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3-D Snake Robot Motion: Nonsmooth Modeling,
Simulations, and Experiments
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and Kristin Y. Pettersen, Senior Member, IEEE

Abstract—A nonsmooth (hybrid) 3-D mathematical model of
a snake robot (without wheels) is developed and experimentally
validated in this paper. The model is based on the framework of
nonsmooth dynamics and convex analysis that allows us to easily
and systematically incorporate unilateral contact forces (i.e., be-
tween the snake robot and the ground surface) and friction forces
based on Coulomb’s law of dry friction. Conventional numerical
solvers cannot be employed directly due to set-valued force laws
and possible instantaneous velocity changes. Therefore, we show
how to implement the model for numerical treatment with a nu-
merical integrator called the time-stepping method. This method
helps to avoid explicit changes between equations during simula-
tion even though the system is hybrid. Simulation results for the
serpentine motion pattern lateral undulation and sidewinding are
presented. In addition, experiments are performed with the snake
robot “Aiko” for locomotion by lateral undulation and sidewinding,
both with isotropic friction. For these cases, back-to-back compar-
isons between numerical results and experimental results are given.

Index Terms—3-D snake robot, kinematics, nonsmooth dynam-
ics, time-stepping method.

I. INTRODUCTION

WHEELED mechanisms constitute the backbone of most
ground-based means of transportation. Unfortunately,

rough terrain makes it hard, if not impossible, for such mecha-
nisms to move. To be able to move in various terrains, such as
going through narrow passages and climb on rough ground, the
high-mobility property of snakes is recreated in robots that look
and move like snakes.

Snake robots most often have a high number of DOFs, and
they are able to move forward without using active wheels or
legs. Due to the high number of DOF, it can be quite expensive
and time-consuming to build and maintain a snake robot. This
motivates the development of accurate mathematical models of
snake robots. Such models can be used for synthesis and testing
of various serpentine motion patterns intended for serpentine
locomotion.
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Zürich, CH-8092 Zurich, Switzerland (e-mail: remco.leine@imes.mavt.ethz.ch;
christoph.glocker@imes.mavt.ethz.ch).

K. Y. Pettersen is with the Department of Engineering Cybernetics,
Norwegian University of Science and Technology, NO-7491 Trondheim,
Norway (e-mail: kristin.y.pettersen@itk.ntnu.no).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2008.917003

The first working snake robot was built in 1972 [1]. This
robot was limited to planar motion, but snake robots capable
of 3-D motion have appeared more recently [2]–[6]. Together
with the robots, mathematical models of both the kinematics
and the dynamics of snake robots have also been developed.
Purely kinematic 3-D models have been presented in [6]–[8],
where frictional contact between the snake robot and the ground
is not included in the model. Hence, contact between the snake
robot and the ground surface is either modeled with frictionless
passive wheels, or the parts of the snake robot that touches the
ground are defined as anchored to the ground [9]. A model
of the dynamics of motion is needed to describe the friction
forces a snake robot without wheels is subjected to when moving
over a surface. Most mathematical models that describe the
dynamics of snake robot motion have been limited to planar
(2-D) motion [10]–[13], and 3-D mathematical models of snake
robots have only recently been developed [3], [7]. 3-D models
facilitate testing and development of 3-D serpentine motion
patterns such as sinus lifting and sidewinding. A description of
these motion patterns is found in, e.g., [4]. A physics engine
called the open dynamics engine (ODE) has been employed
to simulate a 15-link snake robot instead of deriving explicit
expressions for its dynamics in [14]. Such software makes it
easy to change the geometry of a snake robot if needed, and the
time needed to prepare a working model is relatively short [15].

On a flat surface, the ability of a snake robot to move forward
is dependent on the friction between the ground surface and the
body of the snake robot. Hence, unilateral contact forces and
friction forces are important parts of the mathematical model of
a snake robot. The friction forces have usually been based on a
Coulomb or viscous-like friction model [11], [12], and Coulomb
friction has most often been modeled using a sign function [12],
[16]. The contact between a snake robot and the ground surface
can sometimes be approximated by a no-sideways-slip con-
straint for snake robot with wheels [17], [18]. However, such
an approximation is not valid for wheel-less snake robots. The
unilateral contact forces have been modeled as a mass-spring-
damper system in [3] (i.e., compliant contact), and each link has
only a single and fixed contact point with the ground surface.
When running simulations, direct implementations or approxi-
mations of the sign function can lead to an erroneous description
of sticking contacts or very stiff differential equations. Also, a
mass-spring-damper model introduces a very stiff spring that
leads to stiff differential equations. In addition, it is not clear
how to determine the dissipation parameters of the contact un-
ambiguously when using a compliant model [19]. The ODE
implements a form of rigid body contact (i.e., not compliant
contact). However, the implementation of this engine trades off
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Fig. 1. NTNU/SINTEF snake robot “Aiko.”

simulation accuracy in order to increase simulation speed and
stability [15], [20].

In this paper, we develop a nonsmooth (hybrid) 3-D mathe-
matical model of a snake robot with cylindrical links without
wheels. Set-valued force laws for the constitutive description of
unilateral contact forces and friction forces in a 3-D setting are
described in the framework of nonsmooth dynamics and convex
analysis [19], [21], [22]. Moreover, the model has a moving con-
tact point on the surface of each link for contact with the ground
surface instead of just a fixed point for each link. The latter is an
approach employed in prior publications on mathematical mod-
els of 3-D snake robot motion. Stick-slip transitions (based on a
set-valued Coulomb friction law) and impacts with the ground
are modeled as instantaneous transitions. This results in an accu-
rate model of spatial Coulomb friction where both the direction
of the friction force and a true stick-phase are taken properly into
account. For wheel-less snake robots, it is important to describe
the frictional contact between the wheel-less snake robot and
the ground in an accurate manner, both with respect to stick-slip
transitions and the direction of the friction force while sliding
along the ground surface. This latter property also distinguishes
wheel-less snake robots from, e.g., legged mechanisms that most
often try to “stick” to the ground rather than sliding along it.
The dynamics of the snake robot is described by an equality
of measures, which includes the Newton–Euler equations for
the nonimpulsive part of the motion as well as impact equa-
tions. A particular choice of coordinates results in an effective
way of writing the system equations. The set-valuedness of the
force laws allows us to write each constitutive law with a sin-
gle equation and avoids explicit switching between equations
(for example, when a collision between the snake robot and the
ground surface occurs) even though this is a hybrid system. This
is advantageous since the snake robot links repeatedly collides
with the ground surface during, e.g., locomotion by sidewinding.
A discretization of the equality of measures gives the so-called
time-stepping method (see [22] and references therein) that we
use for numerical simulation. The description of the model and
the method for numerical integration are presented in this paper
in such a way that people who are new to the field of nonsmooth
dynamics can use this paper as an introduction to nonsmooth
modeling of robot manipulators with impacts and friction. In
addition, we present experimental results that validate the math-
ematical model. To the best of our knowledge, this is the first
time such a back-to-back comparison between simulation and
experimental results is presented for 3-D snake robot motion.
The experiments are performed with the snake robot “Aiko” in
Fig. 1 built at the Norwegian University of Science and Tech-
nology (NTNU)/SINTEF Advanced Robotics Laboratory.

The paper is organized as follows. A short introduction to the
modeling procedure is given in Section II. The kinematics of the
snake robot with the ground surface as a unilateral constraint
is described in Section III. Then, the groundwork for finding
the friction and ground contact forces is laid in Section IV. The
nonsmooth dynamics is presented in Section V, while the ser-
pentine motion patterns employed in this paper are described in
Section VI. The numerical treatment of the mathematical model
is given in Section VII. Simulations and experimental valida-
tions are given in Section VIII. Conclusions and suggestions for
further research are presented in Section IX.

II. SUMMARY OF THE MATHEMATICAL MODEL

This section contains a brief outline of how to derive the nons-
mooth mathematical model of the snake robot. This preliminary
section is meant to motivate and ease the understanding of the
forthcoming deduction of the system equations.

The snake robot model consists of n links connected by n − 1
two-DOF cardan joints (i.e., rotational joints). Let u ∈ R

6n be
a vector containing the translational and rotational velocities of
all the links of the snake robot (the structure of the snake robot
together with the coordinates and reference frames are described
further in Section III). Let the differential measures du and dt
be loosely described for now as a “possible differential change”
in u and time t, respectively, while a more precise definition
is given in Section V. The use of differential measures allows
for instantaneous changes in velocities that occur for impacts
between the snake robot and the ground surface. The system
equations for the snake robot can now be written as

Mdu − hdt − dR = τC dt (1)

which is called the equality of measures [23], where M ∈
R

6n×6n is the mass matrix, h ∈ R
6n consists of the smooth

forces, τC ∈ R
6n contains all the joint actuator torques, and

dR ∈ R
6n accounts for the normal contact forces/impulses

from the ground, the Coulomb friction forces/impulses, and
the bilateral constraint forces/impulses in the joints. Note: We
allow in this paper for instantaneous changes in velocities
usually associated with collisions. Hence, the (normal con-
tact/friction/constraint) forces are not always defined due to the
infinite accelerations. In these cases, we have impulses instead
of forces. The nonsmooth equality of measures (1) allows us to
formulate in a uniform manner both the smooth and nonsmooth
phases of motion. This is achieved partly by representing the
contact forces/impulses as contact impulse measures.

