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Abstract — The maximal Lyapunov exponent of a nonsmooth system is the lower bound for
the proportional feedback gain necessary to achieve full state synchronization. In this paper, we
prove this statement for the general class of nonsmooth systems in the framework of measure
differential inclusions. The results are used to estimate the maximal Lyapunov exponent using
chaos synchronization, which is illustrated using a mechanical impact oscillator.

1 Introduction

The spectrum of Lyapunov exponents is an important characteristic of limit sets. It measures the ex-
ponential convergence or divergence of nearby trajectories, thereby capturing the sensitivity of solutions
with respect to initial conditions [38]. An infinitesimal sphere of perturbed initial conditions will deform
into an ellipsoid under the flow of a smooth dynamical system [43]. The Lyapunov exponents capture the
average exponential growth or decay rate of the principal axes of the ellipsoid and the maximal Lyapunov
exponent captures the long-term behavior of the dominating direction. For example, an attractive limit
cycle has only negative Lyapunov exponents (except possibly one at zero corresponding to the freedom of
phase [20]). A positive maximal Lyapunov exponent implies instability of the limit set (i.e., equilibrium,
limit cycle, periodic or quasi-periodic solution) or it can be an indication for a chaotic attractor [19,21,25].

The existence of the Lyapunov exponents is a subtle question for non-conservative systems [32,40]. The
mathematic foundation for the existence is given by the multiplicative ergodic theorem of Oseledec [31]
(cf. [37]). It states that, if there exists an invariant measure of the flow, then the Lyapunov exponents
exist for almost every point with respect to that measure. For further literature on ergodic theory of
differentiable dynamical systems, see [4, 12].

Algorithms to find the spectrum of Lyapunov exponents for smooth systems are well established [5,
6, 12]. The spectrum can be computed numerically by linearizing the differential equations along the
nominal solution. Time integration of the linearized equations yields the fundamental solution matrix
from which the spectrum of Lyapunov exponents can be obtained. Numerical errors during the integration
process will always turn any initial error in the maximally expanding direction [21,29] (i.e., the direction
corresponding to the maximal Lyapunov exponent), which can be compensated by repeatedly applying
a Gram-Schmidt reorthonormalization. The estimation of Lyapunov exponents from experimental time
series of systems with unknown dynamics has been presented in [11,17,39,44].

Dynamical systems with a discontinuous right-hand side exhibit discontinuities in the evolution of
the fundamental solution matrix. The jumps can be captured using a saltation matrix and the jump
conditions for transversal crossings of the discontinuity surfaces are given by the authors of [2] in their
study of the stability of periodic motion. The numerical computation of the Lyapunov exponents with
jump conditions including the motion on sliding surfaces is shown in [7]. The theory of [2] has been
applied to Filippov-type systems in [23] with an emphasis on mechanical systems with Coulomb friction.
In [28], a model based algorithm for the calculation of the spectrum of Lyapunov exponents is presented
for dynamical systems with discontinuous motion and illustrated using the example of a one-dimensional



mechanical oscillator with Coulomb friction. The method presented in [28] has been applied in [1] to the
rocking block example.

Two diffusively coupled identical smooth systems achieve synchronization despite the complicated
dynamics of the individual systems if the coupling parameter is large enough [34]. The minimal value
of the coupling parameter for which the synchronization set is (attractively) stable is determined by the
maximal Lyapunov exponent of the individual systems. This relation arises from the competitive behavior
of the separation due to the trajectory instability (dominated by the maximal Lyapunov exponent) and
the convergence due to the coupling. Estimating the maximal Lyapunov exponent using the critical
coupling necessary for synchronization has been proposed in [15, 45] for continuous nonlinear systems
and has been continued in [16, 46], which also includes the study of the behavior after the instability
point of synchronized chaos. The relation between the maximal Lyapunov exponent and stable chaos
synchronization has been presented in the more recent work [3] in the context of complex networks.

