches

4

The trivial branch becomes unstable when it meets the second
branch. We denote the frequency at which the trivial branch b#/ conclude that cas@) also gives a supercritical pitchfork bi-
comes unstable bw.. Substitution of Eqs(7.5 and (7.7) into  furcation at twice the natural frequency,

Eq. (7.9 gives w, 7
c+D)? w ,b=2\ﬁ- (7.17)
w?=4k ( ) ¢ m

c’m¢+D’m’ (7:9) : .
Form¢/m<1 it can be shown thab. ,<w.<w,. The pitch-
Two limiting cases are of special interes): @0 andD=B, fork bifurcation is shown in Fig. 6 for the parameter values given
=0, b c=0 andD>0, B,>0. in Appendix C. The trivial brancte;, is stable and meets the
Case (a) implies that we consider the system to rotate in hifurcation(denoted by Lafter which it is unstable and continues
frictionless fluid. The rotor will not whirl due to the absence ofse;,. From the bifurcation point starts a branch of stable for-
fluid friction, ward whirl solutionse,.

Qe ,=0. (7.10) 7.3 Equilibrium With Pure Rolling. The rotor rolls over

. . . . the stator wall without slipping under three conditions:
The quasi-static motion of the rotor gives

1. the relative velocity is zeray,=Qr + wR=0,
(7.11) 2. positive nor_mal contact forc&,,>0, _
’ 3. the tangential contact force does not exceed the maximal
friction force, — wpFon=<Fp1=pupFpn-

2
0}
Clea=|—mMi—k|rga—Bqrs
ea 4 f ea 1'ea*

The two stationary solutiongor r, ,=0) are

5 The pure rolling equilibrium(r=r,, Q=) has to obeyr =¥

2 m—k =0=0.
4 The whirl velocity can be derived from condition 1,
rea=0, rga= _ (7.12)
) s Bl R
We conclude that case gives a supercritical pitchfork bifurca- Qp=- G"" (7.18)
tion (B;>0) at
fon (B,>0) & Consequently, the rotor rolls backward over the stator wall. The

k equilibrium conditions give
We =2 m (7.13) 5

w
o , —maQ2r | k= — M+ miwQ,+Bira 1,
Case(b) implies that we consider the system to have no structural 4
damping but only fluid damping. The rotor will whirl with half the _ _ _
rotation speed1/2w-whirl), = ~Fon=—kp(Tp=Ro) (7.19)

and
1

Qep=5 0. (7.14)

w
(C+D+Bzr§)9prp=(D+Bzr§)Erp-l- For. (7.20)
The quasi-static motion of rotor givéwith m,=m-+m;)

Substitution of(2,, in Eq. (7.19 gives a third-order polynomial in
rp. If we neglect the nonlinear fluid ter@,, Eq.(7.19 reduces

to a second-order polynomial

2

2\ @ 3
(D+Bzre,b)re,b=(7mf k)re,belre,b. (7.15)

The two stationary solutiondor r,,=0) are w?
y nﬁ eb ) (k+kb*Tmf)I’f,*(kbRchmfsz)l‘p*maszZ:O.
- m- K (7.21)
(7.16) Solving for r, gives two roots of which only one fulfills con-

rep=0, rep= _—
eb &b B; dition 1,
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w2
kpRc+ Miw?R+ \/(kbRc+ mM;»?R)2+4m,w?R?| k+ky— T mf)

M= P (7.22)
2 k+ kbf Tmf)
I
The limit of k;, to infinity gives of course linr,=R.. 2
Ky —mQ2r e+ | k— —m+ mioQ+ Blrg)rS:—FbN,

If we assume directly an infinitely stiff wall of the stator with- 4
out neglectingB;, then we can solve for the contact forces, (7.28)
_ LR w? 2 2 (c+D+BrdHQg =(D+Bzr2)9r —mwpFpn,  (7.29)

Fpn=Maw R k—Tmf-i- B1R:|R.+ w“Rmy, (7.23) s/3%sl's s/ 's '

whereFyn=ky(rs—Rc). This system of equations can be solved
R.. (7.24) togivers, whichwill not be done in this section. The insight can
2 be gained from other considerations. The limitlgf to infinity
gives of course

w

For=—(c+D+B,RY)wR—(D+B,R?