A substantial part of the beginning of this paper is devoted
to deducting the force measure dR. Hence, let us briefly look
at how to derive the contribution of the normal contact impulse
measure between the ground and the first link in dR. Let dR1 ∈
R

6 be the sum of contact impulse measures that directly affects
link 1 (i.e., the six top elements of dR), then

dR1 = wN dPN +
{

friction and joint constraint

impulse measures

}
(2)

where dPN ∈ R is the normal contact impulse measure from
the ground on link 1, and wN ∈ R

6 is the corresponding
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generalized force direction, i.e., a Jacobian (subscripts “j” and
“1” are omitted for brevity).

Let gN ∈ R be a function giving the shortest distance between
the rear part of link 1 and the ground. Such a function is called
a gap function [24]. The gap function is the starting point for
the systematic approach of finding the impulse measures. The
ground and the rear part of the link are separated if gN > 0, are
in contact if gN = 0, and are penetrating each other if gN < 0.
Now, the relative velocity between link 1 and the ground along
the shortest line between the two objects can be defined as

γN := wT
N u1 (3)

where u1 is the velocity of link 1 and wN = ∂gN /∂q is the
generalized force direction used in (2). It holds that γN = ġN

for almost all t. The normal contact impulse measure dPN is
related to the relative velocity γN through a set-valued force
law (see Section V-B1. The set-valuedness of the force laws
allows us to write each constitutive law (force law) with a single
equation and avoids explicit switching between equations (for
example, when a collision occurs). In addition, this formulation
provides an accurate description of the planar Coulomb friction
(see Section V-B2). In the following three sections, we will
elaborate on how to derive the elements that constitute (1), that
is, the various gap functions, relative velocities, and finally, the
forces/impulses that appear in the equality of measures.

III. KINEMATICS

The kinematics describes the geometrical aspect of motion.
From the geometry of the snake robot, we develop gap functions
for ground contact detection. These functions are also needed
for calculating the directions of the contact forces.

This section will first give an overview of the coordinates
used to describe the position and orientation of the snake robot.
Subsequently, the gap functions will be presented.

A. Coordinates and Reference Frames

The snake robot model consists of n cylindrical links that
are connected by n − 1 cardan joints, each having 2 DOFs.
The distance Li between two adjacent cardan joints equals the
length of link i, and the radius of each link is LSCi

. Each link
is modeled as a cylinder of length 2LGSi

with two spheres of
radius LSCi

attached to the ends the link. Link i with parts of
its two adjacent links are illustrated in Fig. 2.

We denote an earth-fixed coordinate frame I = (O,eI
x ,

eI
y ,eI

z ) (see Fig. 2) as an approximation to an inertial frame
where its center O is fixed to the ground surface and the eI

z -
axis is pointing in the opposite direction of the acceleration
of gravity vector g = [ 0 0 −g ]T . We denote a body-fixed
frame Bi = (Gi,e

I
x ,eI

y ,eI
z ), where Gi is the center of grav-

ity of link i (which coincides with the geometric center of the
link-cylinder) and eI

z points along the center line of link i to-
ward link i + 1. A general notation used throughout this paper
is that a vector from the origin of frame I to a point A is
given by rA and a vector from point A to point B is writ-
ten as rAB . Let a vector r described in frame I be written
as I r.

Fig. 2. Reference frames.

The position and orientation of link i are described by the
nonminimal absolute coordinates [25]

qi =
[

I rGi

pi

]
∈ R

7 (4)

where I rGi
= [xi yi zi ]T ∈ R

3 is the position of the center
of gravity of link i relative to frame i and the vector pi =
[ei0 eT

i ]T , where eT
i = [ei1 ei2 ei3 ], contains the four Euler

parameters used to describe the rotation. The Euler parameters
form a unit quaternion vector with the constraint pT

i pi = 1.
The coordinates are nonminimal because each link is described
with six coordinates, and absolute because the position and
orientation of link i is given directly relative to frame I . The
velocity of link i is given by

ui =
[

I vGi

Bi
ωIBi

]
∈ R

6 (5)

where I vGi
is the translational velocity of the center of gravity

of link i that is I vGi
= I ṙGi

when it exists (i.e., for impact-free
motion). Moreover, Bi

ωIBi
is the angular velocity of frame

Bi relative to frame I , given in frame Bi . The transformation
I r = RI

Bi Bi
r can be performed with the rotation matrixRI

Bi
=

HiH̄T
i , where

Hi = [−ei ẽi + ei0 I ] , H̄i = [−ei −ẽi + ei0 I ] (6)

and the superscript ∼ denotes the skew-symmetric form of a
vector throughout this paper, i.e.,

ẽ =


 0 −ei3 ei2

ei3 0 −ei1

−ei2 ei1 0


 . (7)

The time derivative of the rotation matrix is found from [26] as

ṘI
Bi

= RI
Bi Bi

ω̃IBi
= I ω̃IBi

RI
Bi

. (8)

The coordinates (positions and orientation) and velocities of
all links are gathered in the vectors q = [ qT

1 · · · qT
n ]T and

u = [uT
1 · · · uT

n ]T .

B. Gap Functions for Unilateral Constraints

Gap functions for the unilateral constraints (i.e., the ground
surface) give the minimal distance between the floor and the
front and rear part of each link. The contact surfaces between a
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Fig. 3. Surfaces (solid-drawn circles) on snake robot that constitute the contact
between the robot and the ground.

link and the ground are modeled as two spheres at the ends of
the link, as illustrated for a three-link robot in Fig. 3.

We denote the distance between the center of the two spheres
that belong to link i by 2LGSi

and the radius of the spheres by
LSCi

. The position of the center of the front and rear spheres are
denoted by rSF i

and rSR i
, respectively. The shortest distance

between the ground and the points on the front and rear spheres
closest to the ground are denoted by gNF i

and gNR i
, respectively.

The distances are found from

gNF i
= (rSF i

)TeI
z − LSCi

, gNR i
= (rSR i

)TeI
z − LSCi

(9)

where rSF i
= rGi

+ LGSi
eBi

z , rSR i
= rGi

− LGSi
eBi

z .
The gap functions are gathered in the vector

gN = [ gNF 1 · · · gNF n
gNR 1 · · · gNR n

]T . (10)

C. Gap Functions for Bilateral Constraints

Each 2 DOF cardan joint introduces four bilateral constraints,
which will be described by gap functions.

To find the translational “gap” in the joints, we need to
relate the position of the joint between link i and i + 1 to
both links. Let the position of the joint between link i and
i + 1 be written as I rJF i

= I rGi
+ (1/2)Li I e

Bi
z , I rJR i + 1 =

I rGi + 1 − (1/2)Li I e
Bi + 1
z . The gap functions can now be found

from

gJi χ
=

(
I rJF i

− I rJR i + 1

)T
I e

I
χ (11)

for i = 1, . . . , n − 1, and χ = x, y, z. Hence,

gJi χ
=

(
I rGi

− I rGi + 1

)T
I e

I
χ

+
1
2
(
LiRI

Bi Bi
eBi

z +Li+1RI
Bi + 1 Bi + 1 e

Bi + 1
z

)T
I e

I
χ (12)

for i = 1, . . . , n − 1.
The next gap function provides a “gap” in rotation around the

axis that a cardan joint is not able to rotate around. Let eBi
y and

e
Bi + 1
x be the axes of rotation for the cardan joint between link

i and link i + 1, then (eBi
y )Te

Bi + 1
x = 0. Hence, a measure for

the rotational “gap” can be defined from the previous equality
as the gap function

gJi φ
=

(
RI

Bi Bi
eBi

y

)T(
RI

Bi + 1 Bi + 1 e
Bi + 1
x

)
. (13)

IV. CONTACT CONSTRAINTS ON VELOCITY LEVEL

In this section, we calculate relative velocities between the
snake robot and the ground from the gap functions. The relative
velocities are needed to set up the set-valued contact forces for
the closed contacts [27].

A. Unilateral Contact: Ground Contact

Contact between the snake robot and the ground involves
(vertical) normal forces, which guarantee the unilaterality of
the contact, and (horizontal) tangential contact forces, which
are due to friction and are dependent on the normal contact
forces and the relative sliding velocities.