The method of estimating the maximal Lyapunov exponent using chaos synchronization has been
considered in [41] for nonsmooth systems and in [42] for discrete maps. In [41,42], however, the increase
of the initial perturbation is assumed to be uniform in time, which is only the case if the Jacobian of the
vector field (continuous or discrete) is constant (i.e., for linear time-invariant systems). The application
of this method has been presented in [14] for a multi-body system with dry friction.

In this paper, we consider the class of nonsmooth systems with solutions of special locally bounded
variation, which can be written in the framework of measure differential inclusions [9, 24, 26, 27]. We
prove for this general class of nonsmooth systems that the critical coupling is indeed given by maximal
Lyapunov exponent as long as the maximal Lyapunov exponent exists.

The paper is organized as follows. We first restrict ourselves to smooth systems in Section 2 before
we state the main result for nonsmooth systems in Section 3. The results are illustrated in Section 4
using a mechanical impact oscillator and conclusions are given in Section 5.

2 Smooth systems

The dynamics of a smooth system is given by

dx

dt
= f(x, t), (1)

where the vector field f : Rn×R → Rn is continuously differentiable in its first argument and continuous
in its second argument. We denote the solution of (1) for the initial conditions x(t0) = x0 as x(t) =
φ(t,x0, t0), where the dependence on initial conditions is written explicitly. We introduce the perturbed
solution (x + ∆x)(t) = φ(t,x0 + κe, t0) obtained using the perturbed initial conditions x0 + κe with
∥e∥ = 1 and κ > 0 small. The dynamics of the perturbation ∆x(t) is obtained as

d (∆x)

dt
= f(x+∆x, t)− f(x, t) = A(t)∆x+ o (∥∆x∥) , (2)

where A(t) := ∂f(x,t)
∂x

∣∣∣
φ(t,x0,t0)

is the linearization of the vector field f along the unperturbed solution and

o denotes the (small) Landau-order symbol1. The perturbation ∆x tends to zero for κ → 0. Therefore,
we introduce the normalized perturbation ξ(t, e, t0) := limκ→0 ξκ(t,e, t0), where ξκ(t, e, t0) :=

∆x
∥∆x0∥ =

φ(t,x0+κe,t0)−φ(t,x0,t0)
κ . The limit exists because O (∥∆x∥) = O (∥∆x(t0)∥) = O (κ), where O denotes

1The (small) Landau-order symbol o is defined as g(x) ∈ o (h(x)) ⇔ gi(x) ∈ o (h(x)) ∀i ⇔ limx→a

∣∣∣ gi(x)h(x)

∣∣∣ = 0 ∀i with
a ∈ R.
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the (big) Landau-order symbols2. Taking the limit κ → 0 of (2), divided by κ, yields

lim
κ→0

dξκ
dt

= A(t)ξ. (3)

The vector field f is continuously differentiable in its first argument, which implies local uniform conver-
gence of limκ→0

dξκ
dt . Using [36, Theorem 7.17] together with (3) yields

dξ

dt
= A(t)ξ. (4)

Let Φ(t, t0) be the fundamental solution matrix, which is the solution to the matrix differential equa-
tion dΦ

dt = A(t)Φ for the initial conditions Φ(t0, t0) = I, where I is the identity matrix. Then,
the solution of the normalized difference ξ can be written as ξ(t, e, t0) = Φ(t, t0)e. Furthermore,
let σi(Φ) =

√
eigi (ΦΦT) be the singular values of Φ. The spectrum or Lyapunov exponents is given

by λi = limt→∞
1
t lnσi, where the maximal Lyapunov exponent is denoted by λmax = maxi{λi}. The

largest singular value is the spectral norm, that is, the matrix norm induced by the Euclidean norm. The
maximal Lyapunov exponent can therefore be defined by

λmax := max
e

lim
t→∞

1

t
ln ∥ξ(t, e, t0)∥. (5)