Equation(7.23 should fulfill condition 2,

limrs=R..
(k+B{R*R LS
P> 0f=—rp 11° S (7.25) o
My—=—+ M~ R.+mR The branch of slipping equilibrium begins at the point where the
R¢ 4 equilibrium without contact touches the stator wall=R, (de-

noted by f in Fig. 6 and the branch ends at the point where the

However, pure rolling nean=w, is not possible because Eq.Pure rolling branch begingpoint d. Consequently, the slipping
(7.24 has to fulfill condition 3. We define that condition 3 isbranch connects the stable no-contact branch to the stable pure

violated atw=w,. Substitution of Eqs(7.23 and (7.24) into lr)ollinghbrapch. %f meCh intehrest is todkno_vvow thﬁ. shlippinlg |
O FeF. ai i | ol ranch is located between the two end-points, which is closely
#oFon=For gives a second-order polynomial iy, related to its stability. We therefore try to find an expression for

If B, is not too large, them,<w. .

2 R. 5 arldw at the point where the slipping branch and the no-contact
_,U«b(ma?erf 7+R Wq branche, connect. To simplify the results we will assunsg
¢ =0. At the connection point to the no-contact branch we have at
5 R, ) rs=r.=R.. The following equations hold at this point
+| cR+(D+B,RY) R+7 wq+ ppR(k+B;RE)=0. 5
w
(7.26) Qszﬂe:m o> (7.30)

If the fluid damping D, B,) and structural damping:) are small w2
compared to the dry friction caused jpy,, then we can make the ( k— —m+miwQ.—mQ2+ Ble) R.=0. (7.31)
following approximation 4

We now differentiate Eq(7.28 with respect tow. This gives

2 Re
. cR+(D+B,R:)| R+ 5 , - 20, ngrs ) W2 e o,
Wy~ wp+ R? - Wy - (7.27) m,{g o re—my S0 + 7 m¢+mMiwQ g+ Byrg ™
Mp maﬁ + mf I +R
c ) Qg arg arg
Fluid damping and structural damping cause gt wy, . +( 7 Mt Mt mfw%+281rs%) fs= K50
The pure rolling branch for the parameter values of Appendix C (7.32)
is depicted in Fig. 6 as branah . The point at which the branch :
stops = wy) is denoted by d. The valug, is taken as unity. A and when we substitute Eq&.30 and(7.31),
larger value for the borehole stiffnekg will cause the pure roll-
ing branch to come closer =R, . P e (11 D 00
Branche,, with stableforward whirling solutions without con- M D ® G0 ' c 272¢+D | dw ) MHORe
tact, is connected to branad,, with stablebackwardwhirling ar
pure rolling solutions, by the unstable brareh Branche; con- _ 2 s
sists of equilibria with slipping contact. =~ (2B;1R+kp) P (7.33)

7.4 Equilibrium With Slipping Contact.  The relative ve- Differentiating Eq.(7.29 gives
locity v between rotor and stator is positive for forward whirling

solutions without contadtoranche,), whereas it is zero for pure Qs aos 1 D s\ ppky Irs
rolling solutions(branche,). The relative velocity during slipping TG0 T sy T 2D TS0 T e D de
contact(branches) should be in between. There are two condi-
tions for slipping: or
1. the relative velocity is positivey,e=Qr +wR>0, Qs 1 D pupky 1 drg
2. positive normal contact forc&,,>0. 9w 2c+D C+DR, o’ (7.34)

The slipping equilibrium(r=rg, Q=0Q,) has to obey'r='r'=ﬂ After substitution of Eq(7.34) in Eq. (7.33 we arrive at an ex-
=0. The equilibrium conditions give pression forirg/dw,
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Fig. 7 Stick-slip Model
‘ By ,  mpw g 8 Stick-Slip Model
1+2—R{— ———(mic—mD) | — . . . .
b k, ¢ (c+ D)Z( f ) 5w In this section we study only the Stick-slip Model. We assume
the rotor to rotate concentricly in the stat@o lateral vibration,
_ - wR. (D2m+c2my) (7.35) r=0). As there is no radial displacement, the torques due to fluid
2 (c+D)? - ' forces and contact forces vaniéhy=0, T,=0). The equation of

The limit of k,, to infinity gives of course linvrg/dw=0. Two
Kp—2
limiting cases are of special interest:
Case(a) c>0, D=0 andk,>B,R?
After substitution in Eq(7.35 we obtain

17

Mbwmf &rs 1
— = Z wR.m;.
Cc

Ky dw 2

(7.36)

Consequently, when

om ar
M> 1= —<0,
Jw

owm ar
M< 1=—>0.
Jw

Case(b) c=0, D>0 andk,>B;R?
After substitution in Eq(7.35 we obtain

5 = - wR.m. (7.37)

/wam 8"3 1
kb( 1+ —)% 2

Consequently, it must hold that/dw>0.

motion for pure torsional motion is

Jo=—k,o+T;. (8.1)

The Stick-slip Model has an unstable equilibrium braneh
=T¢(w)/k, ¢=0), which corresponds to the trivial equilibrium
branch(r=0, ¢=T;(w)/k) of the full Stick-slip Whirl Model.
The trivial equilibrium branch was denoted in the Whirl Model as
branche; (Fig. 6).