1) Relative Velocities Along eI
z : The relative velocities be-

tween the front and rear part of link i and the ground along the
eI

z -axis are defined as γNF i
:= ġNF i

and γNR i
:= ġNR i

(when
they exist), respectively, and they are used later to find the nor-
mal contact forces. Before we proceed, note that γNF i

(or γNR i
)

should not be found directly by taking the time derivative of
the expression for gNF i

(or gNF i
) in (9). This is the case since

the expressions (9) have already been simplified due to the fact
that expressions have been inserted for the various body-fixed
vectors that constitute the gap functions. Instead, for the relative
velocities, we must consider the velocity of a body-fixed point
PF i that, at time instant t, coincides with a point CF i on the
front sphere closest to the ground (the same principle applies
for the rear part of the link). Note that the position vectors for
PFi

and CFi
will be the same instantaneously. However, the

differentials will be different. This is shown in the following.
Let CF i be a point on the front sphere that moves on the sphere
such that the point is always closest to the ground surface. Then
the position of this point is

rCF i
= rGi

+ rGi SF i
+ rSF i CF i

. (14)

Define the skew-symmetric matrix I r̃Gi CF i
= I r̃Gi SF i

+
I r̃SF i CF i

. The velocity of the point CF i is obtained by dif-
ferentiation of (14) as

I vCF i
=I vGi

−I r̃Gi CF i
RI

Bi Bi
ωIBi︸ ︷︷ ︸

I vP F i

+RI
Bi Bi

ṙSF i CF i
(15)

where we now can use

rSF i CF i
= −LSCi

eI
z (16)

and we have employed (8) and Bi
ṙGi SF i

= 0, together
with the identities I ω̃IBi I rGi SF i

= − I ωIBi I r̃Gi SF i
and

I ω̃IBi I rSF i CF i
= − I ωIBi I r̃SF i CF i

. We see from (15) an ex-
pression for the velocity I vPF i

of the body-fixed point PF i that,
at time instant t, coincides with the point CF i . This velocity will
be employed to find both the relative velocities along eI

z and the
tangential relative velocities. The equivalent velocity I vPR i

on
the rear part of the sphere is found similarly to I vPF i

in (15) by
replacing Fi by Ri in (15) and (16).

Now, the relative velocities along eI
z for the front and rear

part of link i can be found as

γNQ i
= ( I e

I
z )

T
I vPQ i

=⇒ γNQ i
= (wNQ i

)Tui (17)
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where

wNQ i
= [ (I e

I
z )

T −(I e
I
z )

T
I r̃Gi CQ i

RI
Bi

]T (18)

for Q = F,R with rGi SF i
= LGSi

eBi
z and rGi SR i

=
−LGSi

eBi
z . The motivation to use the form (17) is that wNQ i

gives the generalized direction of the contact force between the
ground and the front and rear part of link i.

A vector gathering all γNF i
and γNR i

is

γN = WT
N u (19)

where [γN = [ γNF 1 · · · γNF n
γNR 1 · · · γNR n

]T , WN =
[WNF

WNR
] ∈ R

6n×2n , and

WNQ
=




wNQ 1 06×1 · · · 06×1

06×1
. . .

...
...

. . . 06×1

06×1 · · · 06×1 wNQ n


 (20)

for Q = F,R.
2) Tangential Relative Velocities: Friction forces between a

link and the ground depend on the relative velocities in the
(eI

x , eI
y )-plane between the snake robot links and the ground.

These velocities are termed tangential relative velocities. First,
the relative velocities between the front part of link i and the
ground along the eI

x - and eI
y -axis, γ′

TF i x
and γ′

TF i y
, will be

deducted. Subsequently, the relative velocities for the front part
of link i along the projection of the longitudinal axis of the link
onto the (eI

x ,eI
y )-plane γTF i x

and transversal to the link γTF i y
,

will be deducted from γ′
TF i x

and γ′
TF i y

, respectively. The same
type of notation applies for the rear part of link i: γ′

TR i x
, γ′

TR i y
,

γTR i x
, and γTR i y

. The tangential relative velocities are found
much in the same way as for γNF i

and γNR i
. Consequently, we

find the velocities of the points PF i and PRi along the eI
x - and

eI
y -axis. Hence, by looking at (17), we see that the tangential

relative velocities of the contact points on the front part of the
link can be found as

γ′
TF i ζ

= (I e
I
ζ )

T
I vPF i

=⇒ γ′
TF i ζ

= (w′
TF i ζ

)Tui (21)

for ζ = x, y, where

w′
TF i ζ

= [ (I e
I
ζ )

T −(I e
I
ζ )

T
I r̃Gi CF i

RI
Bi

]T . (22)

The relative velocities between the rear part of the link and
the ground are found by exchanging I vPF i

with I vPR i
in (21)

γ′
TR i ζ

= (I e
I
ζ )

T
I vPR i

=⇒ γ′
TR i ζ

= (w′
TR i ζ

)Tui (23)

for ζ = x, y, where

w′
TR i ζ

= [ (I e
I
ζ )

T −(I e
I
ζ )

T
I r̃Gi CF i

RI
Bi

]T . (24)

The tangential relative velocities for the front and rear part of
the link i are combined in vectors

γ′
TQ i

= W′T
TQ i

ui (25)

for Q = F, R, where γ′
TQ i

= [ γ′
TQ i x

γ′
TQ i y

]T and

W′
TQ i

=
[
w′

TQ i x
w′

TQ i y

]
∈ R

6×2 . (26)

Until now, the relative velocities have been given in the di-
rections along the eI

x - and eI
y -axes. In order to calculate the

friction forces longitudinal and transversal to a link, we need
to know the corresponding relative velocities in these directions
in the (eI

x ,eI
y )-plane. To calculate these velocities, we intro-

duce for each link a frame Πi with axes (eΠ i
x ,eΠ i

y ,eΠ i
z ), where

I e
Π i
z = I e

I
z , and

I e
Π i
x =

Axy IeBi
z

‖Axy Ie
Bi
z ‖

, IeΠ i
y = IeI

z × IeΠ i
x

‖ IeI
z × Ie

Π i
x ‖

(27)

where Axy = diag([1, 1, 0]). Hence, it holds that

RI
Π i

= [ I e
Π i
x I e

Π i
y I e

Π i
z ] . (28)

Notice that I e
Π i
x = I e

Bi
z and I e

Π i
y = I e

Bi
x when link i is

lying flat on the ground with I e
Bi
y = I e

I
z . Since only the motion

in the (eI
x ,eI

y ) -plane is of interest, we define

R̄I
Π i

= DTRI
Π i

D, D =
[

1 0 0
0 1 0

]T

. (29)

Since we now have that γ ′
TQ i

= R̄I
Π i

γTQ i
, Q = F, R, the rela-

tive velocity between the floor and the front part of link i, with
respect to frame Πi , can be found from (25) as

γTQ i
= WT

TQ i
ui (30)

where γTQ i
= [γTQ i x

γTQ i y
]T , WTQ i

= W′
TQ i

R̄I
Π i

, for
Q = F,R.

A vector that gathers all γTF i
and γTR i

is found from

γT = WT
T u (31)

where

γT = [γT
TF 1

· · · γT
TF n

γT
TR 1

· · · γT
TR n

]T (32)

WT = [WTF
WTR

] ∈ R
6n×4n , and WTF

, WTR
are found

similarly to (20) by replacing the zero vectors with 06×2 and
replacing the vectors wNF i

, wNR i
with the matrices WTF i

,
WTR i

, respectively.
3) Relative Rolling Velocities: Up until now, we have only

considered the translational relative motion of the snake robot
links. However, we also need to consider rotational relative
motion to add a damping effect on the rotational motion in the
form of rotational friction. In order to do this, we introduce a
relative rolling velocity as

γVQ i
= DT (

I rCQ i SQ i
× I ωIBi

)
(33)

for Q = F, R, where γVQ i
= [ γVQ i x

γVQ i y
]T and

I rCQ i SQ i
= LSCi I e

I
z is the vector pointing (upwards) from

the body-fixed point CQi
on the link end sphere momentarily

closest to the ground, toward the center SQi
of the end sphere.

By employing the identity

I rCQ i SQ i
× I ωIBi

= I r̃CQ i SQ i
RI

Bi Bi
ωIBi

(34)

we find that the relative rolling velocity can be written as

γVQ i
= WT

VQ i
ui (35)
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where

WT
VQ i

= [O2×3 DT
I r̃CQ i SQ i

RI
Bi

] (36)

for Q = F,R.
We gather all the relative rolling velocities as

γV = WV u (37)

where γV = [γT
VF 1

· · · γT
VF n

γT
VR 1

· · · γT
VR n

]T , WV =
[WVF

WVR
] ∈ R

6n×4n , and WVF
, WVR

are found simi-
larly to (20) by replacing the zero vectors with 06×2 and replac-
ing the vectors wNF i

, wNR i
with the matrices WVF i

, WVR i
,

respectively.