Up to this point, we have discussed the perturbation dynamics of the smooth dynamical system (1)
and we have defined the maximal Lyapunov exponent in (5) using the normalized perturbation ξ. In the
following, we consider the error dynamics of two identical smooth systems with a unidirectional diffuse
coupling. For this purpose, system (1) is accompanied by a replica together with a proportional error
feedback as

dx

dt
= f(x, t),

dy

dt
= f(y, t)− k(y − x),

(6)

where k ∈ R is the coupling gain. The initial conditions are chosen as x(t0) = x0 and y(t0) = x0 + κe,
which are the same initial conditions as for the perturbation dynamics. Let z := y − x denote the

synchronization error of the coupled dynamics (6). Using the linearization A(t) = ∂f(x,t)
∂x

∣∣∣
φ(t,x0,t0)

, the

error dynamics is described by

dz

dt
= A(t)z − kz + o (∥z∥) . (7)

The error z is of the order of the initial error z0, which itself is proportional to κ. Analogously to the
normalized perturbation ξ, we define the normalized synchronization error as ζ(t, e, t0) := limκ→0

z
κ .

Taking the limit κ → 0 of (7), divided by κ, and using z ∈ O (κ) yields

dζ

dt
= A(t)ζ − kζ. (8)

By comparing (4) and (8), we find that

ζ = Φ(t, t0)e
−k(t−t0)e = ξe−k(t−t0). (9)

2The (big) Landau-order symbol O is defined as g(x) ∈ O (h(x)) ⇔ gi(x) ∈ O (h(x)) ∀i ⇔ lim supx→a

∣∣∣ gi(x)h(x)

∣∣∣ < ∞ ∀i
with a ∈ R.
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Local synchronization of the coupled system (6) is achieved if there exists a constant c > 0 such
that limt→∞ ∥z(t)∥ = 0 ∀∥z0∥ < c. Hence, local synchronization is achieved if the limit of the nor-
malized synchronization error ζ(t, e, t0) as t → ∞ is zero for all e. The ‘worst case’ of all possible limits
can be written using (9) together with (5) as

max
e

lim
t→∞

∥ζ∥ = max
e

lim
t→∞

∥ξ∥e−k(t−t0) = lim
t→∞

e(λmax−k)(t−t0),

from which follows that local synchronization of the coupled system (6) is achieved if (and only if) the
coupling gain k is larger than the maximal Lyapunov exponent λmax:

lim
t→∞

∥ζ(t,e, t0)∥ = 0 ∀e if and only∗ if k > λmax. (10)

The star in (10) denotes that k = λmax is excluded in the converse. No statement can be made for the
case where k is exactly equal to λmax because, for this case, the stability and attractivity is determined
by higher order terms.

Remark 1. Every strange attractor has a positive maximal Lyapunov exponent [25, 43] and, thus, a
positive critical coupling gain kcrit (i.e., the minimal coupling gain necessary to achieve local synchro-
nization). However, the derived results are also applicable to other limit sets than chaotic attractors.
For example, an attractive equilibrium has a negative maximal Lyapunov exponent and thus the critical
coupling gain is negative as well.

If the initial conditions are exactly orthogonal to the direction corresponding to the maximal Lyapunov
exponent, then the synchronization error can tend to zero for a coupling gain k is smaller than λmax.
However, any slight error or uncertainty will turn any initial error in the direction of maximal expan-
sion [21,29], that is,

∃e : lim
t→∞

∥ζ(t, e, t0)∥ = 0 ⇒ lim
t→∞

∥ζ(t,e, t0)∥ = 0 for almost all e.

Therefore, in practice, local synchronization is achieved if and only if the coupling gain k is larger than
the critical coupling gain kcrit = λmax.