8.1 Periodic Stick-Slip Vibrations. The periodic solutions
of the Stick-slip Model are also periodic solutions of the Stick-slip
Whirl Model (compare Eq(8.1) with Eq. (9.1) for r=T,=Ty
=0). The periodic stick-slip vibration is depicted in Figay. The
twist ¢ is on the horizontal axis and the angular veloafy: ¢
+ o on the vertical axis. The limit cycle is traversed clock-wise.
The slip part of the motion takes placedat-0. When the velocity
is decreasing during the slip part, it arrivesfat 0 and continues
with backward rotation ¢<0). This backward slip motion is

followed by the stick partp= 0, which completes the limit cycle.
The branch of periodic stick-slip solutionp4) is numerically
determined for varying values ef and depicted in Fig. (). The

minimal value of ¢ is set on the vertical axis. For the trivial
equilibrium branch holds migp= w and this branch is unstable as

_ The paraglgtﬁl;(val;ms (ij[t)he gtiuNC;(UYal)da_l[?]ping and _ﬂUild dampe friction torqueT; decreases with increasing angular velocity
ing are c=0.3N/{ms) andD=0.1N/{ms). The numerical ex- el o P
ample is similar to caséa) with wywm,/c>1. The derivative ¢. The periodic stick-slip branch has a minimal valuefefbeing

R . . smaller or equal than zero depending on the backward slip part.
drldw at point f is therefore negative which causes the brazmch ' .
to be unstable and to connect point d with point f directly. If thAS can be seen from Fig.(t), backward rotation becomes more

parameter values would be different, such thgivm; /c<1, then %ronounced at higher values of
branche; would start at point f with a positive slope as a stable
branch. It will at some point turn around and continue as an un-
stable branch in the direction of point d.
Bifurcation points d and f are discontinuous saddle-node bifur-
cations of the equilibrium brancke,—e;—e,. An eigenvalue 9 Stick-Slip Whirl Model

jumps over the imaginary axis through the origin at those bifur- e stick-slip Model and the Whirl Model will be combined in

cation points. At bifurcation point d, being the transition frorr}hiS section which gives the Stick-slip Whirl Model
contact to no-contact, this is caused by the non-smoothness of the '

normal contact force Eq6.1). At bifurcation point f, being the 9.1 Equations of Motion. Combining the lateral and the
transition from slip to stick, this is caused by the non-smoothnegw'sional model and taking into account the nonstationary fluid
of the tangential contact force, E¢6.2). Remark the angle be- forces, fluid torque and contact torq8ection 6.1 gives the
tween the branches at a discontinuous bifurcation point. following set of equations of motion
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Fig. 10 Stick-slip Whirl Model, zoom of Fig. 9

Fig. 8 Stick-slip Whirl Model, equilibrium branches

» Ko@eq= Ti(@) + Tp(Qeq, @, eq) + Tg(Qegr@,Teg).  (9.2)

my(F — Q2r)+(c+D+Bor?)r+| k— _mf+mf¢g+ Byr?|r Some stable branches may become unstable due to an added ei-
4 genvalue of the Stick-slip Model. The trivial bran&h of the
Stick-slip Whirl Model is totally unstable whereas it was partly
stable for the Whirl Model. At the bifurcation point of branEh,
Ma(Qr +2F Q)+ (c+D+B,r2)Qr a second eigenvalue enters the right half-plane, which explains
. why the branch does not exchange stability at the bifurcation