B. Bilateral Constraints: Joints

Bilateral constraints introduced by the cardan joint between
two adjacent links prohibit relative motion between the links in
4 DOFs. The relative velocities between the links along these
DOFs need to be found in order to calculate the bilateral con-
straint forces in the joints. These relative velocities are found
from the gap functions (12) and (13).

Relative velocities for the translational gap between link i
and link i + 1 are defined as γJ iχ

:= ġJi χ
, for i = 1, . . . , n − 1,

where χ = x, y, z. By employing (12), we find that

γJi χ
= wT

Ji χ

[
ui

ui+1

]
(38)

where

wJi χ
=




(I e
I
χ)

−
(
(I e

I
χ)T Li

2 RI
Bi Bi

ẽBi
z

)T

−(I e
I
χ)

−
(
(I e

I
χ)T(Li+1/2)RI

Bi + 1 Bi + 1 ẽ
Bi + 1
z

)T


 . (39)

A relative velocity for the rotational gap is defined as γJi φ
:=

ġJi φ
, for i = 1, . . . , n − 1. Hence,

γJi φ
= wT

Ji φ

[
ui

ui+1

]
(40)

where

wJi φ
=




03×1

−
(
RI

Bi Bi
ẽBi

y

)T(
RI

Bi + 1 Bi + 1 e
Bi + 1
x

)
03×1

−
(
RI

Bi + 1 Bi + 1 ẽ
Bi + 1
x

)T(
RI

Bi Bi
eBi

y

)


 . (41)

Let γJi
= [ γJi x

γJi y
γJi z

γJi φ
]T , then we can gather all

the relative velocities concerned with the bilateral constraints in
one vector

γJ = WT
J u (42)

where γJ = [γT
J1

· · ·γT
Jn −1

]T ,

WJ =




WT
J 1 04×6 · · · 04×6

04×6 WT
J 2

...
...

. . . 04×6

04×6 · · · 04×6 WT
J n−1




T

∈ R
6n×4(n−1)

(43)
and WJ i = [wJi x

wJi y
wJi z

wJi φ
] ∈ R

12×4 , for i =
1, . . . , n − 1.

V. NONSMOOTH DYNAMICS

The starting point for describing the dynamics of the snake
robot is the equality of measures as introduced in [23]. The
equality of measures includes equations of motion for impact-
free motion as well as impact equations. The impact equations
give rise to impulsive behavior [24]. In this section, we employ
the results from Sections III and Section IV in order to find the
equality of measures for the snake robot.

A. Equality of Measures

An equality of measures describes the dynamics of the snake
robot within the context of nonsmooth dynamics. Velocity
jumps, usually associated with impacts, are modeled to occur
instantaneously. Hence, the time derivative of a velocity does
not always exist. By considering the generalized velocity to be
a function t �→ u(t) of locally bounded variation on a time in-
terval I = [ tA , tE ] [23], the function u(t) admits a right u+

and left u− limit for all t ∈ I , and its time derivative u̇ exists
for almost all t ∈ I . To be able to obtain u from integration, we
need to use the differential measure du, where it is assumed that
the measure can be decomposed into

du = u̇ dt +
(
u+ − u−)

dη (44)

where dt denotes the Lebesgue measure and dη denotes the
atomic measure where

∫
{t1 } dη = 1. The total increment of u

over a compact subinterval [t1 , t2 ] of I is found as∫
[t1 ,t2 ]

du = u+(t2) − u−(t1) (45)

and is due to a continuous change (i.e., impact-free motion)
stemming from u̇ as well as possible discontinuities in u due
to impacts within the time interval [t1 , t2 ]. Equation (45) is also
valid when the time interval reduces to a singleton {t1}, and
if a velocity jump occurs for t = t1 , then (45) gives a nonzero
result.

From the earlier notation, the Newton–Euler equations as an
equality of measures can be written in a general form as

M (q, t) du − h (q,u, t) dt − dR = τC dt (46)

where the mass matrix M(q, t), the vector of smooth forces
h(q,u, t), the force measure of possibly atomic impact impul-
sions dR, and the vector of applied torques τC will be described
in the following.
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For our choice of coordinates, the mass matrix is diagonal
and constant

M(q, t) = M =




M1 0
. . .

0 Mn


 ∈ R

6n×6n (47)

where

Mi =
[

miI3×3 03×3

03×3 Bi
ΘGi

]
(48)

with Bi
ΘGi

= diag([Θ1i Θ1i Θ3i ]), mi is the mass of
link i, and Θ1i and Θ3i are its moments of iner-
tia. The smooth forces, here consisting of gravity and
gyroscopic accelerations, are described by h(q,u, t) =
h(u) = [hT

1 (u1) · · · hT
n (un )]T ∈ R

6n , where hi(ui) =
[0 0 − mig − (Bi

ω̃IBi Bi
ΘGi Bi

ωIBi
)T ]T .

The force measure dR accounts for all the contact forces and
impulses. The contact efforts that constitute dR are found from
the force laws given in Section V-B. Let I be the set of all active
contacts with the ground

I(t) = {a | gNa
(q(t)) = 0} ⊆ {1, 2, . . . , 2n} (49)

where gNa
is the ath element of the vector gN in (10). Now, the

force measure is written as

dR = WJ dP J +
∑
a∈I

(WN )a dPNa

+
∑
a∈I

(
(WT )2a−1 dPTa x

+ (WT )2a dPTa y

)
+

∑
a∈I

(
(WV )2a−1 dPVa x

+ (WV )2a dPVa y

)
(50)

where dPNa
is the normal contact impulse measure between

the ground and a link, dPTa x
and dPTa y

are the tangential con-
tact impulse measures (friction) between the floor and a link,
longitudinal and transversal to the link (i.e., along the eΠ i

x - and
eΠ i

y -axis), respectively, dPVa x
and dPVa y

are the rotational con-
tact impulse measures (friction) between the floor and a link,
along the eI

x -axis and eI
y -axis, respectively, dP J is the contact

impulse measure due to the bilateral constraints in the joints
(these constraints are always active), and the lower case sub-
scripts on the W matrices indicate which column of the matrix
is used. The position of the elements of the vectors dP N , dP J ,
dP T , and dP V corresponds to the position of the elements in
their respective vector of relative velocity γN , γJ , γT , and γV .
Hence, looking at, for example, the expression (32) for γT , we
see that, e.g., dP Tn + 1 = [dPT (n + 1 )x

dPT (n + 1 ) y
]T corresponds

to γTR 1
, and we know from this that dP Tn + 1 is the tangential

contact impulse measure between the ground and the rear part
of link 1.

The contact impulse measures can be decomposed in the same
way as for du. Let us take the normal contact impulse measure
as an example. The measure can be written as

dPNa
= λNa

dt + ΛNa
dη (51)

where λNa
is the Lebesgue-measurable force and ΛNa

is the
purely atomic impact impulse. The same decomposition can
also be performed for the other three impulse measures.

The control torques τC are described in Section V-C.

B. Constitutive Laws for the Contact Forces

In this section, we will introduce set-valued force laws for
normal contact and Coulomb friction. These laws will all be
formulated on velocity level using the relative contact velocities
γ given by (19) and (31). Subsequently, the set-valued force
laws are formulated as equalities in Section V-B.4 using the
so-called proximal point function in order to include the force
laws in the numerical simulation [22].

1) Normal Contact Force: The normal contact between a
link and the floor is described by the unilateral constraint

gN ≥ 0, λN ≥ 0, gN λN = 0 (52)

which is known as Signorini’s law [22]. Here, λN is the normal
contact force and gN is the gap function. Subscripts Ri and Fi
are temporarily removed for simplicity. This set-valued force
law states that the contact is impenetrable, gN ≥ 0, the con-
tact can only transmit pressure forces λN ≥ 0, and the contact
force λN does not produce work gN λN = 0. The force law can
be expressed on different kinematic levels: displacement level
(52), velocity level, and acceleration level. In the following, we
express all force laws for closed contact on velocity level, while
all forces vanish for open contacts. Then, by employing con-
cepts of convex analysis, the relationship between the relative
velocity and the Lebesgue-measurable normal contact force (not
an impulse) may be written for a closed contact gN = 0 as an
inclusion on velocity level

−γN ∈ NCN
(λN ) (53)

where the convex set CN = {λN | λN ≥ 0} = R
+ is the set

of admissible contact forces, and NCN
is the normal cone to

CN [22]. The inclusion (53) is equivalent to the condition

γN ≥ 0, λN ≥ 0, γN λN = 0 (54)

for a closed contact gN = 0. Before explaining the force law
(53), let us first mention that this force law describes the impen-
etrability of sustained contact, i.e., gN = 0 and γN = 0, as well
as the detachment: γN > 0 ⇒ λN = 0. However, (53) does not
cover impacts (where we have impulses instead of forces). For
impacts, we need a similar impact law described at the end of
this section.