3 Non-smooth systems

The non-smooth dynamics is written in the form of a measure differential inclusion [9, 24,26,27] as

dx

dµ
∈ F(x, t). (11)

The solution for the admissible initial conditions x−(t0) = x0 is denoted by x(t) = φ(t,x0, t0). Solutions
are generally discontinuous, but assumed to be of special locally bounded variation. The density dx

dµ
in (11) is the density of the measure dx with respect to a positive Radon measure dµ and, according
to [8, Theorem 5.8.8]3, can be defined as

dx

dµ
(t) := lim

ε→0

dx(Iε)

dµ(Iε)
, (12)

where Iε(t) := (t−ε, t+ε) with ε > 0 is the open time interval centered at t. The solutions are absolutely
continuous almost everywhere (a.e.) (i.e., for almost all t ∈ R with respect to the Lebesgue measure)

3Theorem 5.8.8 in [8] considers closed intervals (closed balls), but the interval Iε are open. The theorem is nevertheless
applicable since every Radon measure is regular on a σ-compact Hausdorff space (here, R equipped with the standard
topology) according to [13, Chapter 8, Corollary 1.13].
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and have at most countably many discontinuities, at which the solutions are undefined. However, the
one-sided limits x−(t) = limτ→0,τ<0 x(t + τ) and x+(t) = limτ→0,τ>0 x(t + τ) are well defined on the
entire time axis.

As for the smooth case in Section 2, we consider a reference solution x(t) = φ(t,x0, t0) and a
perturbed solution (x+∆x)(t) = φ(t,x0 + κe, t0) for system (11), where the initial conditions x0 + κe
with ∥e∥ = 1 an κ > 0 are assumed to be admissible for all κ ≥ 0 . Furthermore, we define the

normalized perturbation as ξ(t, e, t0) := lim
κ→0,κ/∈Eξ

κ(t)
ξκ(t, e, t0), where ξκ(t, e, t0) :=

∆x
κ and Eξ

κ(t) :=

{κ ∈ R+
0 | ξ−κ (t,e, t0) ̸= ξ+κ (t, e, t0)}. To ensure that the normalized perturbation exists a.e., we will make

the following assumption.

Assumption 1. The difference between two solutions of system (11) is almost everywhere of the order
of the initial difference, that is, φ(t,x0 + κe, t0)−φ(t,x0, t0) ∈ O (κ) a.e.

Assumption 1 together with O (κ) ⊂ o (1) implies continuous dependence on initial conditions, which
can be written as limκ→0φ(t,x0 + κe, t0)−φ(t,x0, t0) = 0 ∀e. Furthermore, continuous dependence on
initial conditions implies uniqueness of solutions in forward time.

Remark 2. Assumption 1 is generally restrictive for non-smooth systems. For example, mechanical
systems subjected to frictionless unilateral constraints do generally not have continuity on initial condi-
tions [33]. Furthermore, the stated assumption does omit grazing trajectories (i.e., ‘collisions’ with zero
relative velocity) because the Poincaré map at a grazing trajectory has an infinite slope (due to a square-
root term in the Poincaré map [10, 30]). Assumption 1 does, however, allow for accumulation points,
which is a phenomenon describing (countably) infinitely many impact events in a finite time interval.

If Assumption 1 is not met, then the normalized difference ξ(t,e, t0) tends (or jumps) to infinity in
finite time. In this case, the maximal Lyapunov exponent does not exist and, considering two identical,
coupled systems, no local synchronization can be achieved with a finite coupling gain k.

If the unperturbed solution has a discontinuity at time t, then the one-sided limits of φ(t,x0 +
κe, t0) − φ(t,x0, t0) are not necessarily of order O (κ), because the discontinuities of φ(t,x0 + κe, t0)
and φ(t,x0, t0) do generally not occur at the same points in time for κ > 0. However, Assumption 1
implies that the discontinuity points of φ(t,x0 + κe, t0) tend to the ones of φ(t,x0, t0) such that ξ exist
for almost all t ∈ R, which is illustrated in Figure 1. It shows an unperturbed solution φ(t,x0, t0) with
a discontinuity at t = 1 and a kink at t = 5. The perturbed solutions φ(t,x0 + κe, t0) tend almost
everywhere to the unperturbed solutions for κ → 0, that is, limκ→0∆x = 0 a.e. The jump in φ yields a
peak in the normalized perturbation ξ (i.e., ξ is undefined at this point) and the kink in φ yields a jump
in ξ. Therefore, due to Assumption 1, the normalized perturbation ξ(t, e, t0) exists for almost all t.