=—Fon

. , b point. The brancle, contains a Hopf bifurcation which splits the
=Mipr +(D+Bar®) 5 r+Fyr (9:1)  branch in a stable and an unstable part.
Jp=—K, o+ T+ T+ Ty. 9.3 Periodic Branches. The periodic branches of the Stick-

slip Whirl Model are depicted in Fig. 9 and partly enlarged in
9.2 Equilibrium Branches. Equilibrium positions of sub- Figures 10, 11, and 12. o .
models are in general not equilibrium positions of the total model. As for equilibrium positions, periodic solutions of submodels
The torsional and lateral degrees of freedom of the Stick-slgfe in general not periodic solutions of the total model. The tor-
Whirl Model however, are to some extent uncoupled. From Egional and lateral degrees of freedom of the Stick-slip Whirl
(9.1) it follows that for an equilibrium position must hold that Model are however uncoupled for=0 (becauselq andT;, van-
=0,0=0 andg=0. The angular velocity of the rotor is therefore!Sh- The Whirl Model has an equilibrium positian=0. Branch
constant¢:w which means that the Whirl Model is not influ- p; of the Stick-slip ModelSection 8 therefore also exists for the
d b, th S’t. k-slib Model. Th ilibrium b 4 Stick-slip Whirl Model as branclP; with r=0. Whereas branch
enced by the Stick-slip Model. The equilibrium branckeso &, 1, i srapie branclp, is partly stable due to the added eigenval-
of the Whirl Model are also equilibrium branches of the Stick-sli f the Whirl Model
Whirl Model, denoted by, to E, (Fig. 8. The twist anglapeqin oo o o ¥OE: e
S o 1 4 Ny - ed . Branch P, consist of pure stick-slip vibrations witk=0 and
an equilibrium position can be found from substitution of an equij-

. " : ; y=0. The radial deflection is therefore= \x?+y?=0 but the
librium position of the Whirl Model eq and (g in angular positiona=arctany/x) is not defined. BranchP; can

Fig. 9 Stick-slip Whirl Model, periodic branches (bold) Fig. 11  Stick-slip Whirl Model, zoom of Fig. 10
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P, andPs, are connected to the bifurcation point in the Stick-slip
Whirl Model. This bifurcation point is therefore a combined bi-
furcation of a saddle-node bifurcation and two Hopf bifurcations.

The bifurcation diagrams certainly do not show all periodic
branches that exist. Period-doubled branches were not calculated
but also other branches may be missing in the bifurcation dia-
grams.

A note has to be made concerning the chosen numerical values
of the parameters in the Stick-slip Whirl Model. Stiffness and
mass/inertia parameters are chosen such that the torsional eigen-
frequency of the rotor is close to the first torsional eigenfrequency
: : : : : of the drillstring. Similarly, the lateral eigenfrequency of the rotor
» Pso. : : : § is close to the lateral eigenfrequency of the lowest drill collar
e I R G . S section. Damping and friction constants are more or less arbi-
5 : : : : : Ey f trarily chosen. The equilibrium and periodic branches in the bifur-
el AR R o Coe T cation diagrams depend of course on the chosen constants. How-

i ; i ever, the periodic whirl brancheB,, to Pg, seem to be close to
el 2% 238 26 262 264 266 the equilibrium branchE,. The equilibrium branches form a
structure to which the periodic branches are attached. A lot about
Fig. 12 Stick-slip Whirl Model, zoom of Fig. 11 the dynamics of this particular system can already be said once
the location of the equilibrium branches are known. The value
w., expressed in Eq97.13 and (7.17), gives the location of
branchE,. The ratio upom;/c determines whether brandh,
therefore only be described in the stationary coordinate systgibceeds to the right of bifurcation point f or folds to the Iig.
(x,y,¢) and not in the polar coordinate systemd,¢), which 6). The valuewy of Eq. (7.27 gives the starting point of branch
was used for the Whirl Model. E,. Consequentlyw., wyq and upwms/c determine the main

BranchP,, described in the stationary coordinate system, cogtructure of the bifurcation diagram.
tains a Neimark-Sackefor secondary Hopf bifurcation after
which the branch is unstable. . . .

The equilibrium brancheg, to E, (which are pure whirl solu- 10 Discussion and Conclusions
tions) and the pure stick-slip brandR; both have a bifurcation  In the previous sections a simple model was constructed, based
point in the Stick-slip Whirl Model which was not existing inon the assumption that the fluid forces are the cause of the phe-
Stick-slip or Whirl Model. The equilibrium branches, to E, nomena observed in the measurements. The Stick-slip Whirl
contain equilibria in polar coordinates but are periodic solutions Model was analyzed with path-following techniques and bifurca-
stationary coordinates with period tim&8s=2mn/w. From the tion theory presented ifil5,16. What can we conclude from the
Hopf bifurcation onE, emanates a brandPg (Fig. 10, which is  Stick-slip Whirl Model with respect to the measurements?
periodic in polar coordinates and quasi-periodic in stationary co- The Stick-slip Whirl Model exhibits both stick-slip motion and
ordinates. BranclPg is connected through branchBg, P, and whirl motion (which is not possible in the models of Jangat).