From the definition [22], [28] of a normal cone NC (x) to a
convex set C at the point x ∈ R

n , we have that NC (x) = {0},
for x ∈ int C, and NC (x) = {∅}, for x /∈ C. If x is on the
boundary of C, then NC (x) is the set of all vectors y ∈ R

n

that are normal to x. For example, for CN = R
+ , we have

NCN
(0) = R

− and NCN
(2) = 0.

The force law (53) only covers finite-valued contact efforts
during impulse-free motion, i.e., all velocities are absolutely
continuous in time. When a collision occurs in a rigid-body
setting, then the velocities will be locally discontinuous in order
to prevent penetration. The velocity jump is accompanied by an
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Fig. 4. Relationship between tangential relative velocity and friction force.
The set CT is in gray.

impact impulse ΛN , for which we will set up an impact law. The
relative velocity admits, similarly to the velocities u, a right γ+

N

and a left γ−
N limit. The impact law for a completely inelastic

impact at a closed contact can now be written as

−γ+
N ∈ NCN

(ΛN ), CN = {ΛN | ΛN ≥ 0} = R
+ (55)

which is equivalent to the condition

γ+
N ≥ 0, ΛN ≥ 0, γ+

N ΛN = 0. (56)

Notice that the force law (53) and impact law (55) is on the same
form. We have earlier stated that there is no need for an explicit
switch between equations when, e.g., an impact occurs. This be-
comes evident in Section VII with the introduction of the contact
impulse (that includes both forces and possible impulses) for the
discretization of the system dynamics.

The force law for normal contact given in this section can also
be employed to describe normal contact with obstacles. This is
described in [29].

2) Coulomb Friction Force: In this section, we describe the
friction force between the snake robot and the ground when
the snake robot slides along the ground surface as set-valued
Coulomb friction. Similarly to the force law (53) for normal
contact, we describe the constitutive description for friction us-
ing an inclusion on a normal cone. The friction force λλT , in
the 2-D tangent plane to the contact point, is modeled with an
anisotropic Coulomb friction law

−γT ∈ NCT
(λλT ) (57)

where γT is a relative sliding velocity, NCT
is the normal cone

to the set CT , and the ellipse

CT =

{
λλT |

λ2
Tx

(µTx
λN )2 +

λ2
Ty(

µTy
λN

)2 ≤ 1

}
(58)

is the set of admissible friction forces, where λλT =
[λTx

λTy
]T , and µTx

, µTy
> 0 are directional friction coeffi-

cients along the eΠ
x - and eΠ

y -axis from (27), respectively. Fig. 4
depicts the set CT (in gray), together with the relationship be-
tween the tangential relative velocities and the friction force
when it is on the boundary of CT .

The force law (57) distinguishes between two cases: if the
friction force is in the interior of CT or on its boundary. If
λλT ∈ int CT , then it holds that NCT

(λλT ) = 0 from which we

conclude that γT = 0. Obviously, this corresponds to the stick
phase of the friction law. If the friction force is on the boundary
of CT , then the normal cone NCT

(λλT ) consists of the outward
normal ray on the ellipse CT at the point λλT .

The advantage to formulate the friction law as the inclusion
(57) now becomes apparent. First of all, note that (57) is a
spatial friction law. Such a spatial friction law cannot properly
be described by a set-valued sign function. Some authors [10],
[12] model the spatial contact with two sign functions for the
two components of the relative sliding velocity using two fric-
tion coefficients µTx

and µTy
. Others smoothen the (set-valued)

sign function with a smoothening function, e.g., some arctan-
gent function. This results in a very steep slope of the friction
curve near zero relative velocity. Such an approach is very cum-
bersome for two reasons. First of all, stiction cannot properly be
described: an object on a slope will with a smoothened friction
law always slide. Second, the very steep slope of the friction
curve causes the differential equations of motion to become nu-
merically stiff. Summarizing, we see that (57) describes spatial
Coulomb friction taking stiction properly into account.

While the force law (57) only describes the Coulomb friction
during impulse-free motion, we also need a force law for impact
impulses λλT . These are found from the exact same form as (57)
by replacing γT with its right limit γ+

T and inserting λλT instead
of λλT both in (57) and in the convex set CT in (58).

3) Rolling Friction: The snake robot modeled in this paper
has cylindrical links which means that it may roll sideways. The
spatial Coulomb friction described in the previous section arises
from translational motion. In addition, there is also a force that
resists the rolling motion of the snake robot. We model this force
as a “rolling friction” λλV ∈ R

2 (additional subscripts omitted
for simplicity) in this paper by employing the same set-valued
force law as for the tangential Coulomb friction force λλT in
Section V-B2. However, we consider the rolling friction to be
isotropic, and therefore, we find the rolling friction as

−γV ∈ NCV
(λλV ) (59)

where

CV = {λλV | ‖λλV ‖ ≤ µV λλN } (60)

and µV > 0 is the friction coefficient.
The general form of the force law (59) is also valid for impact

impulses ΛV in the same way as for the tangential Coulomb
friction described in Section V-B2. Subsequently, the impact
impulse is found by exchanging γV with γ+

V and λλV with ΛV

in (59) and (60).
4) Constitutive Laws as Projections: An inclusion cannot be

directly employed in numerical calculations. Hence, we trans-
form the force laws (53), (57), and (59) that have been stated as
an inclusion to a normal cone, into an equality. This is achieved
through the so-called proximal point function proxC (x), which
equals x if x ∈ C and equals the closest point in C to x if x /∈ C.
The set C must be convex. Using the proximal point function,
we transform the force laws into implicit equalities [22]

−γκ ∈ NCκ
(λκ) ⇐⇒ λκ = proxCκ

(λκ − rκγκ) (61)

where rκ > 0 for κ = N,T, V .
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Fig. 5. Control torques. (a) Side view. (b) Top view.

C. Joint Actuators

Each cardan joint has 2 DOF that are controlled by two joint
actuators. The actuators are modeled as controlled torques ap-
plied around the axes of rotation for the joint. Fig. 5 illustrates
how the direction of positive rotation is defined. Define for link i
a positive control torque τvi

to give a positive rotational velocity
around e

Bi + 1
x and a positive control torque τhi

to give a positive
rotational velocity around eBi

y , both with respect to link i. The
total torque τCi

∈ R
3 applied to link i is

τCi
=


 0

τhi

0


− RBi

Bi−1


 0

τh ( i−1 )

0


+ RBi

Bi + 1


 τvi

0
0


−


 τv ( i−1 )

0
0




(62)
for i = 1, . . . , n, where the relative rotation matrix is

RBi

Bi + 1
=

(
RI

Bi

)T
RI

Bi + 1
(63)

and τh0 = τv0 = τhn
= τvn

= 0. The vector of the torques ap-
plied to all links τC ∈ R

6n is

τC = [01×3 τT
C1

01×3 τT
C2

· · · 01×3 τT
Cn

]T . (64)

VI. MOTION PATTERN AND JOINT CONTROL

In this section, we will define the joint angles and show how
to control them for snake robot locomotion.

A. Accessing and Control of Joint Angles

The joint angles are not directly accessible from the nonmini-
mal coordinates, but can be calculated from the relative rotation
matrices RBi

Bi + 1
in (63). Assume that RBi

Bi + 1
is constructed from

successive rotations (Euler angles with the zyx-convention) αzi
,

αhi
, and αvi

: RBi

Bi + 1
= Rαz i

Rαh i
Rαv i

. Since we have cardan

joints, let Rαz i
= I3×3 be the rotation around the eBi

z -axis, and
let Rαh i

and Rαv i
describe the rotation around eBi

y and e
Bi + 1
x ,

respectively. Hence, αhi
describes the DOF of the cardan joint

between link i and link i + 1 that moves link i and i + 1 from

side to side, and αvi
describes the lifting and lowering of the

links. The rotation angles can now be found from the relative
rotation matrix (63) as

αvi
= tan−1

[
(RBi

Bi + 1
)32

(RBi

Bi + 1
)33

]
(65)

αhi
= −sin−1(RBi

Bi + 1

)
31 (66)

for i = 1, . . . , n − 1, where (RBi

Bi + 1
)32 is the element of the

matrix RBi

Bi + 1
in row 3 column 2, etc.

The rotational velocities of the joints are found directly from
the rotational velocities of the links. We define the rotational
velocity for sideways motion as ωhi

= dT
2 ωJi

and lifting motion
as ωvi

= dT
1 ωJi

for the joint between link i and i + 1, where
dT

1 = [ 1 0 0 ], dT
2 = [ 0 1 0 ], and

ωJi
= Bi + 1 ωIBi + 1 −

(
RBi

Bi + 1

)T
Bi

ωIBi
. (67)

Let the desired values of αhi
and αvi

be αhi ,r and αvi ,r ,
respectively. In addition, the reference values for the joint ve-
locities ωhi

, ωvi
are given by α̇hi ,r and α̇vi ,r , respectively. Then,

proportional derivative (PD) controllers for the joints are

τhi
= Khp

(αhi
− αhi ,r ) + Khd

(ωhi
− α̇hi ,r ) (68)

τvi
= Kvp

(αvi
− αvi ,r ) + Kvd

(ωvi
− α̇vi ,r ) (69)

for i = 1, . . . , n − 1, where Khp
, Khd

, Kvp
, and Kvd

are posi-
tive constants and equal for all i.