Since (11) has a unique solution in forward time by Assumption 1, the density dx
dµ is unique as well

and the dynamics can be written as a measure differential equation

dx

dµ
= f(x−, t), (13)

where f(x−, t) ∈ F(x, t).
The dynamics of the perturbation ∆x is governed by d∆x

dµ = f(x− + ∆x−, t) − f(x−, t). Dividing
by κ and substituting the definition of ξκ yields

dξκ
dµ

=
f(x− + κξ−κ , t)− f(x−, t)

κ
. (14)

The density dξκ
dµ does not uniformly converge to dξ

dµ for κ → 0 at the discontinuity points. This is the case
because the discontinuities of φ(t,x0 + κe, t0) and φ(t,x0, t0) do generally not coincide (see illustrative
example depicted in Figure 1 at t = 1). Therefore, we cannot simply take the limit of (14) as κ → 0. In
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Fig. 1: Assumption 1 implies that the normalized perturbation ξ(t, e, t0) exists for almost all t.

order to deal with this problem, we do not consider the density dξκ
dµ for a singleton {t}, but rather on an

open time interval Iε(t) = (t− ε, t+ ε) with ε > 0. Using the notation (f ⊙ dµ)(Iε) =
∫
Iε
fdµ [13], the

‘widened’ density dξκ
dµ for the interval Iε is obtained as

dξκ(Iε)

dµ(Iε)
=

(f(x− + κξ−κ , t)⊙ dµ)(Iε)− (f(x−, t)⊙ dµ)(Iε)

κdµ(Iε)
. (15)

The right-hand side of (15) can be considered as the time average over the interval Iε of the one-sided
directional derivative of f in the direction of ξ−κ . The vector field f is non-differentiable and not even
semidifferentiable [35]. In the following, we show that the one-sided directional derivative is nevertheless
well-defined if the solution and its perturbation is not discontinuous on the boundary of the open time
interval Iε. Therefore, we rewrite (15) as

dξκ(Iε)

dµ(Iε)
=

(f(x− + κξ−κ , t)⊙ dµ)([t0, t+ ε) \ [t0, t− ε])− (f(x−, t)⊙ dµ)([t0, t+ ε) \ [t0, t− ε])

κdµ(Iε)

=
(φ−(t+ ε,x0 + κe, t0)−φ+(t− ε,x0 + κe, t0))− (φ−(t+ ε,x0, t0)−φ+(t− ε,x0, t0))

κ dµ(Iε)

=
1

dµ(Iε)

φ−(t+ ε,x0 + κe, t0)−φ−(t+ ε,x0, t0)

κ

− 1

dµ(Iε)

φ+(t− ε,x0 + κe, t0)−φ+(t− ε,x0, t0)

κ
.

The limits lim
κ→0,κ/∈Eξ

κ(t+ε)
φ−(t+ε,x0+κe,t0)−φ−(t+ε,x0,t0)

κ and lim
κ→0,κ/∈Eξ

κ(t−ε)
φ+(t−ε,x0+κe,t0)−φ+(t−ε,x0,t0)

κ

exist according to Assumption 1 as long as the solution φ is not discontinuous on the boundary of Iε.
Considering only values of ε /∈ Eφ

ε := {ε ∈ R+ |φ−(t− ε,x0, t0) ̸= φ+(t− ε,x0, t0) ∨ φ−(t+ ε,x0, t0) ̸=
φ+(t+ ε,x0, t0)}, we obtain lim

κ→0,κ/∈Eξ
κ(t±ε)

dξκ(Iε)
dµ(Iε)

= dξ(Iε)
dµ(Iε)

, where Eξ
κ(t± ε) = Eξ

κ(t− ε) ∪ Eξ
κ(t+ ε).