P with branchP, (Fig. 11). BranchP,, which contains periodic Stick-slip motion is prevalent at low angular velocities and back-
solutions in polar coordinates and quasi-periodic solutions in staard whirl (during which the rotor rolls backward over the stator
tionary coordinates, ends at the Neimark-Sacker bifurcation @ prevalent for high angular velocities consistent with the mea-
P,. The Neimark-Sacker bifurcation therefore gives rise to quasiurements. Stick-slip and whirl motion coexist for an intervabof
periodic solutions which is consistent with the theory. both in the model and in the measurements. Combined stick-slip

BranchesP, to P4 connect the solutions found from the Whirlwhirl motion was not observed in the measurements but was
Model with the solutions found from the Stick-slip Model.found in the Stick-slip Whirl Mode(branchesP, andP3). How-
BranchesP, and P5 are periodic solutiongin polar coordinates ever, this combined motion occurs only in a very small interval of
that perform both stick-slip and whirl motion. The periodic solue in the model. The model is therefore consistent with the mea-
tions on brancheB;, P, andP5 contains contact events betweersurements in the sense that stick-slip motion ocourahirl mo-
the rotor and the stator wall. tion (both possible for the same value ©f, but a combination is

BranchP, is divided in stable and unstable paRs, to P,4. rare or not existing.

BranchP,, is connected td 4, by a Neimark-Sacker bifurcation. The measurements show a hysteresis effect for a sweep-up
BranchesP,,, P, andP,q are connected to each other by twasweep-down tedfig. 4). The drillstring starts in stick-slip motion

flip bifurcations. The branches with period-doubled periodic solat low angular velocity of the rotary table. When the rotary table
tions and quasi-periodic solutions, which start at these bifurcepeed is increased with small steps, the motion remains in the
tions, have not been calculated. stick-slip mode but at 11.Fad/d the drillstring suddenly stops to

A number of discontinuous bifurcations exist on the branchegperate in the stick-slip mode and starts to whirl backward. The
P, to Pg. BranchP, is connected td®; (Fig. 12 by a discon- drillstring remains whirling for increasing rotary table speed also
tinuous flip bifurcation(the period-doubled branch has not beeafter the rotary table speed is diminished in small steps during the
calculated. The bifurcation occurs when the periodic solutiorsweep-down test. The mean-bending mom@nd whirl radius?
touches the stator,=R.. The discontinuity of the contact forcesdrop between 7 and @ad/g and stick-slip recommences.
causes the discontinuous bifurcation. Similarly, braRghs con- A similar hysteresis effect can be seen for the Stick-slip Whirl
nected to branclPg (Fig. 12 by a discontinuous fold bifurcation Model. At low values ofw the rotor is in stick-slip motion. When
atr=R.. BranchP; (with stick eventgis connected to brandR, w is increased quasi-statically, braneh, is followed (Fig. 9) and
(without stick events by a discontinuous fold bifurcation. This the rotor will remain in the stick-slip mode. Branéh becomes
bifurcation is due to the discontinuity in the dry friction force. unstable for increasing due to the destabilizing fluid forces and