B. Motion Pattern and Reference Angles

A general expression for defining some of the most common
motion patterns for snake robots is given by

αhi ,r = Ah sin (ωht + (i − 1)δh) + ψh (70)

αvi ,r = Av sin (ωv t + (i − 1)δv + δ0) + ψv (71)

for i = 1, . . . , n − 1, where αhi ,r and αvi ,r are the reference
angles for αhi

and αvi
, and Ah , Av are the amplitude of oscil-

lation, ωh , ωv are the angular frequencies, δh , δv are the phase
offsets, and ψh , ψv are the angle offsets, for the horizontal and
vertical waves, respectively [3]. The offset between the vertical
and horizontal waves is given by δ0 .

Two motion patterns that biological snakes use have been em-
ployed in this paper. The first motion pattern is called “lateral
undulation” (also denoted “serpentine crawling”) where loco-
motion is obtained by propagating horizontal waves from the
front to the rear of the snake body while exploiting roughness
in the terrain and digging its body into the ground. These latter
two properties are the motivation for our anisotropic friction
model. The second motion pattern is called “sidewinding” and
is mainly used by biological snakes moving on uniform sur-
faces [30]. Parts of the snake are lying relatively stationary on
the ground while the rest of the body is lifted and moved forward
resulting in a looping movement during locomotion.
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VII. NUMERICAL ALGORITHM—TIME STEPPING

The numerical solution of the equality of measures is found
with an algorithm introduced in [23] (see also [22] and [24])
called the time-stepping method described in the following. The
methods applied in Section VII-A and Section VII-B are based
on [27], except for the direct calculation of the bilateral contact
impulsions that we have introduced.

A. Time Discretization

Let tl denote the time at time step l = 1, 2, 3, . . . , where the
step size is ∆t = tl+1 − tl . Consider the (usually very short)
time interval I = [tA , tE ] and let tA = tl . Define qA = q(tA ),
uA = u(tA ) that are admissible with respect to both the unilat-
eral and bilateral constraints, and the unit norm constraint on the
Euler parameters. Our goal is now to find qE = q(tE ). We use
the states of the system at the mid point tM = tA + (1/2)∆t
of the time interval I to decide which contact points are ac-
tive (i.e., which links are touching the ground). The coordinates
(positions and orientations) at tM are found from

qM = qA +
∆t

2
F(qM )uA (72)

where we have used the equality ṗ = (1/2)H̄T
Bi

ωIBi
[26],

F(qM ) =




FH1 07×6 · · · 07×6

07×6 FH2 · · ·
...

...
. . . 07×6

07×6 · · · 07×6 FHn


 (73)

FHi
=

[ I3×3 03×3

04×3
1
2
H̄T

i

]
∈ R

7×6 (74)

and H̄i is found from (6) by inserting the orientation of link
i at time tM . The approximation of the matrices WΞ , where
Ξ = N,T, J, V , on the time interval I is given as WΞM :=
WΞ(qM ). The same applies for hM := h(qM ,uA ). A numer-
ical approximation of the equality of measures (46) over the
time interval I can now be written as

M (uE − uA ) − hM ∆t − S − WJ M P J = τC ∆t (75)

where

S =
∑
a∈I

(WN M )a PNa
+ [(WT M )2a−1 (WT M )2a ] P Ta

+
∑
a∈I

[(WV M )2a−1 (WV M )2a ] P Va
(76)

and PNa
, P Ta

, P Va
, and P J are the contact impulsions dur-

ing the time interval I . They consist of forces λ acting during
I , and possible impulses Λ acting in the time interval I . The
subscript a denotes which link the contact impulsions are acting
on, and is employed the same way as for the contact impulse
measures in (50). To find the positions and orientations qE at
the end of the time interval, we need to solve (75) for uE and
the contact impulsions. The contact impulsions associated with
ground contact are found using the prox functions described in

Section V-B4 for the set of active contact points I. Hence, the
constitutive laws (61) for the ground contact impulsions may
now be written as

PNa
= proxCN

(PNa
− rN γN Ea

) (77)

P Ta
= proxCT

(
P Ta

− rT γT Ea

)
(78)

P Va
= proxCV

(
P Va

− rV γV Ea

)
(79)

where rN , rT , rv > 0, a ∈ I, γN Ea
is the ath element of the

vector γN E , and γT Ea
, γV Ea

are the vectors of the (2a − 1)th
and 2ath elements of γT E and γV E , respectively, and

γN E = γN (qM ,uE ) = WT
N M uE (80)

γT E := γT (qM ,uE ) = WT
T M uE (81)

γV E := γV (qM ,uE ) = WT
V M uE . (82)

The constitutive laws (77)–(82) are valid for completely in-
elastic impact.

The constraints on the joints are bilateral, and it therefore,
holds that γJ E := γJ (qE ,uE ) = WT

J M uE = 0∀ t. This al-
lows us to directly compute the associated contact impulsions
P J by solving (75) for P J with uE = 0. By solving for P J

and solving (75)–(81), we find that

qE = qM +
∆t

2
F(qM )uE . (83)

B. Solving for the Contact Impulsions

In this section, we show how to calculate the contact
impulsions PNa

, P Ta
, P Va

, and P J in (76) for a ∈ I. The
numerical integration algorithm used in this paper is called a
time-stepping method that allows for a simultaneous treatment
of both impulsive and nonimpulsive forces during a time step.
The frictional contact problem, defined by (75)–(82) and finding
P J , needs to be solved for each time step tl . A modified Newton
algorithm [31] has been chosen to solve the nonlinear problem
iteratively because of its simplicity. Let the superscript (k)

denote the current iteration of the modified Newton algorithm,
and initialize all contact impulsions (for active contacts) with
the value they had the last time their corresponding contact point
was active. Let those that were active be initialized with their
previous values. Now, the algorithm may be written as follows.

1) Solve

P
(k)
J =

(
WT

J M M−1WT
J M

)−1

·
[
WT

J M uA−WT
J M M−1

(
hM ∆t+S(k)+τC ∆t

)]
(84)

where

S(k) =
∑
a∈I

(WN M )a P
(k)
Na

+
∑
a∈I

[(WT M )2a−1 (WT M )2a ] P
(k)
Ta

+
∑
a∈I

[(WV M )2a−1 (WV M )2a ] P
(k)
Va

. (85)
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2) Solve u
(k+1)
E from

M
(
u

(k+1)
E −uA

)
−hM ∆t − S(k) −WJ M P

(k)
J =τC ∆t.

(86)
3) Solve for a ∈ I

P
(k+1)
Na

= proxCN

(
P

(k)
Na

− rN γ
(k+1)
N Ea

)
(87)

P
(k+1)
Ta

= proxCT

(
P

(k)
Ta

− rT γ
(k+1)
T Ea

)
(88)

P
(k+1)
Va

= proxCV

(
P

(k)
Va

− rV γ
(k+1)
V Ea

)
(89)

where

γ
(k+1)
N E = WT

N M u
(k+1)
E (90)

γ
(k+1)
T E = WT

T M u
(k+1)
E (91)

γ
(k+1)
V E = WT

V M u
(k+1)
E . (92)

Repeat steps 1)–3) until∥∥P
(k+1)
N − P

(k)
N

∥∥ +
∥∥P

(k+1)
T − P

(k)
T

∥∥
+ ‖P (k+1)

V − P
(k)
V ‖ < ε (93)

where ε > 0 is a user-defined tolerance. Subsequently, qE is cal-
culated from (83) and the calculation of the time step is finished.
Usually, a higher value of the parameters rN , rT , rV yields a
faster convergence rate at the risk of divergence. However, a
general convergence result for the modified Newton algorithm
does not exist. The constitutive laws (87)–(92) used to describe
the contact impulses are given on velocity level. This means
that the bilateral constraints on position level, and the unit norm
constraint on the Euler parameters are, in general, not satisfied.
A solution to these problems is suggested in the following.

C. Constraint Violation

After the modified Newton algorithm has converged and qE

has been found from (83), the unit-norm constraint ‖pi‖ = 1 is
satisfied from pnew

Ei
= pEi

/‖pEi
‖, for i = 1, . . . , n, where pEi

is the quaternion describing the orientation of link i. The new
quaternions should now be inserted into qE .