In the following step, we let ε tend to zero while omitting the values ε ∈ Eφ
ε and use limε→0 Iε = {t}

and (12) to obtain limε→0,ε/∈Eφ
ε

dξ(Iε)
dµ(Iε)

= dξ
dµ . Together with (15), the density dξ

dµ is obtained as

dξ

dµ
= lim

ε→0,ε/∈Eφ
ε

lim
κ→0,κ/∈Eξ

κ(t±ε)

(f(x− + κξ−, t)⊙ dµ)(Iε)− (f(x−, t)⊙ dµ)(Iε)

κdµ(Iε)
. (16)

Remark 3. The solution to (16) generally cannot be written using a fundamental solution matrix Φ(t, t0)
in the form ξ(t, e, t0) = Φ(t, t0)e. The reason is not the discontinuous behavior of ξ as this can be
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captured using a discontinuous fundamental solution matrix as ξ+(t, e, t0) − ξ−(t, e, t0) = S(t, t0)e,
where S(t, t0) := Φ+(t, t0) − Φ−(t, t0) is referred to as saltation matrix. The use of a fundamental
solution matrix implies ξ(t,−e, t0) = −ξ(t, e, t0), which does generally not hold for non-smooth systems.

Similarly to (5) in the smooth case, we use the normalized perturbation ξ to define the maximal
Lyapunov exponent for a non-smooth system as

λmax := max
e

lim sup
t→∞,t/∈Eξ

t

1

t
ln ∥ξ(t,e, t0)∥, (17)

where Eξ
t is the discontinuity set of ξ.

In the following, we consider the synchronization problem in order to compare the maximal Lyapunov
exponent to the critical coupling gain. The coupled dynamics consists of the non-smooth system (13)
and a replica with an error feedback of the form

dx

dµ
= f(x−, t),

dy

dµ
= f(y−, t)− k(y − x)

dt

dµ
.

(18)

The error feedback with the coupling gain k ∈ R has only a density with respect to the Lebesgue
measure dt because we do not consider any impulsive feedback.

Remark 4. The coupled dynamics (18) does not generally arise from (11) accompanied with dy
dµ ∈

F(y, t) − k(y − x) dt
dµ , because the (unique) selection f(y−, t) ∈ F(y, t) is generally influenced by the

coupling term.

The same initial conditions as for the perturbation ∆x are chosen, that is, x−(t0) = x0 and y−(t0) =
x0 + κe. The dynamics of the synchronization error z = y − x is obtained as

dz

dµ
= f(x− + z−, t)− f(x−, t)− kz

dt

dµ
. (19)

Analogously to the smooth case, let the normalized synchronization error be defined as ζ(t,e, t0) :=

lim
κ→0,κ/∈Eζ

κ(t)
ζκ(t, e, t0), where ζκ(t, e, t0) :=

z
κ and Eζ

κ(t) := {κ ∈ R+
0 | ζ−κ (t, e, t0) ̸= ζ+κ (t, e, t0)}. The

limit ζ exists a.e. according to Assumption 1. It will prove advantageous to introduce ζ̂κ := ζκe
k(t−t0)

together with its limit ζ̂ = lim
κ→0,κ/∈Eζ̂

κ(t)
ζ̂κ = ζek(t−t0). The density of ζ̂κ w.r.t. dµ is obtained from

(19) as

dζ̂κ
dµ

=
f(x− + κ e−k(t−t0)ζ̂−κ , t)− f(x−, t)

κ e−k(t−t0)
, (20)

where d(ζ̂κe−k(t−t0))
dµ = d(ζ̂κ)

dµ e−k(t−t0) − kζ̂κe
−k(t−t0) dt

dµ has been used. As for the normalized perturbation,
we cannot directly take the limit of (20) for κ → 0. Therefore, the same steps as performed between (14)

and (16) are applied to (20) in order to obtain the density dζ̂
dµ as

dζ̂

dµ
= lim

ε→0,ε/∈Eφ
ε

lim
κ→0,κ/∈Eζ̂

κ(t±ε)

(
f(x− + κ e−k(t−t0)ζ̂−, t)⊙ dµ

)
(Iε)− (f(x−, t)⊙ dµ) (Iε)