A remarkable bifurcation occurs on the equilibrium branch corthe motion of the rotor will rapidly change via brancheg and
necting branctE,, with E; at r=R. (Fig. 12. This bifurcation P5 to an oscillatory whirl motion on brancR,. Whenw is in-
point was already encountered in the Whirl Model as a disconreased even more the motion will jump to regular backward
tinuous saddle-node bifurcation at which the branch turns aroumthirling motion without slip on brancle,. If o is subsequently
(bifurcation point f in Fig. 6. In addition, two periodic branches, quasi-statically decreased, the rotor will remain to operate on
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branch E, until the discontinuous saddle-node bifurcation beperformance of mechanical systems, like for the drillstring prob-
tweenE; andE, is met. The motion will then jump to the stick- lem discussed in this paper. Many other practical problems in
slip mode and the hysteresis loop is complete. engineering are related to vibrations caused or influenced by dis-
The phenomena as described by the Stick-slip Whirl Modebntinuous characteristics of physical phenomena. It is therefore
resemble to some extent the phenomena observed in the meastesirable to know whether periodic solutions of a system with dry
ments. The transition from stick-slip motion to whirl motion isfriction (or Filippov systems in genepagxist for a certain param-
similar, but the transition from whirl to stick-slip motion seems teeter set and how these periodic solutions change for a varying
be more gradual in the measurements than can be explained freanameter of the system. Such parameter studies are usually con-
the model. ducted by means of path-following techniques where a branch of
One could argue whether the observed phenomena in the migeed points or periodic solutions is followed while varying a pa-
surements are really due to fluid forces and not to other possibéameter. A branch of fixed points or periodic solutions can fold or
ways of interaction between torsional and lateral motion. Akan split into other branches at critical parameter val(fgg.
though the results on the Stick-slip Model look similar, they d@3(a)). This qualitative change in the structural behavior of the
not prove that indeed fluid forces are the cause for onset of whitystem is called ‘bifurcation’. Bifurcations in smooth systems are
in drillstrings. This paper illustrates how the techniques andell understood but little is known about bifurcations in non-
theory of[15,1€ can be used to analyze low-dimensional modeksmooth and discontinuous systems. It is showfli@] that a bi-
with discontinuities, in this case the Stick-slip Whirl Model. In thefurcation in a non-smooth continuous system can be discontinuous
same way, other low-dimensional models can be constructedthe sense that an eigenvalue jumps over the imaginary axis
which study for instance the influence of mass unbalance on theder the variation of a parametgfig. 13b)).
dynamic behavior of a rotor with lateral and torsional degrees of In [16] different aspects were investigated of bifurcations of
freedom. The results of the different models can be compared witked points in non-smooth continuous systems and of periodic
the experiments which can help to gain insight into the complesolutions in Filippov systemésee alsd25]). The Poincaremap
dynamic behavior of the drillstring. Knowledge about bifurcationgelates the bifurcations of fixed points in non-smooth continuous
in discontinuous systems is therefore relevant to dynamic profystems to bifurcations of periodic solutions in Filippov systems.

lems in industrial applications. Filippov systems expose nonconventional bifurcations called
“discontinuous bifurcations”, being different from the conven-
Acknowledgment tional bifurcations occurring in smooth systems. Filippov theory,

) ) generalized derivatives and Floquet theory were combingtéh
This project was supported by the Dutch Technology Foundghich leads to new insight into bifurcations in discontinuous sys-
tion, STW(grant EWT.411Y. The experimental data in this paperfems.
were made available by Shell International Exploration and Pro-The theory of Filippov gives a solution concept for differential
duction b.v. and were analyzed in cooperation with J. Manie. equations with discontinuous right-hand side. Differential equa-
. . . . . tions with discontinuous right-hand side are extended to differen-
Appendix A:  Discontinuous Bifurcations tial inclusions with Filippov's convex method. Existence of solu-
Physical phenomena such as dry friction, impact and backlaé@ns to differential inclusions is guaranteed under additional
in mechanical systems or diode elements in electrical circuits g@nditions but no uniqueness of solutions is guaranteed. Non-
often studied by means of mathematical models with some kind @fiqueness plays an important role in the bifurcation behavior of
discontinuity. Filippov systemg22,23 form a subclass of discon- Filippov systems.
tinuous dynamical systems which can be described by a set offhe local stability of a periodic solution is governér the

first-order ordinary differential equations with a discontinuouByperbolic case by the fundamental solution matrixp(T
right-hand side, e.g. +1g,tg), wWhich can be obtained for smooth systems from the
initial value problem
f—(ti),__((t)) Z(EV,

x()=f(t,x(t)=) ¢ , (10.1) : af (t,x(t

; LX) xeV, D(t,to) = %‘P(t,to)l B(to,to) = Po=1.
where the right-hand sidi(t,x) is assumed to be discontinuous -
but such that it is piecewise continuous and smootiorand ), The fundamental solution matrix is also essential for the under-
and discontinuous on the hyperplabgebeing the border between standing of bifurcations of periodic solutions. Discontinuities of
V_andV, . the vector field in Filippov systems cause jumps in the fundamen-

Mechanical systems with dry friction constitute an importartal solution matrix.

example of Filippov system24]. The presence of dry friction- The jumps in the fundamental solution matrix can be analyzed
induced self-sustained vibrations can be highly detrimental to thg the linear approximation method which approximates a discon-

2

(@) smoothd =p —x (b) non-smooth & = p — |z|

Fig. 13 Saddle-node bifurcation in a smooth and non-smooth system
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