The links have to be projected so that the bilateral constraints
(12), (13) are satisfied. This is done in a two-step process while
keeping the position and orientation of link 1 fixed. First, the
orientation of the positions of the remaining links are altered so
that gJi φ

= 0 is satisfied for i = 1, . . . , n − 1. In this process, all
the eBi

z -axes are kept fixed, while the eBi
x and eBi

y are changed,
if necessary. Subsequently, the remaining links are translated so
that gJi χ

= 0 is satisfied for i = 1, . . . , n − 1, χ = x, y, z. The
new positions of the links should now be inserted into qE . Now,
the positions qE and velocities uE can be used as the initial
states for the next time step tl+1 .

VIII. SIMULATIONS AND EXPERIMENTAL VALIDATION

In this section, we present simulations of the mathemati-
cal model together with experiments with a real snake robot.
First, we present the model and simulation parameters. Second,
simulation results of the motion pattern lateral undulation are

given with orthotropic friction. Finally, the latter three sections
present the experimental setup together with simulation and ex-
perimental results of the motion patterns lateral undulation and
sidewinding with isotropic friction.

A. Model and Simulation Parameters

The snake robot Aiko in Fig. 1 was used as a basis for the
parameters in the mathematical model. The model parameters
are for i = 1, . . . , n: Aiko has n = 11 links. The length Li =
0.122 m and radius LSCi

= 0.0525 m of each link is found
by measuring one of the links used on Aiko. Moreover, Aiko
weighs 7.5 kg, and we therefore, assume that each link weighs
mi = 7.5/11 kg ≈ 0.682 kg since all links are approximately
equal. The distance from the center of gravity of a link to the
center of the spheres used for contact with the ground in the
model is calculated to be LGSi

= 0.0393 m by assuming a
45◦ maximum joint deflection and that the cylindrical parts of
the model should not come into each other for a maximum
joint angle. The moments of inertia Θ1i = 9.63 × 10−4 kg·m2 ,
Θ3i = 2.35 × 10−4 kg·m2 are calculated by assuming each link
to be a cylinder of length Li and radius LSCi

with a uniform
mass distribution.

The controller parameters are Khp
= 40 Nm, Khd

= 0.2
Nm·s, Kvp

= 800 Nm, and Kvd
= 0.2 Nm·s. The accelera-

tion of gravity is g = 9.81 m/s2 . The simulation parameters
are as follows: rN = 0.1, rT = 0.01, rV = 0.05, tstart = 0
s, tstop = 15 s, ∆t = (tstop − tstart)/N seconds, and N =
4000(tstop − tstart). The Coulomb friction coefficients are
given together with the presentation of the simulations since
we have not employed the same friction coefficients for all
simulations.

B. Lateral Undulation: Simulation Results

In this section, we let the snake robot move by the motion pat-
tern lateral undulation (see Section VI). We include this motion
pattern since it is commonly used for snake robots [1], [10]–[13],
[32]–[34], and we therefore, want to show that the desired (for-
ward) motion is obtained for our model. We do not provide an
experimental validation in this section since our snake robot
Aiko does not have the orthotropic friction property necessary
for efficient locomotion by lateral undulation on a flat surface.
However, we compare simulation and experimental results for
lateral undulation with isotropic friction in Section VIII-D.

The Coulomb friction coefficients µTx
= 0.1 (along the snake

robot body) and µTy
= 0.5 (transversal to the body) are em-

ployed for the simulation of lateral undulation in this section.
Hence, orthotropic friction is obtained. The motion pattern is im-
plemented using the joint reference angles given by (70) and (71)
with the parameters Ah = 30π/180 rad, ωh = 80π/180 rad/s,
δh = −50π/180 rad, Av = δv = ψv = ψh = δ0 = 0 rad, and
ωv = 0 rad/s. We let the snake robot start in a curved posture
with its center line approximately along the eI

x -axis and with its
initial joint angles given by αhi

(0) and αvi
(0), respectively.

Fig. 6 shows the position of the center of gravity of the middle
link (i = 6) of the snake robot. We see that the snake robot
behaves as expected: the snake robot starts moving steadily
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Fig. 6. Simulation results (solid line) of the position (x6 , y6 ) of the center of
gravity of link 6 in the (eI

x , eI
y )-plane during lateral undulation. The model is

simulated with orthotropic friction.

forward mainly along the eI
x -axis. The forward motion would

not have been the result for an isotropic friction model (i.e.,
µTx

= µTy
). In that case, the snake robot would have moved

slowly backward as we will see in Section VIII-D. In order
to increase the velocity of a snake robot, even with isotropic
friction, the snake robot may push against external objects to
move forward. Such an approach is elaborated on in, e.g., [35]
and [36].

C. Experimental Setup

The snake robot Aiko (Fig. 1) used in the experiments was
built in 2006 at the NTNU/SINTEF Advanced Robotics Labo-
ratory,1 Trondheim, Norway. Aiko has ten 2 DOF cardan joints
and 11 links. The length Li and mass mi of the links are the
same as given for the mathematical model in Section VIII-A.
The metal sphere used as a “face” in Fig. 1 was removed in
the experiments to obtain a uniform weight distribution along
the snake robot. The friction coefficients in the model were
calculated from the measurements obtained by dragging Aiko
from a scale along the particle board. The friction coefficients
were found to be µTx

= µTy
= 0.2, and these values will be

employed in the simulations in the remainder of this paper.
Each 2 DOF cardan joint was actuated by two 6 W dc motors.

The two motors were controlled by a controller with dynamic
feedback [37] implemented on an Atmel ATmega128 microcon-
troller. The snake robot joint reference angles were sent with a
frequency of 10 Hz from a PC, via a controller area network
(CAN) bus to the microcontrollers. The position of the center
of the middle link (link 6) was tracked using a Vicon MX Mo-
tion Capture System with four cameras (MX3) together with
Matlab Simulink. The Vicon programme (Vicon iQ 2.0) ran on
a computer with four Intel Xeon 3 GHz processors and 2 GB
RAM. The logging of motion data was synchronized in time
through a Transmission Control Protocol (TCP) connection be-
tween the PC that controlled Aiko and the Vicon-computer at
the startup of the transmission of the desired snake robot joint

1Online Available: http://www.sintef.com/snakerobots

Fig. 7. Position of link 6 during lateral undulation with isotropic friction on a
flat plane: simulation (dashed line) and experimental (solid line) results.

angles. Data logging was performed at 20 Hz. We have chosen
to let the position of link 6 represent the position of the snake
robot, because then we filter any transient behavior of the snake
robot that might occur at its ends, and it is thus, easier to focus
on the general motion of the snake robot. The center of gravity
of the whole snake robot (instead of a specific link) can also be
advantageous to be used to represent the position of the snake
robot. However, such an approach is cumbersome to realize with
our Vicon system.

Particle boards were used as the ground surface.

D. Lateral Undulation: Simulation and Experimental Results

In this section, we compare simulation and experimental re-
sults for lateral undulation with isotropic friction. The reference
joint angles are calculated from (70) and (71) with the parame-
ters Ah = 40π/180 rad, ωh = 80π/180 rad/s, δh = −50π/180
rad, Av = δv = δ0 = 0 rad, ωv = 0 rad/s, and ψh = ψv = 0,
for both the simulation and the experiment. We let the snake
robot start in a curved posture with its center line approximately
along the eI

x -axis and with its initial joint angles given by αhi
(0)

and αvi
(0). Fig. 7 shows both the position of link 6 calculated

from the mathematical model in the simulation and the position
logged from the experiment with Aiko. We see that the snake
robot moves slowly backward along the eI

x -axis. From Fig. 7,
we see that the 3-D model display the same trend in motion as
observed in the experiment. However, the distance traveled is
greater in the simulation, and we have tried varying the friction
coefficients (while still keeping isotropic friction), but this did
not seem to have a noticeable effect on the simulation results.
The difference in distance traveled may come as a consequence
of that the model of the snake robot is able to control its joints
more accurately, and thus, is able to reach the maximum am-
plitude when it is required to do so. Also, this suggests that the
friction contact between the snake robot and the ground surface
is even more complex than what has been accounted for in the
model. A more elaborate list of possible sources of errors is
given in Section VIII-F.

We note from these simulation and experimental results that
the direction of locomotion by lateral undulation with isotropic
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Fig. 8. Top-down view of snake robot postures during simulation of startup
with the “soft-start” approach for sidewinding.

friction is the same as the direction of the waves that is propa-
gated along the body of the snake robot. This is coherent with
results found in [38], where this phenomenon is elaborated on.