κ e−k(t−t0) dµ(Iε)
. (21)

Due to e−k(t−t0) > 0 ∀t ∈ R, we can replace κ in (21) by κ̂ = κ e−k(t−t0) > 0 and obtain

dζ̂

dµ
= lim

ε→0,ε/∈Eφ
ε

lim
κ̂→0,κ̂/∈Eζ̂

κ̂(t±ε)

(
f(x− + κ̂ζ̂−, t)⊙ dµ

)
(Iε)− (f(x−, t)⊙ dµ) (Iε)

κ̂dµ(Iε)
. (22)
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The initial perturbation ∆x−(t0) = κe and the initial synchronization error z−(t0) = κe are identical
and, thus, the initial normalized perturbation ξ−(t0, e, t0) = e and the initial normalized synchronization
error ζ−(t0, e, t0) = e are identical as well. Together with ζ̂−(t0, e, t0) = ζ−(t0, e, t0)e

k(t0−t0) = e we
obtain that the initial conditions of ξ and ζ̂ are identical. Furthermore, the dynamics of ξ, given by
(16), and the dynamics of ζ̂, given by (22), are identical as well, which yields ξ(t, e, t0) = ζ̂(t, e, t0) a.e.
Therefore, using ζ(t, e, t0) = ζ̂(t, e, t0)e

−k(t−t0), the relation between the normalized disturbance ξ and
the normalized synchronization error ζ is obtained as

ζ = ξe−k(t−t0) a.e. (23)

Furthermore, the set of discontinuities Eξ
t of ξ and Eζ

t of ζ coincide. The only difference between the
non-smooth result (23) and the smooth result (9) is that ζ and ξ are discontinuous in the non-smooth
case and, thus, not defined on the entire time axis.

From (23) together with the definition of the maximal Lyapunov exponent in (17) we obtain the
maximal increase of an infinitesimal disturbance along solutions as

max
e

lim
t→∞,t/∈Eζ

t

∥ζ∥ = max
e

lim
t→∞,t/∈Eξ

t

∥ξ∥e−k(t−t0) = lim
t→∞

e(λmax−k)(t−t0).

Local synchronization of the coupled systems (18) is therefore achieved if (and only if) the coupling gain k
is larger than the maximal Lyapunov exponent λmax, that is,

lim
t→∞,t/∈Eζ

t

∥ζ(t, e, t0)∥ = 0 ∀e if and only∗ if k > λmax. (24)

The star in (24) denotes that k = λmax is excluded in the converse, because, as in the smooth case, no
statement can be made for the case where k is exactly equal to λmax.

Remark 5. In the case of finite time convergence or superstable limit sets [43] (e.g., an accumulation point
for a one-dimensional mechanical system) the decay of any initial perturbation is faster than exponential.
The maximal Lyapunov exponent for these limit sets is equal to −∞. Therefore, the synchronization
gain k can be chosen negative and arbitrarily large and still achieve local synchronization. However, the
result (24) is only applicable as long as the synchronization error is small.

As for the smooth case, any slight error or uncertainty will eventually turn any initial error in the
direction of maximal expansion, which yields

∃e : lim
t→∞,t/∈Eζ

t

∥ζ(t, e, t0)∥ = 0 ⇒ lim
t→∞,t/∈Eζ

t

∥ζ(t, e, t0)∥ = 0 for almost all e.

Therefore, the maximal Lyapunov exponent can be estimated using the minimal proportional feedback
gain for which synchronization is achieved, that is, kcrit = λmax.

4 Numerical example

We apply the method of estimating the maximal Lyapunov exponent using chaos synchronization to
the example of a mechanical Duffing-oscillator with two geometric unilateral constraints as depicted in

Figure 2. The state vector x =
(
q, u

)T
consists of the coordinate q and velocity u. The impact oscillator

is excited by an external, harmonic forcing f0 cos (ωt). The further system parameters are the mass m,
the nonlinear stiffness coefficient k(q) = k̄ (q2 − 1) and the viscous damping coefficient d.