E. Sidewinding: Simulation and Experimental Results

In this section, we present and compare the simulation results
and the experimental results for the motion pattern sidewinding.
The joint reference angles are found from (70) and (71) with
the parameters Ah = 30π/180 rad, ωh = 80π/180 rad/s, δh =
−50π/180 rad, Av = 10π/180 rad, ωv = ωh , δv = δh , δ0 =
90π/180 rad, and ψh = ψv = 0 rad, for both the simulation
and the experiment. We employ a “soft start” approach during
the startup of the snake robot from its initial (straight) posture
to avoid large steps in the reference signal. To this end, we
override the expressions (70) and (71) and set αhi

(t) = 0 rad
until the reference signal is within |αhi

(t)| ≤ 3π/180 rad for
the first time after startup. The same applies for αvi

. The shape
of the snake robot during startup with the “soft-start” approach
is illustrated in Fig. 8 for sidewinding.

Fig. 9 illustrates how Aiko and the model move during the 15 s
simulation of sidewinding locomotion. Since all the simulations
have now been performed, a note on the computational cost is
appropriate. All simulations were performed on a Pentium-M
1.8 GHz computer running Matlab R2006a. For 20 s simu-
lations, it took on average about 7.1 min to simulate 1 s of
sidewinding motion and only 1.3 min to simulate 1 s of lateral
undulation. The difference in simulation speed arises from that
the 3-D motion during sidewinding is more complex than pla-
nar motion by lateral undulation. The simulation speed can be
greatly increased by instead implementing the model in, for ex-
ample, C++. However, we have chosen to first implement the

Fig. 9. Aiko (bottom) and simulated snake robot (top) during sidewind-
ing. The images show the snake robot at t = 0 s (straight posture), t = 5 s,
t = 10 s, and t = 15 s.

Fig. 10. Position of link 6 during sidewinding on a flat plane: simulation
(dashed line) and experimental (solid line) results. The triangle and the circle
mark the end of the paths.

model in Matlab in order to keep the time it takes to implement
the model relatively short.

Figs. 10 and 11 display the position of link 6 for the 3-D model
and Aiko during sidewinding. We observe from the figures that
the model almost follows the eI

y -axis, while Aiko steadily turns
somewhat to the right. In addition, the model covers a greater
distance than Aiko. We see from Figs. 10 and 11(b) that the sim-
ulation results have the same trend and approximate frequency
as the experimental results along the eI

y -axis. The variance in
trend is more noticeable along the eI

x -axis due to the turning mo-
tion of Aiko. Moreover, a slight initial difference between the
orientation of Aiko and the model may contribute to the discrep-
ancy in heading. We discuss in Section VIII-F various reasons
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Fig. 11. Position of link 6 during sidewinding on a flat plane:simulation
(dashed line) and experimental (solid line) results.

for the differences between the simulation and experimental re-
sults. For sidewinding, we believe that one of the most important
differences between the 3-D model and Aiko is that Aiko is not
able to control its joints accurately. This is particularly the case
for vertical (lifting) motion that is needed for sidewinding. By
inspecting Aiko closely during the experiment, we noticed that
a large part of its body was touching the ground at the same
time. This was not the case in the simulation where the snake
robot joints were accurately controlled that resulted in that most
if its body was lifted from the ground during locomotion.

We observe from Figs. 10 and 11(b) that Aiko sometimes
slides a little backward (at t ≈ 5 s, t ≈ 9 s, and t ≈ 14 s). We
have tried to reproduce this phenomenon in the 3-D model by
lowering and increasing the friction coefficient. We have also
tried a variety of anisotropic friction properties, but without any
luck. The backward motion might be a result of Aiko not being
able to lift its links properly. The links that are supposed to be
lifted and moved forward are instead sometimes dragged along
the particle board. This results in a friction force that acts in
the opposite direction of the desired motion of the snake robot.
This friction force might result in that some of the parts that
are supposed to be lying stationary on the ground are instead
pushed slightly backward.

F. Discussion of the Experimental Validation

We see from Figs. 10 and 11 that the simulation and exper-
imental results compare fairly well. However, the differences
between the two results need to be addressed, and we list the
most important possible sources of errors in the following. These
effects have not been included in the mathematical model.

1) Aiko has a noticeable free play in the joints of about 3–5◦.
This results in that the control of the joint angles is not
completely accurate and a joint angle might not be able to
reach its desired angle.

2) The dynamics of the actuators are not modeled. Hence,
the actuators in the models are extremely strong and fast,
and we are able to accurately control the actual angle of
each joint to its desired position. This is not the case for
Aiko where the joint motors sometimes saturate and are

unable to track the desired joint movement precisely. This
particularly the case for vertical motion where larger joint
torques are required.

3) The exoskeleton of Aiko is not modeled precisely since
this would require a great deal of consideration of the ge-
ometry of the snake robot, and this would severely com-
plicate the expressions for contact with the environment.

4) For each cardan joint, there is, in fact, a 2.2 cm distance
between the rotational axes for the yaw and pitch motion.
However, to simplify the kinematics, we have assumed
that the axes intersect.

5) The Stribeck effect [22] is not included in the model of
friction. The Stribeck effect states, roughly speaking, that
friction forces acting on a body is reduced just after it is
set in motion.

6) The varnish on the underside of the snake robot has been
worn down. This has resulted in that the snake robot links
slide easier when rolled slightly to one of the sides where
the varnish is still present.

7) There was a time delay between the startup of the snake
robot and the startup of the logging of position data. This
delay ranged between 50 and 150 ms.

8) The physical parameters of the snake robot may be slightly
incorrect, partly since we assume that each link has a
uniform mass distribution.

The list of possible errors is long, and it is difficult to de-
termine what issues are the most important in order to explain
the differences between the simulation and experimental results.
Also, the main factors may vary depending on which motion pat-
tern is tested. To this end, we believe that for lateral undulation
1) and 2) are the most important reasons for the differences since
the snake robot is always lying flat on the ground. Moreover, for
sidewinding locomotion, 1)–5) affect the comparison the most.

Even though there are several sources of error, we see from
the plots that compare the simulation and experimental results
that the model gives a satisfactory qualitative description of the
snake robot dynamics. The model is not accurate enough to
precisely predict the quantitative motion of the snake robot, but
it should be possible to improve the accuracy of the model by
taking into account the various sources of errors listed before.
However, at its current state, the model gives a clear indication
of how the snake robot will move during sidewinding and lateral
undulation with isotropic friction and extending the model will
require a considerable amount of work in tailoring the model to
the specific snake robot Aiko. Hence, the process will have to
be repeated for new snake robot designs. Instead of presenting a
model with such a very close resemblance to Aiko, we present
a model for synthesis and testing of new 3-D motion patterns.
Moreover, the comparisons between the simulation and experi-
mental results suggest that our model is valid for this purpose.

IX. CONCLUSION AND FURTHER WORK

In this paper, we present a 3-D nonsmooth mathematical
model that enables synthesis and testing of 3-D snake robot
motion patterns. Experiments show that the models describe in
a realistic manner how a real snake robot will behave during
locomotion.
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The model of the snake robot is developed based on the
framework of nonsmooth dynamics and convex analysis. This
framework allows us to easily incorporate the contact forces with
the ground, together with an accurate description of the spatial
Coulomb friction. In addition, even though we employ a hybrid
model, there is no need for an explicit switch between system
equations (when, for example, an impact occurs) since both the
nonimpulsive forces and the impact impulses are covered by
the same force law together with that we use the time-stepping
method for numerical treatment. The use of nonminimal abso-
lute coordinates results in a constant and diagonal mass matrix
and an effective way of writing the system equations. Such a
constant mass matrix is beneficial in the numerical treatment
since it needs only to be inverted once and not in each time step
during simulation.

Simulations of the snake robot during the serpentine motion
pattern lateral undulation is performed. The simulation result
shows that the orthotropic friction model based on Coulomb’s
law of dry friction is reasonable since the snake robot moves
forward.

Experiments are performed with the snake robot Aiko in
Fig. 1 for the serpentine motion patterns lateral undulation and
sidewinding with isotropic friction. Back-to-back comparisons
between simulation results and experimental results with these
motion patterns are given to validate the mathematical model.
The simulation and experimental results compare satisfactorily.

The simulation results together with the experimental valida-
tion show that the mathematical model presented in this paper
gives a satisfactory description of how our snake robot moves in
the real world. The model cannot be employed directly (as, e.g.,
a state estimator) to predict the exact motion of our snake robot.
However, the comparisons with experimental results show that
the model is suitable for developing and testing motion patterns
in order to see how a real snake robot will move for a given
motion pattern.

We show in this paper how to develop a 3-D mathematical
model of a snake robot on a flat ground surface. Further work
will consist of extending the model to include other ground
shapes such as stairs. Also, the model will be used to develop
and test new 3-D motion patterns for snake robots. Moreover,
the optimization of nonsmooth systems is a growing field of
research and the 3-D model presented in this paper may, one
day, be employed to optimize gaits with respect to, for example,
speed or energy efficiency.

It is hoped that this paper can inspire other communities
working on robot manipulators to try out the powerful modeling
techniques available in the framework of nonsmooth dynamics
and convex analysis.
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