The opposing unilateral constraints located at q = ±qc can be written as g =
(
q + qc, −q + qc

)T ≥ 0,
which yields C = [−qc, qc] as the admissible set for q. The force directions the corresponding constraint

forces λ and constraint impulses Λ are given by W = dg
dq

T
. The force law is given by Signorini’s condition

8



Fig. 2: Duffing oscillator with two opposing geometric unilateral constraints.

and the generalized Newton’s impact law with a restitution coefficient e is chosen to describe the impact
process [18].

The Radon measure dµ is decomposed in a Lebesgue measure dt and an atomic measure dη =
∑

i dδti ,
which is the sum of Dirac point measures dδti at the discontinuity points ti [18]. The dynamics can be
written in the form of a measure differential inclusion (11) as

dx

dµ
=

(
u dt
dµ

1
m

(
−d u− k̄ (q2 − 1)q + f0 cos (ωt)

)
dt
dµ + 1

mWP

)
, (25)

where P =
{
λ dt

dµ +Λ dη
dµ | −λ ∈ NR+

0
(g), −Λ ∈ Hq

(
1
2 (ġ

+ + ġ−)
)}

. The sets NR+
0
and Hq are used to

describe the force and impact laws and are further discussed in [22]. The dynamics described by the
measure differential inclusion (25) can be written in the explicit form (13) as

dx

dµ
=

(
u dt
dµ

1
m proxTC(q)

(
−d u− k̄ (q2 − 1)q + f0 cos (ωt)

)
dt
dµ + (1 + e)

(
proxTC(q) (u

−)− u−
)

dη
dµ

)
,

where proxTC(q) is the proximal point function to the tangent cone

TC(q) =


R+
0 for −qc = q,

R for −qc < q < qc,

R−
0 for q = qc.

The viscous damping coefficient d is chosen as bifurcation parameter. A brute force diagram is
generated for the system parameters m = k̄ = f0 = ω = 1, qc = 0.5, e = 0.65 for the range d ∈ [0, 2.3]
and is depicted in Figure 3 (top). It is generated using a sweep down of the bifurcation parameter and
shows the position qkP at the Poincaré sections (here, stroboscopic map with period time T = 2π

ω ). The
critical coupling is determined numerically for the solutions depicted in the bifurcation diagram. The
critical coupling is used as estimate of the maximal Lyapunov exponent of the corresponding solution and
is depicted in Figure 3 (bottom). The estimated maximal Lyapunov exponent is positive for the chaotic
attractors and negative (λmax at zero is not considered) during the periodic windows. The coupled system
is considered to be synchronized if the synchronization error becomes smaller than a certain threshold and
a finite time horizon is chosen in order that the algorithm terminates. Therefore, the maximal Lyapunov
exponent is generally overestimated, especially for small values of the damping coefficient d.

5 Conclusions

The critical coupling gain for local synchronization of two identical nonsmooth systems with unidirectional
diffuse coupling is given by the maximal Lyapunov exponent. This statement holds for the general class
of nonsmooth systems with solutions of special locally bounded variation under the assumption that the
maximal Lyapunov exponent exists.

9



Fig. 3: Brute force diagram (top) and estimation of the maximal Lyapunov exponent λmax (bottom) with the viscous damping
coefficient d as bifurcation parameter. The chaotic solutions correspond to λmax>0, while the periodic windows correspond to λmax<0.

The maximal Lyapunov exponent can directly be estimated using chaos synchronization in computer
simulations. Using this method in an experimental setup would require a mutual coupling for which the
critical coupling gain is half the critical coupling gain compared to unidirectional coupling. However, an
experimental approach is not straightforward as a diffuse coupling for mechanical systems requires access
to the kinematic equation. Furthermore, the measure differential inclusion describing the dynamics of the
system is transformed to a measure differential equation before the coupling is applied. This approach is
feasible for a computer simulation, but not for a physical system such as a mechanical system including
Coulomb friction.
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